
MAPREDUCE OVER MOBILE
DEVICES

PALAK SHAH

DIVYA RAMACHANDRAN

1/42

MapReduce System over Heterogeneous Mobile Devices
Authors: Peter R. Elespuru, Sagun Shakya, and Shivakant Mishra
Publication: SEUS '09 Proceedings of the 7th IFIP WG 10.2 International Workshop on Software
Technologies for Embedded and Ubiquitous Systems
Link: http://dl.acm.org/citation.cfm?id=1694312

Scheduling for Real-Time Mobile MapReduce Systems
Authors: Adam J. Dou, Vana Kalogeraki, Dimitrios Gunopulos, Taneli Mielikäinen, Ville Tuulos
Publication: DEBS '11 Proceedings of the 5th ACM international conference on Distributed event-
based system
Link: http://dl.acm.org/citation.cfm?id=2002305

2/42

http://dl.acm.org/citation.cfm?id=1694312
http://dl.acm.org/citation.cfm?id=2002305

Heterogeneous Mobile Device Map-
Reduce System

 Provide a mechanism for volunteers to participate in a smart phone distributed
computational system

 Make use of this device pool to compute something and provide aggregate
results

 Provide interesting results to interested parties and summarize them in a timely
fashion considering the reliability of mobile devices and network communications

3/42

MapReduce

 Created at Google in 2004 by Jeffrey Dean and
Sanjay Ghemawat

 Distributed Processing Algorithm

 Reduces large problem sets into small pieces

 Distributed tasks completed by cluster of devices

 Solves basically problems that are huge, but not
hard

 Example – Indexing of documents for search

4/42

Map Reduce Example

http://blog.pivotal.io/pivotal/products/hadoop-101-programming-mapreduce-with-native-libraries-hive-pig-and-cascading

5/42

emit

Related Projects

Some projects that allow interested users to surrender a portion of their desktop or
laptop to a much larger computational goal:

 SETI@Home

 Analyze data in search of extra terrestrial signals

 Folding@Home

 Understand protein folding and related diseases

6/42

Limitations on Mobile Devices

 Only smart phones are computationally powerful enough for these applications

 Power usage

 Security Concerns

 Interference with traditional usage model as a phone

Constant increase in data volume underscored need for more and more
computational power

7/42

Key Components in Proposed System

 A Server Machine – master and co-ordinator
for map-reduce process

 Server side client code – used for faster and
more powerful processing

 Mobile client device which implements map
reduce

 BUI (Browser User Interface)

8/42

Work Flow Diagrams 9/42

High Level Map Reduce System Explaination

Work Loop

Event Driven Interruption Handling

Certain Events override the application and take control of the mobile device

 Phone Call

 Application pauses during the call

 Application is re-launched after the call

 Computation state is saved by application

 SMS Alert

 Application runs in background until the SMS is viewed

 Calendar Event

 Application runs in background until the Calendar Event is viewed

10/42

End-user Participation

Two Type of Users

 Captive

 Voluntary

11/42

Experimental Setup

 Test devices:

 Standard Linux server

 iPhone

 iPhone simulator

 Data set:

 Overall sizes ranged from 5 MB to almost 50 MB

 Within those data sets, each individual text document ranged from a few
kilobytes up to roughly 64 kilobytes each

12/42

Results : Throughput per Client

Simulated iPhone
clients : fastest

 Simulated iPhone clients ran
on the same machine as the
server software

 Perl clients executed on
remote Linux machines

 Mixing and matching
client types didn’t seem to
impact the contribution of
any one particular client
type

13/42

Results : Variations in Throughput for
different Client types

 Simulated iPhone

clients : 1.64 MB/sec

- Processed most data

 Perl clients :

1.29 MB/sec

 Real iPhone clients :

0.12 MB/sec

14/42

Results

Observation

Results
consistent
across a
variety of
data sets in
terms of
size and
textual
content

Communication

Main
factor to
cause
processi
ng lag

Difference in simulated and real iPhone

Overhead in the
wireless connection
and processing
capabilities

Particularly useful for non-time sensitive
computations

iPhone performance an order of
magnitude slower than the traditional
clients considering the number of
available clients, a large number of
processing could be shifted to these
clients

15/42

Projection : Throughput as Number of
Devices Increased

 500 mobile devices close
to 60 MB/sec of textual data

 10000 devices 1,200
MB/sec (1.2 GB/sec!) of
data

 Other components of the
system would definitely
start becoming bottlenecks

16/42

Scope for Optimization

Automatic
Discovery

Device Specific
Scaling

Other Client Types

Reference:
www.nemsausa.org
searchpp.com
community.spiceworks.com
www.digitaltrends.com
www.findandconvert.com

Security

Power Usage

Participation
Incentives

Other Considerations

17/42

 Why using mobile devices for such processing is a good idea?

 New set of mobile devices useful for large data processing

 Attempt to make MR over mobile devices Real Time

 Scheduling for Real-Time Mobile MapReduce Systems

18/42

Problem Statement

 Supporting real-time applications in mobile settings is challenging due to limited
resources, mobile device failures and the significant quality fluctuations of the
wireless medium

 Real-Time Mobile MapReduce(MiscoRT) - proposed system - aimed at supporting
the execution of distributed applications with real-time response requirements

 Effectively predicts application execution times and dynamically schedules
application tasks

19/42

Challenges to be addressed

 Application development over networks of smartphones

 Memory management and Application flow via new software
paradigms

 Concurrency issues

 Application Programmability

 Program, develop and deploy portable applications

 User Participation

 Achieving Real-Time Response

20/42

Objectives

Account for
Failures

Meet
Deadlines

21/42

Misco

 MapReduce
implementation that
runs on mobile
phones

22/42

MICRORT
 N distributed applications A1, A2, ..AN

 M worker nodes W1, W2, …WM

 Aj -> consists of a number of map tasks (T j map) and a number of reduce tasks (T j reduce)

 Distributed applications are triggered by the user - aperiodic and their arrival times are not known a
priori

 Each application –

 ready time rj Deadlinej exec timej

 exec timej --> number of map and reduce tasks, size of data, M (all are recorded)

 Laxityj = Deadline - exec time

 Adjusted dynamically based on queuing delays and failures

 Smaller Higher Priority

 For each task t of an application Aj compute: the processing time τj
t,k, the time required for

the task to execute locally on worker Wk

23/42

MICRORT

 Schedules map and reduce tasks to execute in parallel on the worker nodes

 Map or reduce

 Cannot preempt task once assigned

 Execution of tasks from different applications can interleave

 Worker only responsible for executing the current task

 Worker does not keep track of completed tasks (and from which
applications)

 Server maintains this information

 System ensures independence of tasks and provision of proper data

24/42

 Main responsibility : To assign tasks to workers when they make requests

Sc
h

ed
u

lin
g

Sc
h

em
e

Application Scheduler

- determine the order of execution
for the applications in the system

Task Scheduler

- ensure that all tasks of the
application are scheduled for
execution

- may dynamically change the
number of workers allocated to the
application to compensate for
failures or queuing delays

25/42

Failure Model : Single task, single worker
 Assumption: Failures of the worker devices follow a Poisson distribution and that failures are

transient

 For application Aj and worker Wi:

 The expected processing time for a single task on a single worker, including failures :

w = τ …..a successful run

+

τ/2 * τλ/(1 − τλ) …..Sum of all the times wasted processing a task before failures occur

+

(μ ∗ τλ)/(1 − τλ) …..Sum of all the downtime in order for the worker to recover from
failures

λi - failure arrival rate for worker Wi τj
i - local processing time for task of application Aj on worker Wi

μi - mean recovery time from a failure for worker Wi w j
i - expected task processing time including failures

26/42

Failure Model : Multiple Tasks, Multiple Nodes
 For application Aj and worker Wi: Consider T tasks belonging to same application

 The total execution time for all T tasks of application Aj

= maximum (individual processing times for each worker)

 Since all workers are either processing a task or in a failure state, we can model this by
considering a equal-time workload for each worker

 For the workers to finish their tasks at the same time, the number of tasks ρi assigned to
worker Wi (1 ≤ i ≤ M) is:

 Expected execution time

λi - failure arrival rate for worker Wi τj
i - local processing time for task of application Aj on worker Wi

μi - mean recovery time from a failure for worker Wi w j
i - expected task processing time including failures

27/42

Application Scheduler

 Least-laxity scheduler

 Laxityj = Deadlinej − current time − exec timej

 Schedule is driven by both the timing requirements of the applications and node failures

 Slower processing decreased laxity higher priority

28/42

Task Scheduler

 Ensure all tasks are scheduled for execution

 Dynamically change workers allotted to each task to compensate for queuing
delays and failures

 3 step process:

29/42

Experimental Setup
 Mobile Clients:

 30 Nokia N95 8GB smart-phones

 ARM11 dual CPUs at 332 Mhz

 90 MB of main memory and 8 GB of local storage

 Supports wireless 802.11b/g networks, bluetooth and cellular 3g networks

 Server:

 A commodity computer

 Pentium-4 2Ghz CPU

 640 MB of main memory.

 Communication:

 The server has a wired 100 MBit connection to a Linksys WRT54G2 802.11g router.

 All of the phones are connected via 802.11g to this router.

30/42

Application Specs and Baseline Case

 11 Applications – 8 with 100kB input and 3 with 1MB input

 5 applications have tight deadlines

 2 applications have medium deadlines

 3 applications have loose deadlines

 Baseline Comparison – Earliest Deadline First

 Parameters:

 Miss Ratio

 End to end time

31/42

Results

 Uniform distribution of worker failures

32/42

Miss Rate is
lower than

EDF

Results

 Lognormal distribution of worker failures

33/42

Success Rate
is higher than

EDF

Comparison with different Task Schedulers

• Selects tasks at random

• Very low overhead

• Wastes computational resources

Random Task
Scheduler

• Picks Tasks sequentially, hence low overhead

• Does not consider worker failures

• Avoids duplicate assignment

Sequential Task
Scheduler

• FIFO based task scheduler

• Constant worker feedback about their progress

Modified Hadoop
Task Scheduler

34/42

Results 35/42

Validation

 Compare predicted execution time with
actual execution time

 1 application with 73 tasks

 Assume all workers fail with same rate

Predictions are very accurate even at high
failure rates

36/42

Scalability

 Number of applications is increased
linearly

 Failure rate is set to 0

 Processing power is fixed

End-to-end time increases linearly with
increase in applications

37/42

Deadline Sensitivity

 Deadlines are made tighter by 20% for each
test

 Failure rate is kept constant at 20%

 Comparison of Miss Rates of EDF and
proposed Scheduler

EDF has more misses than proposed scheduler

38/42

Overhead and Resource Usage

CPU, Memory and Power Consumption is measured using NOKIA Energy Profiler

 CPU

 Task dependent and also takes into consideration other applications running on phone

 Application gladly uses all processing power available to it

 Memory

 Application needs only 800kB Memory

 Scheduler does not introduce any overhead (only 150 lines of code)

 Almost 90MB Memory free

 Power Usage

 Processing data requires 0.7 watts

 Network access requires 1.6 watts

 It is much more effective to process data locally than to send it over network

39/42

Conclusion

 Map-reduce framework can be implemented on Mobile Devices to utilize their
huge potential of performing highly distributed compute intensive applications

 Failure is not an exception, but a Norm in such a system. Deadlines should be
met even in the face of Failures

 A scheduler is proposed that

(1) performs effectively, even under failures,

(2) has low overhead,

(3) consistently outperforms its competitors

40/42

Drawbacks

First paper :

 No information about Versions and configuration details

Second Paper :

 Did not conducts tests on network performance

41/42

Thank You

42/42

