The ARM Architecture

THE ARCHITECTURE FOR THE DIGITAL WORLD

ARM

Agenda

Introduction to ARM Ltd

ARM Architecture/Programmers Model
Data Path and Pipelines

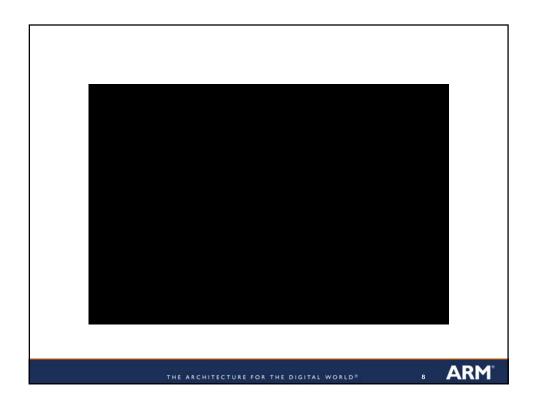
AMBA

Development Tools

THE ARCHITECTURE FOR THE DIGITAL WORLD®

ARM Ltd

- Founded in November 1990
 - Spun out of Acorn Computers
- Designs the ARM range of RISC processor cores
- Licenses ARM core designs to semiconductor partners who fabricate and sell to their customers.
 - ARM does not fabricate silicon itself
- Also develop technologies to assist with the designin of the ARM architecture
 - Software tools, boards, debug hardware, application software, bus architectures, peripherals etc


HE ARCHITECTURE FOR THE DIGITAL WORLD

Introduction to ARM Ltd ARM Architecture/Programmers Model Data Path and Pipelines AMBA Development Tools

Data Sizes and Instruction Sets

- The ARM is a 32-bit architecture.
- When used in relation to the ARM:
 - Byte means 8 bits
 - Halfword means 16 bits (two bytes)
 - Word means 32 bits (four bytes)
- Most ARM's implement two instruction sets
 - 32-bit ARM Instruction Set
 - 16-bit Thumb Instruction Set
- Jazelle cores can also execute Java bytecode

THE ARCHITECTURE FOR THE DIGITAL WORLD®

Processor Modes

- The ARM has seven basic operating modes:
 - User: unprivileged mode under which most tasks run
 - FIQ: entered when a high priority (fast) interrupt is raised
 - IRQ : entered when a low priority (normal) interrupt is raised
 - Supervisor : entered on reset and when a Software Interrupt instruction is executed
 - Abort : used to handle memory access violations
 - Undef: used to handle undefined instructions
 - System: privileged mode using the same registers as user mode

THE ARCHITECTURE FOR THE DIGITAL WORLD®

Program Status Registers

- Condition code flags
 - N = Negative result from ALU
 - Z = Zero result from ALU
 - C = ALU operation Carried out
 - V = ALU operation oVerflowed
- Sticky Overflow flag Q flag
 - Architecture 5TE/J only
 - Indicates if saturation has occurred
- J bit
 - Architecture 5TEJ only
 - J = 1: Processor in Jazelle state

- Interrupt Disable bits.
 - I = 1: Disables the IRQ.
 - F = 1: Disables the FIQ.
- T Bit
 - Architecture xT only
 - T = 0: Processor in ARM state
 - T = 1: Processor in Thumb state
- Mode bits
 - Specify the processor mode

THE ARCHITECTURE FOR THE DIGITAL WORLD

ARM

Conditional Execution and Flags

- ARM instructions can be made to execute conditionally by postfixing them with the appropriate condition code field.
 - This improves code density and performance by reducing the number of forward branch instructions.

```
CMP r3,#0
BEQ skip
ADD r0,r1,r2
skip
```

CMP r3,#0
ADDNE r0,r1,r2

By default, data processing instructions do not affect the condition code flags but the flags can be optionally set by using "S". CMP does not need "S".

```
SUBS r1,r1,#1 decrement r1 and set flags

BNE loop if Z flag clear then branch
```

THE ARCHITECTURE FOR THE DIGITAL WORLD®

Data processing Instructions

- Consist of :
 - Arithmetic: ADD ADC SUB SBC RSB RSC
 - Logical: AND ORR EOR BIC
 - Comparisons: CMP CMN TST TEQ
 - Data movement: MOV MVN
- These instructions only work on registers, NOT memory.
- Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

- Comparisons set flags only they do not specify Rd
- Data movement does not specify Rn
- Second operand is sent to the ALU via barrel shifter.

THE ARCHITECTURE FOR THE DIGITAL WORLD

Single register data transfer

LDR STR Word
LDRB STRB Byte

LDRH STRH Halfword

LDRSH Signed byte load

LDRSH Signed halfword load

- Memory system must support all access sizes
- Syntax:
 - LDR{<cond>}{<size>} Rd, <address>
 - STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB

HE ARCHITECTURE FOR THE DIGITAL WORLD

3 ARM

Agenda

Introduction to ARM Ltd
ARM Architecture/Programmers Model

Data Path and Pipelines

AMBA

Development Tools

THE ARCHITECTURE FOR THE DIGITAL WORLD®

Agenda

Introduction to ARM Ltd
ARM Architecture/Programmers Model
Data Path and Pipelines
AMBA

Development Tools

THE ARCHITECTURE FOR THE DIGITAL WORLD

Keil Development Tools for ARM

- Includes ARM macro assembler, compilers (ARM RealView C/C++ Compiler, Keil CARM Compiler, or GNU compiler), ARM linker, Keil uVision Debugger and Keil uVision IDE
- Keil uVision Debugger accurately simulates on-chip peripherals (I²C, CAN, UART, SPI, Interrupts, I/O Ports, A/D and D/A converters, PWM, etc.)
- Evaluation Limitations
 - 16K byte object code limitation
 - Some linker restrictions such as base addresses for code/constants
 - GNU tools provided are not restricted in any way
- http://www.keil.com/demo/

THE ARCHITECTURE FOR THE DIGITAL WORLD®

ARM

