Embedded Systems Design: A Unified

Hardware/Software Introduction
]

Introduction

]
* General-Purpose Processor
— Processor designed for a variety of computation tasks
— Low unit cost, in part because manufacturer spreads NRE

over large numbers of units
* Motorola sold half a billion 68HCO05 microcontrollers in 1996 alone

— Carefully designed since higher NRE is acceptable
+ Can yield good performance, size and power
— Low NRE cost, short time-to-market/prototype, high
flexibility
* User just writes software; no processor design
— a.k.a. “microprocessor” — “micro” used when they were
implemented on one or a few chips rather than entire rooms

Chapter 3 General-Purpose Processors:
Software

Embedded Systems Design: A Unified 2
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Basic Architecture Datapath Operations
* Control unit and ; * Load
Tocessor . Processor
datapath Control unit Datapath - Read memory lOCathn Control unit Datapath
— Note similarity to ALU A into reglste'r
: Controller Control . Controller Control
single-purpose F LU operation F
processor < ¢ — Input certain registers <
. « ; through ALU, store «
Registers >
* Key differences back in register
— Datapath is general « Store
— Control unit dgesn’t £ PC { IR — Write register to £ PC { IR
store the algorithm — 4 memory location 4
the algorithm is t
“programmed” into the 3 vo l 3 vo
memory Memory Memory

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Control Unit Sub-Operations

» Control unit: configures the datapath

operations Processor ® FetCh Processor
— Sequence of desired operations Control unit Datapath . : Control unit Datapath
(“instructions”) stored in memory — T — Get next instruction U
prég‘ram . Controller Control| lnto IR Controller Control
» Instruction cycle — broken into IStatus IStatus
several sub-operations, each one < ¢ - PC: program » ¢
clock cycle, e.g.: < Registers counter, always < Registers
— Fetch: Get next instruction into IR .
— Decode: Determine what the . pomts t? next b1k]
instruction means b 1B] instruction ! t B 1B]
— Fetch operands: Move data from rC IR RO RI &c 10f ‘ @RV' M[SOOJ RO RI
memory to datapath register 4 — IR: holds the \\ ‘—/./ :
- i)]ielctjute: Move data through the pA fetched instruction \ A l
Y A
~ Store results: Write data from 100 [load RO, M[500]] Memory 100 [load Q. 24(300] | Memory 55
register to memory 101 incR1, RO 101 | incRI,RO s
102 |store M[501], R1 102 |store M[501], R1 B

Embedded Systems Design: A Unified 5 Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations Control Unit Sub-Operations

[Decode Processor d FetCh Opera—nds Processor
_ Determlne What the Control unit Datapath _ MOVe data from Control unit Datapath
: . ALU ALU
instruction means pER— Contral memory to datapath pEv— Contral
/Status ¢ register /Status ¢
< Registers < Registers
A
i Gl i T
pre 1] %’aﬁfo sl pre] %’alﬁfo sl

/o /o

100 | load RO, M[500] | Memory
101 inc R1, RO
102 |store M[501], R1

100 | load RO, M[500] | Memory 500
101 inc R1, RO 501
102 |store M[501], R1

500
501

N3
N3

Embedded Systems Design: A Unified 7 Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations
I

° Execute Processor
_ MOVe data through Control unit Datapath
ALU
the ALU Controller Control
— This particular e 3
ll‘lStI'uC'[IOIl dOCS < Registers
nothing during this SRS
sub-operation i T B]
b e w] M | |
A

/o

?
l

100

load RO, M[500]

101

inc R1, RO

10.

N3

store M[501], R1

Memory 500
501

L]

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Cycles

PC=100

Fetch Decode Fetch gyec Store
ops results

clk

Processor

Control unit Datapath

ALU

Controller Control|

/Status :

/\ < Registers
PC_100 IR

E u ﬁ loa%'@%] R R

\ /

/o

[

100 1994 ReA[500]
101 incR1, RO
102 |store M[501], R1

DN

Memory 500

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Control Unit Sub-Operations
I

» Store results

Processor
— Write data from Control unit Datapath
register to memory po—— oo |
— This particular e 3
instruction does < Registers
nothing during this S

sub-operation

1 t
&)C 100 ‘ %’aﬁfo M[SOO#

f /o
100 | load RO, M[500]| Memory 500 Ty
101 inc R1, RO 501
102 |store M[501], R1
Embedded Systems Design: A Unified 10
Hardware/Software Introduction, (c) 2000 Vahid/Givargis
PC=100 Processor
Fetch Decode Fetch Exec. Store Control unit Datapath
ops results
clk Controller Control|
/Status
PC=101 *
Fetch Decode Fetch Exec. Store A
ops results

clk

\ // /o

100\oad RO, J(500]] Memory 5/
' RO 501

102 |store M[501], R1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Cycles

PC:1 00 Processor
Fetch Decode Fetch Exec. Store Control unit Datapath
ops results [A |
Cw Controller Control|
/Statas| | |
PC=101 i %
Fetch Decode Fetch pxec, Store A) R
ops results BB]
e [LT L JTL T H I
= 14}2 Sw@ M, - RO RI
PC=102 t
Fetch Decode Fetch gyec, Store \ // 10)/
ops results

10>)\ load RO, M}%OO] Memory 500 m
101)_inc RL/RO so1 [T
102 [stoeM301], R1

Embedded Systems Design: A Unified 13
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

clk

Architectural Considerations

* Clock frequency Processor
_ Inverse Of ClOCk Control unit Datapath
. d ALU
perio Controller Control

)

/Status

— Must be longer than |
longest register to < \ Registers §
register delay in >

entire processor PL‘ ﬁ
PQ IR I k
\

<

— Memory access is \ %3 /
often the longest \ / i\
N/ o | |
Memory
Embedded Systems Design: A Unified 15

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Architectural Considerations

* N-bit processor P——

— N-bit ALU, registers, Control unit Datapath
buses, memory data po— oo |
interface ‘/Swus ;

— Embedded: 8-bit, 16- < Registers
bit, 32-bit common

— Desktop/servers: 32- p’c—‘ ﬁ

bit, even 64 [y '
* PC size determines Vo !
address space Memory
Embedded Systems Design: A Unified 14

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Pipelining: Increasing Instruction
Throughput

Wash [T]2]3]4]5]6]7]8] [T]2]3]4]5]6]7[8]
Non-pipelined Pipelined
T (LR (LT
R I N I A I B B] e
non-pipelined dish cleaning Time pipelined dish cleaning Time

Fetch-instr. }’\1\1\2]3]4]5]6] 7]8‘

Decode 1\}\2]3]4]5]6]718\

Fetch ops. 1\}\2] 3] 4] 5] 6] 7] 8 ‘ Pipelined
Execute Imtmmon/]\p\{\z [3T4]5]6]7]8]
Store res. \1\})2]3]4]5]6]7]8‘

I L L L L L
pipelined instruction execution Time

v

Embedded Systems Design: A Unified 16
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Superscalar and VLIW Architectures

]
» Performance can be improved by:
— Faster clock (but there’s a limit)
— Pipelining: slice up instruction into stages, overlap stages

— Multiple ALUs to support more than one instruction stream
* Superscalar

— Scalar: non-vector operations

— Fetches instructions in batches, executes as many as possible
* May require extensive hardware to detect independent instructions

— VLIW: each word in memory has multiple independent instructions
* Relies on the compiler to detect and schedule instructions
+ Currently growing in popularity

Embedded Systems Design: A Unified 17
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Cache Memory

|
* Memory access may be slow

Fast/expensive technology, usually on
the same chip

» (Cache 1s small but fast

memory close to processor processer
— Holds copy of part of memory I
— Hits and misses Cache
f
v
Memory

Slower/cheaper technology, usually on
a different chip

Embedded Systems Design: A Unified 19
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Two Memory Architectures

. Processor Processor
* Princeton

— Fewer memory 3 3 3

wires
» Harvard . . .

_ 3 Program Data memory Memory
Slmultaneous memory (program and data)
program and data
memory access

Harvard Princeton
Embedded Systems Design: A Unified 18

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Programmer’s View

]
* Programmer doesn’t need detailed understanding of architecture
— Instead, needs to know what instructions can be executed
e Two levels of instructions:
— Assembly level
— Structured languages (C, C++, Java, etc.)
* Most development today done using structured languages
— But, some assembly level programming may still be necessary

— Drivers: portion of program that communicates with and/or controls
(drives) another device
« Often have detailed timing considerations, extensive bit manipulation
« Assembly level may be best for these

Embedded Systems Design: A Unified 20
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Assembly-Level Instructions

Instruction 1 [opcode operandl | operand2
Instruction 2 | opcode operandl | operand2
Instruction 3 | opcode operandl | operand2
Instruction 4 | opcode operandl | operand2

* Instruction Set
— Defines the legal set of instructions for that processor
+ Data transfer: memory/register, register/register, 1/O, etc.
* Arithmetic/logical: move register through ALU and back
» Branches: determine next PC value when not just PC+1

Embedded Systems Design: A Unified 21
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Addressing Modes

Addressing Register-file Memory
mode Operand field contents contents
Immediate ‘ Data ‘
Register-direct ‘ Register address N Data
]}:dgllrit:: ‘ Register address > Memory address N Data

Direct Memory address | > Data
Indirect Memory address > Memory address

Data

Embedded Systems Design: A Unified 23
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

A Simple (Trivial) Instruction Set

Assembly instruct. First byte Second byte Operation
MOV Ru, direct ‘ 0000 ‘ Rn ‘ ‘ direct ‘ Rn = M(direct)
MOV direct, Rn ‘ 0001 ‘ Rn ‘ ‘ direct ‘ M(direct) = Rn
MOV @Rn, Rm ‘ 0010 ‘ Rn ‘ ‘ Rm ‘ ‘ M(Rn) =Rm
MOV Rn, #immed. ‘ 0011 ‘ Rn ‘ ‘ immediate ‘ Rn = immediate
ADD Rn, Rm ‘ 0100 ‘ ‘ ‘ Rm ‘ ‘ Rn=Rn + Rm
SUB Rn, Rm ‘ 0101 ‘ ‘ ‘ Rm ‘ ‘ Rn=Rn-Rm
JZ R, relative ‘ 0110 ‘ Rn ‘ ‘ relative ‘ PC = PC+ relative
(only if Rn is 0)
opcode Wlds—/
Embedded Systems Design: A Unified 22

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Sample Programs

C program Equivalent assembly program
0 MOV RO, #0; /l total = 0
1 MOV R, #10; /1i=10
2 MOV R2, #1; // constant 1
3 MOV R3, #0; // constant 0
Loop: JZRI, Next; // Done if i=0
int total = 0; 5 ADD RO, R1; // total += 1
for (int i=10; i!=0; i--) 6 SUBRI, R2; /i
total +=1; 7 JZ R3, Loop; // Jump always

// next instructions...
Next: // next instructions...

* Try some others
— Handshake: Wait until the value of M[254] is not 0, set M[255] to 1,
wait until M[254] is 0, set M[255] to 0 (assume those locations are
ports).
— (Harder) Count the occurrences of zero in an array stored in memory

locations 100 through 199.

Embedded Systems Design: A Unified 24
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Programmer Considerations

]
* Program and data memory space

— Embedded processors often very limited
* e.g., 64 Kbytes program, 256 bytes of RAM (expandable)

* Registers: How many are there? Are any special?

— Only a direct concern for assembly-level programmers

* 1/O

— How communicate with external signals?

— Commonly done over ports

* Interrupts

— Causes processor to suspend execution and jump to an interrupt service
routine (ISR)

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Parallel Port Example

; on/off accordingly
86

CheckPort proc
push ax

push dx
mov dx, 3BCh +
in al, dx

and al, 10h
cmp al, 0
jne SwitchOn

SwitchOff:
mov dx, 3BCh +
in al, dx
and al, f7h
out dx, al
jmp Done
SwitchOn:
mov dx, 3BCh +
in al, dx
or al, 0lh
out dx, al

Done: pop dx
op ax
CheckPort endp

; restore the content
; restore the content

; This program consists of a sub-routine that reads
; the state of the input pin, determining the on/off state
; of our switch and asserts the output pin, turning the LED

; save the content

; save the content

; base + 1 for register #1

; read register #1

; mask out all but bit ¥ 4

i is it 0?

; if not, we need to turn the LED on

; Pxse + 0 for register #0

the current state of the port

; cleaX first bit (masking)

; base + 0 for'xegister #0
; read the curre
; set first bit (mdeking)

; write it out to the\port

state of the port

25

extern “C” CheckPort (void);

void main(void) {
while(1) {

// defined in

// assembly

CheckPort () ;

}

LPT Connection Pin 1/0 Direction Register Address
1 Output 0t bit of register #2
29 Output 0™ bit of register #2
10,11,12,1815 Input 6,7,5.4.3" bit of register

14,1617

=

173" bit of register #2

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

27

Example: parallel port driver

LPT Connection Pin /O Direction Register Address in 13 £]
1 Output 0t bit of register #2 fnt Switch
2-9 Output 0th- 7t bit of register #0 BC Parallel port
10,11,12,13,15 Input 6,7,5,4,3" bit of register #1
14,16,17 Output 1,2,3" bit of register #2

» Using assembly language programming we can configure a PC
parallel port to perform digital I/0

— write and read to three special registers to accomplish this. The table
provides list of parallel port connector pins and corresponding register
location

— Example : parallel port monitors the input switch and turns the LED
on/off accordingly

Embedded Systems Design: A Unified 26
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Operating System

]
* Optional software layer
providing low-level services to
a program (application).
— File management, disk access
— Keyboard/display interfacing

Scheduling multiple programs for

DB file name “out.txt” -- store file name

eXeCution MOV RO, 1324 -- system call “open” id
MOV R1, file_name -- address of file-name
* Or even just multiple threads from A Pl g
one program . . . read the file
Jup 12 -- bypass error cond.
— Program makes system calls to L ndte the error

the OS w2

Embedded Systems Design: A Unified 28
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Development Environment

B]
* Development processor

— The processor on which we write and debug our programs
* Usually a PC

» Target processor

— The processor that the program will run on in our embedded
system
* Often different from the development processor

%
: B

Development processor Target processor

Embedded Systems Design: A Unified 29
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Running a Program

B]
 If development processor is different than target, how
can we run our compiled code? Two options:
— Download to target processor
— Simulate

* Simulation
— One method: Hardware description language
* But slow, not always available

— Another method: Instruction set simulator (ISS)

* Runs on development processor, but executes instructions of target
processor

Embedded Systems Design: A Unified 31
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Software Development Process

» Compilers

CFileJ CFile || Asm. J — Cross COIl’lplleI'
e * Runs on one

@ processor, but
generates code for

BinaryJ BinaryJ Binary another

File File File

* Assemblers

I e Linkers
Exec. ’
T L Debugger
Implementation Phase Verification Phase . Proﬁlers
Embedded Systems Design: A Unified 30

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Instruction Set Simulator For A Simple

Processor
]

#include <stdio.h> }
typedef struct { }

unsigned char first byte, second byte; return 0;
} instruction; }
instruction program[1024]; //instruction memory int main(int argc, char *argv(]) {
unsigned char memory([256]; //data memory
FILE* ifs;

void run_program(int num_bytes) {
If(arge != 2 ||

int pc = -1; (ifs = fopen(argv[l], “rb”) == NULL) {
unsigned char reg[16], fb, sb; return -1;
}
while(++pc < (num_bytes / 2)) { if (run_program(fread(program,
fb = program[pc].first_byte; sizeof (program) == 0) {
sb = program[pc].second_byte; print_memory_contents () ;
switch(fb >> 4) { return(0) ;
case 0: reg[fb & 0x0f] = memoryl[sbl; break; ¥
case 1: memory[sb] = reg(fb & 0x0f]; break; else return(-1);
case 2: memory[reg(fb & 0x0f]] = }
reg[sb >> 4]; break;

case 3: reg(fb & 0x0f] = sb; break;

case 4: reg(fb & 0x0f] += reg[sb >> 4]; break;
case 5: reg(fb & 0x0f] -= reg[sb >> 4]; break;
case 6: pc += sb; break;

default: return -1;

Embedded Systems Design: A Unified 32
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Testing and Debugging

@ ® « ISS
Implementation

e é Implementation — Gives us control over time —
ase Phase set breakpoints, look at
v 5 register values, set values,
Verification step-by-step execution, ...
Phase Development processor . .
v - Butt doesn’t interact with real
environment
- 188 <51+ Download to board
e Ry Bmulator — Use device programmer

— Runs in real environment, but
not controllable

External tools <]

* Compromise: emulator

Y — Runs in real environment, at
Programmer
speed or near

M~ Veripcation — Supports some controllability

from the PC

Embedded Systems Design: A Unified 33
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

A Common ASIP: Microcontroller

T
* For embedded control applications
— Reading sensors, setting actuators

— Mostly dealing with events (bits): data is present, but not in huge
amounts

— e.g., VCR, disk drive, digital camera (assuming SPP for image
compression), washing machine, microwave oven
* Microcontroller features
— On-chip peripherals
« Timers, analog-digital converters, serial communication, etc.
« Tightly integrated for programmer, typically part of register space
— On-chip program and data memory
— Direct programmer access to many of the chip’s pins

— Specialized instructions for bit-manipulation and other low-level
operations

Embedded Systems Design: A Unified 35
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Application-Specific Instruction-Set
Processors (ASIPs)

|
» General-purpose processors
— Sometimes too general to be effective in demanding
application

* e.g., video processing — requires huge video buffers and operations
on large arrays of data, inefficient on a GPP

— But single-purpose processor has high NRE, not
programmable
» ASIPs — targeted to a particular domain

— Contain architectural features specific to that domain

* e.g., embedded control, digital signal processing, video processing,
network processing, telecommunications, etc.

— Still programmable

Embedded Systems Design: A Unified 34
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Another Common ASIP: Digital Signal
Processors (DSP)

|
 For signal processing applications
— Large amounts of digitized data, often streaming
— Data transformations must be applied fast
— e.g., cell-phone voice filter, digital TV, music synthesizer

» DSP features
— Several instruction execution units
— Multiple-accumulate single-cycle instruction, other instrs.

— Efficient vector operations — e.g., add two arrays
» Vector ALUs, loop buffers, etc.

Embedded Systems Design: A Unified 36
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Trend: Even More Customized ASIPs

]
* In the past, microprocessors were acquired as chips

* Today, we increasingly acquire a processor as Intellectual
Property (IP)
— e.g., synthesizable VHDL model

* Opportunity to add a custom datapath hardware and a few
custom instructions, or delete a few instructions
— Can have significant performance, power and size impacts
— Problem: need compiler/debugger for customized ASIP
* Remember, most development uses structured languages
* One solution: automatic compiler/debugger generation
— e.g., www.tensillica.com
* Another solution: retargettable compilers
— e.g., www.improvsys.com (customized VLIW architectures)

Embedded Systems Design: A Unified 37
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

General Purpose Processors

Processor | Clock speed | Periph. [BusWidth | MIPS [Power | Trans. | Price
General Purpose Processors

Intel PIIT 1GHz 2x16 K 32 ~900 9TW ~T™M $900

L1, 256K

L2, MMX
IBM 550 MHz 2x32 K 32/64 ~1300 SW ~T™M $900
PowerPC L1, 256K
750X L2
MIPS 250 MHz 2x32 K 32/64 NA NA 3.6M NA
R5000 2 way set assoc.
StrongARM 233 MHz None 32 268 1w 2.IM NA
SA-110

Microcontroller

Intel 12 MHz 4K ROM, 128 RAM, | & ~1 ~0.2W ~10K $7
8051 32 I/O, Timer, UART
Motorola 3 MHz 4K ROM, 192 RAM, | 8 ~5 ~0.1W ~10K $5
68HC811 32 1/0, Timer, WDT,

SPIL

Digital Signal Processors

TIC5416 160 MHz 128K, SRAM, 3 T1 16/32 ~600 NA NA $34

Ports, DMA, 13

ADC, 9 DAC
Lucent 80 MHz 16K Inst., 2K Data, 32 40 NA NA $75
DSP32C Serial Ports, DMA
Sources: Intel, Motorola, MIPS, ARM, TI, and IBM Website/Datasheet; Embedded Systems Pr ing, Nov. 1998

Embedded Systems Design: A Unified 39

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Selecting a Microprocessor

1
e Issues
— Technical: speed, power, size, cost
— Other: development environment, prior expertise, licensing, etc.

* Speed: how evaluate a processor’s speed?
Clock speed — but instructions per cycle may differ
— Instructions per second — but work per instr. may differ
— Dhrystone: Synthetic benchmark, developed in 1984. Dhrystones/sec.
* MIPS: 1 MIPS = 1757 Dhrystones per second (based on Digital’s VAX
11/780). A.k.a. Dhrystone MIPS. Commonly used today.
— So, 750 MIPS =750*1757 = 1,317,750 Dhrystones per second
— SPEC: set of more realistic benchmarks, but oriented to desktops
EEMBC — EDN Embedded Benchmark Consortium, www.eembc.org

* Suites of benchmarks: automotive, consumer electronics, networking, office
automation, telecommunications

Embedded Systems Design: A Unified 38
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Designing a General Purpose Processor

FSMD
* Not something an embedded “vcier e v
. bit M[64k][16], RE[16][16];
system designer normally (] oy
PC=PC+1
Would dO Decode \ZZZ:‘ :mlm

- But instructive to see how F[m]:M[dk]
simply we can build one top op=0000 to Fetch
M[dir] = RF[rn]
down G Ny
— Remember that real processors [m]:mrm]
bl . . 0010 to Fetch
aren’t usually built this way
e D vy

¢ Much more optimized, much

more bottom-up design >F[m] “RF[m]+RE[rm]
0100 10 Fetch
L (Sub) RFim]—RFm}-RF[m)]
Agzsii[ls..lz] dir IR[7.0] oot fo Fetch
R B s HD A
Embedded Systems Design: A Unified 40

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Architecture of a Simple Microprocessor

A Simple Microprocessor

.
Storage devices for each — PC0, Peiel;
declared iabl Control unit Toall Datapat 1 ¢ 0 —
cclared variaole . RFs
mpb;’ ! IR-MIPC]; Control unit To all Datapath 1¢ 0
— register file holds each of the Signals woren input REs
variables Conrollr = R REw from saes conro —’*
. . (Next-stae and <p_ i Rfwe \—;-M 1) RF[m] = M(dir] RFwa=m; RFwe=1; RFs=01 Controll | sicgels Riva RF
trol rom ai RF (16 ov =M[di ‘wa=mn; RFwe=1; RFs=01; ‘ontroller w
® Functlonal unlts tO carry Out logic; :[(:l‘cr:cgislcr] output RFrla a0 op = 0000 - to Fetch Ms=01; Mre=1; }exl—sme and [RFwe
the FSMD operations e RETe e B RFrla=mm; RFrle=1; ool | Eomal | RF (16)
One ALU i 16 $ oot o Fetch Ms=01; Mwe=1; egiten) control
— One carries out every » RFe2a o] - RE(mn S signals || | REfTe
; : :t RFrl RFr2 m] = RF{rm]
requlred operation RFi2¢ 0010 fo Fetch Ms=10; Mwe=1; o 16 a RFr2a
. S S - RFs-10: P . RFrl RFr2
» Connections added among the AL% (v) etk i Revasm RewetsREs10; (| Pl K e i «
components’ ports ALUz L 5 RF(m] ~RF[m}RF AL
P . p - l 0100 Ln;;ekh Lot ; 4 ALUZ ALY
corresponding to the operations F——
. S m] = RE[m]-RF[rm
required by the FSM ;e oto1 (o Fetch "
. . . T — 1=0) ?rel :PC Mre Muwe]
* Unique identifiers created for w ; o boran I T
. RFrle=1;
every control signal Memory D . FSM operations that replace the FSMD v w y
b operations after a datapath is created N Memory b
You just built a simple microprocessor! ‘
Embedded Systems Design: A Unified 41 Embedded Systems Design: A Unified 42

Hardware/Software Introduction, (c) 2000 Vahid/Givargis Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Chapter Summary

I ——)
* General-purpose processors
— Good performance, low NRE, flexible
* Controller, datapath, and memory
+ Structured languages prevail
— But some assembly level programming still necessary
* Many tools available
— Including instruction-set simulators, and in-circuit emulators
e ASIPs
— Microcontrollers, DSPs, network processors, more customized ASIPs
* Choosing among processors is an important step

» Designing a general-purpose processor is conceptually the same
as designing a single-purpose processor

Embedded Systems Design: A Unified

43
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

