Embedded Systems Design: A Unified

Hardware/Software Introduction
]

Chapter 7 Digital Camera Example

Introduction

I
* Putting it all together
— General-purpose processor
— Single-purpose processor
» Custom
+ Standard

— Memory
— Interfacing
* Knowledge applied to designing a simple digital
camera
— General-purpose vs. single-purpose processors
— Partitioning of functionality among different processor types

Embedded Systems Design: A Unified 3
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Outline

]
¢ Introduction to a simple digital camera

* Designer’s perspective
* Requirements specification
* Design

— Four implementations

Embedded Systems Design: A Unified 2
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Introduction to a simple digital camera

|
» Captures images
» Stores images in digital format
— No film
— Multiple images stored in camera
* Number depends on amount of memory and bits used per image
» Downloads images to PC
* Only recently possible
— Systems-on-a-chip
* Multiple processors and memories on one IC
— High-capacity flash memory
» Very simple description used for example

— Many more features with real digital camera
« Variable size images, image deletion, digital stretching, zooming in and out, etc.

Embedded Systems Design: A Unified 4
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Designer’s perspective
]
» Two key tasks

— Processing images and storing in memory
* When shutter pressed:
— Image captured
— Converted to digital form by charge-coupled device (CCD)
— Compressed and archived in internal memory
— Uploading images to PC
* Digital camera attached to PC

* Special software commands camera to transmit archived
images serially

Embedded Systems Design: A Unified 5
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Zero-bias error

* Manufacturing errors cause cells to measure slightly above or below actual
light intensity
» Error typically same across columns, but different across rows
* Some of left most columns blocked by black paint to detect zero-bias error
— Reading of other than 0 in blocked cells is zero-bias error
— Each row is corrected by subtracting the average error found in blocked cells for

that row
Covered

cells Zero-bias

adjustment
136 170] 155 MOﬂ‘ 115] 112 248] 12 | 14 123 157] 142] 127] 131] 102] 99[235]
| 145] 146| 168] 123| 120] 117| 119 1g| 12 [10 134 135] 157 112| 109] 106] 108] 136
144] 153] 168 117] 121] 127] 118] 135] 9 | 9 W'W 159| 108| 112| 118] 109| 126
| 176 183] 161] 111] 186[130] 132] 133[0 | 0 176 183] 161] 111] 186| 130 132 133|
144| 156| 161| 133[192| 153| 138| 139] 7 7 137| 149| 154| 126| 185| 146| 131| 132]
[122[131] 128] 147] 206| 151 131] 127] 2 | 0 21| 130] 127] 146 20_5{ 150] 130] 126
121] 155| 164| 185] 254| 165 1381_23‘ 414 17| 151 160] 181] 250] 161] 134] 125
173] 175] 176] 183[188[184] 117] 129] 5 | 5 168 170] 171] 178| 183[179 112] 124|

Before zero-bias adjustment After zero-bias adjustment
Embedded Systems Design: A Unified 7

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Charge-coupled device (CCD)

* Special sensor that captures an image

» Light-sensitive silicon solid-state device composed of many cells

When exposed to light, each
cell becomes electrically

charged. This charge can Lens
then be converted to a 8-bit

area

value where 0 represents no

The electromechanical shutter
is activated to expose the
cells to light for a brief
moment.

exposure while 255
represents very intense
exposure of that cell to light.

Covered column,
Electro-
shutter .
I The electronic circuitry, when
- commanded, discharges the
Electronic ,
circuitry cells, activates the
i .
electromechanical shutter,

and then reads the 8-bit
charge value of each cell.

Pixel rows

Some of the columns are
covered with a black strip of
paint. The light-intensity of
these pixels is used for zero- F= These values can be clocked
bias adjustments of all the ————— out of the CCD by external
cells. logic through a standard
parallel bus interface.

Pixel columns

Embedded Systems Design: A Unified 6
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Compression

]
* Store more images
* Transmit image to PC in less time
* JPEG (Joint Photographic Experts Group)

— Popular standard format for representing digital images in a compressed
form

— Provides for a number of different modes of operation
— Mode used in this chapter provides high compression ratios using DCT
(discrete cosine transform)

— Image data divided into blocks of 8 x 8 pixels
— 3 steps performed on each block

« DCT

Quantization
* Huffman encoding

Embedded Systems Design: A Unified 8
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

DCT step

» Transforms original 8 x 8 block into a cosine-frequency
domain
— Upper-left corner values represent more of the essence of the image

— Lower-right corner values represent finer details
» Can reduce precision of these values and retain reasonable image quality

* FDCT (Forward DCT) formula
— C(h) =if (h==0) then 1/sqrt(2) else 1.0
» Auxiliary function used in main function F(u,v)
— F(u,v) =% x C(u) x C(V) Zx=0.7Xy=0.7 Dxy x cos(m(2u + 1)u/16) x cos(n(2y + 1)v/16)
« Gives encoded pixel at row u, column v
* Dy is original pixel value at row x, column y

* IDCT (Inverse DCT)

— Reverses process to obtain original block (not needed for this design)

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Huffman encoding step

I
» Serialize 8 x 8 block of pixels
— Values are converted into single list using zigzag pattern

* Perform Huffman encoding
— More frequently occurring pixels assigned short binary code
— Longer binary codes left for less frequently occurring pixels

* Each pixel in serial list converted to Huffman encoded values
— Much shorter list, thus compression

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Quantization step

» Achieve high compression ratio by reducing image
quality
— Reduce bit precision of encoded data
» Fewer bits needed for encoding

* One way is to divide all values by a factor of 2
— Simple right shifts can do this

— Dequantization would reverse process for decompression

1150 _39] 43| -10] 26] -83] 11] 41 .. B 144
B3 T 73 ﬁl 25 Divide eachcell’s —5
4] 11| 1| 42| 26| -3 17] -39 value by 8 2
2| 61 13| 12| 36| -23] 18] 5 >
24 13 37| 4] o[21 7| 8

36 11| 9| 4| 20| -28] 21| 14

19| 7| 21 6] 3] 3] 12[-21
5| 13 1| 7] 4] 7 4

olo|i|&|b|o|o|o

w|S|afb|ofR|d

[ENEN PR EN ISP
[ENENENFS A PSEN

Llolw[a]o|w|S]w

o o] | to[o] eo|
BN 19 EN IR P AN P

ENESISI S

-1

After being decoded using DCT After quantization

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Huffman encoding example

» Pixel frequencies on left
— Pixel value -1 occurs 15 times
— Pixel value 14 occurs 1 time
+ Build Huffman tree from bottom up Pixel Huffiman tree Huffman
B : frequencies codes
Create one leaf node for each pixel

value and assign frequency as node’s
value

15x
Ssx / ™~

6x

00

100
110
010
1110
1010
0110
11110
10110
01110
11111
111110|
101111
101110|
011111]
011110

— Create an internal node by joining any
two nodes whose sum is a minimal
value

This sum is internal nodes value
— Repeat until complete binary tree
* Traverse tree from root to leaf to
obtain binary code for leaf’s pixel
value

— Append 0 for left traversal, 1 for right
traversal

* Huffman encoding is reversible 14
— No code is a prefix of another code

o|k|&|6|B[3|0| || [m] ||| S
=2l s
=[R[2[%
oe\
@\,\
@N\: ~
o|h|&|o|R|B| | 6| ||| =[] 0| =

2
<%
=3
a\@
o
&
2

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Archive step

I
* Record starting address and image size
— Can use linked list

* One possible way to archive images
— If max number of images archived is N:
* Set aside memory for N addresses and N image-size variables
» Keep a counter for location of next available address
* Initialize addresses and image-size variables to 0
+ Set global memory address to N x 4
— Assuming addresses, image-size variables occupy N x 4 bytes

+ First image archived starting at address N x 4
* Global memory address updated to N x 4 + (compressed image size)

* Memory requirement based on N, image size, and average
compression ratio

Embedded Systems Design: A Unified 13
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Requirements Specification

I —
» System’s requirements — what system should do
— Nonfunctional requirements
* Constraints on design metrics (e.g., “should use 0.001 watt or less”)
— Functional requirements
» System’s behavior (e.g., “output X should be input Y times 2”)
— Initial specification may be very general and come from marketing dept.

* E.g., short document detailing market need for a low-end digital camera that:
— captures and stores at least 50 low-res images and uploads to PC,
— costs around $100 with single medium-size IC costing less that $25,
— has long as possible battery life,
— has expected sales volume of 200,000 if market entry < 6 months,
— 100,000 if between 6 and 12 months,
— insignificant sales beyond 12 months

Embedded Systems Design: A Unified 15
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Uploading to PC

I
* When connected to PC and upload command received
— Read images from memory
— Transmit serially using UART

— While transmitting

» Reset pointers, image-size variables and global memory pointer
accordingly

Embedded Systems Design: A Unified 14
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Nonfunctional requirements

]
* Design metrics of importance based on initial specification
— Performance: time required to process image
— Size: number of elementary logic gates (2-input NAND gate) in IC
— Power: measure of avg. electrical energy consumed while processing

Energy: battery lifetime (power x time)
* Constrained metrics

— Values must be below (sometimes above) certain threshold

* Optimization metrics
— Improved as much as possible to improve product

* Metric can be both constrained and optimization

Embedded Systems Design: A Unified 16
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Nonfunctional requirements (cont.)

]
* Performance
— Must process image fast enough to be useful
— 1 sec reasonable constraint
« Slower would be annoying
« Faster not necessary for low-end of market
— Therefore, constrained metric
+ Size
— Must use IC that fits in reasonably sized camera
— Constrained and optimization metric
+ Constraint may be 200,000 gates, but smaller would be cheaper
» Power
— Must operate below certain temperature (cooling fan not possible)
— Therefore, constrained metric
* Energy
— Reducing power or time reduces energy
— Optimized metric: want battery to last as long as possible

Embedded Systems Design: A Unified 17
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Refined functional specification

* Refine informal specification into
one that can actually be executed
» Can use C/C++ code to describe
each function
101011010

— Called system-level model, lotonolo
prototype, or simply model

— Also is first implementation
» Can provide insight into operations
of system

Executable model of digital camera

Tmage Tl

101010101
— Profiling can find computationally Sy
intensive functions 0..
+ Can obtain sample output used to _
. ‘output file
verify correctness of final
implementation
Embedded Systems Design: A Unified 19

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Informal functional specification

* Flowchart breaks functionality
down into simpler functions

¢ Each function’s details could then
be described in English

— Done earlier in chapter

* Low quality image has resolution
of 64 x 64

* Mapping functions to a particular
processor type not done at this
stage

CcCD

input

Zero-bias adjust

Archive in
memory

—» scrial output
e.g. 011010...

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

CCD module

* Simulates real CCD

* Ccdlnitialize is passed name of image file
¢ CcdCapture reads “image” from file
* CcdPopPixel outputs pixels one at a time

#include <stdio.h> }

[void CcdInitialize (const char *imageFileName) {

imageFileHandle = fopen (imageFileName, "r");
rowIndex = -1;

colIndex = -1;

4define S7_ROW 64

#define Sz_cCOL (64 + 2)
static FILE *imageFileHandle;
static char buffer[SZ_ROW] [SZ_COLI;

static unsigned rowIndex, collndex;

char CcdPopPixel (void) {
char pixel;
pixel = buffer[rowIndex] [colIndex];
if (++collndex == SZ_COL) {
colIndex = 0;

if(++rowIndex == SZ_ROW) {
colIndex = -1;
rowIndex = -1;

)
)
return pixel;

[oid CedCapture (void) |

int pixel;
rewind (imageFileHandle) ;
for (rowIndex=0; rowIndex<SZ_ROW; rowIndex++) {
for (colIndex=0; collndex<SZ_COL; colIndex++) {
if(fscanf(imageFileHandle, "%i", &pixel) == 1) {

buffer [rowIndex] [colIndex] = (char)pixel;

}
rowIndex = 0;

colIndex = 0;

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

20

CCDPP (CCD PreProcessing) module UART module

—— e ——
. . [fdefine sz row 6 |
* Performs zero-bias adjustment ietine s7_cow o4 * Actually a half UART
* CcdppCapture uses CcdCapture and CcdPopPixel to obtain |cocic char puszer(sz row) [s2_coL;

— Only transmits, does not receive

image static unsigned rowIndex, collndex;
* Performs zero-bias adjustment after each row read in oid CcdppInitialize () (
. ‘ rowIndex = -1; * Uartlnitialize is passed name of file to output to
oid CcdppCapture (void) (
char bias; collndex = -1;
CedCapture () ; i . . .
: * UartSend transmits (writes to output file) bytes at a time
for (rowIndex=0; rowIndex<SZ_ROW; rowIndex++) (ehar CcdppPopPixel (void) (
for (colIndex=0; colIndex<SZ_COL; colIndex++) (char pixel;
buffer [rowIndex] [colIndex] = CcdPopPixel(); pixel = buffer[rowIndex] [colIndex];
) if (++colIndex == SZ_COL) (
bias = (CcdPopPixel() + CcdPopPixel()) / 2; collndex = 0; #include <stdio.h>
) static FILE *outputFileHandle;
for (collndex=0; collndex<SZ_COL; colIndex++) (if(++rowIndex == SZ_ROW) { void UartInitialize (const char *outputFileName) (
buffer [rowIndex] [collndex] -= bias; collndex = -1; outputFileHandle = fopen(outputFileName, "w");
}
) rowIndex = -1; void UartSend (char d) {
)) fprintf (outputFileHandle, "$i\n", (int)d);
}
rowIndex = 0; }
colIndex = 0; return pixel;
I I
Embedded Systems Design: A Unified 21 Embedded Systems Design: A Unified 22
Hardware/Software Introduction, (c) 2000 Vahid/Givargis Hardware/Software Introduction, (c) 2000 Vahid/Givargis

CODEC module

ptatic short ibuffer[8][8], obuffer[8][8], idx;

* Models FDCT encoding
* ibuffer holds original 8 x 8 block —

* obuffer holds encoded 8 x 8 block P
* CodecPushPixel called 64 times to fill b

oid CodecInitialize(void) { idx = 0; }

ibuffer with original block ST Godeeboract vord |
int x, yi
* CodecDoFdct called once to for (x-0; <87 xb4) |
transform 8 x 8 block for(y=0; y<8; yit)

obuffer([x][y] = FDCT(x, y, ibuffer);

— Explained in next slide)

idx = 0;
* CodecPopPixel called 64 times to b
retrieve encoded block from obuffer [rox® onectopRixetlvole)
short p;

if(idx == 64) idx = 0;
p = obuffer(idx / 8] (idx % 8]; idx++;
return p;

Embedded Systems Design: A Unified 23 Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis Hardware/Software Introduction, (c) 2000 Vahid/Givargis

24

CNTRL (controller) module

. Heart of the system _
. . 0id CntrlSendImage (void) (

. Chtrllnitialize for consistency with other modules only for(i=0; i<SZ_ROW; i++)
. . for(§=0; 3<S7Z_COL; 3++) |

CnlrlCapturelmqge uses CCDPP module to input temp = buffer (il (31;

image and place in buffer UartSend (((char*) stemp) [0]) /* send upper byte */
« CntrlCompresslmage breaks the 64 x 64 buffer into 8 x UartSend (((char*)&temp) [11) 7 /* send lower byte */

8 blocks and performs FDCT on each block using the y !

CODEC module

— Also performs quantization on each block oid CntrlCompressImage (void) {

for(i=0; i<NUM_ROW_BLOCKS; i++)

. CntriSendImage transmits encoded image serially using
UART module for(j=0; j<NUM_COL_BLOCKS; j++) {
for (k=0; k<8; k++)

[void CntriCaptureImage (void) {
for (1=0; 1<8; 1++)
CedppCapture () ;
CodecPushPixel (

(char)buffer[i * 8 + k][j * 8 + 1]);

for (i=0; i<SZ_ROW; i++)

for (§=0; j<SZ_COL; j++)
CodecDoFdct () ;/* part 1 - FDCT */

buffer[i] [i] = CedppPopPixel();
! for (k=0; k<8; k++)
for (1=0; 1<8; 1++) {
[ffdefine sz_row 64
buffer(i * 8 + kl[j * 8 + 1] = CodecPopPixel();
#define Sz_COL 64

/* part 2 - quantization */
#define NUM_ROW _BLOCKS (SZ_ROW / 8)
buffer [i*8+k] [J*8+1] >>= 6;
#define NUM _COL_BLOCKS (SZ_COL / 8)

static short buffer[Sz ROW][SZ_COL], i, j, k, 1, temp; }

lvoid CntrlInitialize(void) () }

Embedded Systems Design: A Unified 25
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Design

* Determine system’s architecture
— Processors
* Any combination of single-purpose (custom or standard) or general-purpose processors
— Memories, buses
* Map functionality to that architecture
— Multiple functions on one processor
— One function on one or more processors
* Implementation
— A particular architecture and mapping
— Solution space is set of all implementations
+ Starting point
— Low-end general-purpose processor connected to flash memory
« All functionality mapped to software running on processor
» Usually satisfies power, size, and time-to-market constraints
« If timing constraint not satisfied then later implementations could:
— use single-purpose processors for time-critical functions
— rewrite functional specification

Embedded Systems Design: A Unified 27
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Putting it all together
I

* Main initializes all modules, then uses CNTRL module to capture,
compress, and transmit one image
» This system-level model can be used for extensive experimentation
— Bugs much easier to correct here rather than in later models

int main(int arge, char *argv[]) {
char *uartOutputFileName = argec > 1 ? argv[l] : "uart_out.txt";
char *imageFileName = arge > 2 ? argv[2] : "image.txt";
/* initialize the modules */
UartInitialize (uartOutputFileName) ;
CedInitialize (imageFileName) ;
CedppInitialize();
CodecInitialize();
CntrlInitialize();
/* simulate functionality */
CntrlCapturelmage () ;
CntrlCompressImage () ;
CntrlSendImage ();

Embedded Systems Design: A Unified 26
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 1: Microcontroller alone

I
* Low-end processor could be Intel 8051 microcontroller

 Total IC cost including NRE about $5
Well below 200 mW power
* Time-to-market about 3 months

» However, one image per second not possible

— 12 MHz, 12 cycles per instruction
» Executes one million instructions per second

— CcdppCapture has nested loops resulting in 4096 (64 x 64) iterations
» ~100 assembly instructions each iteration
* 409,000 (4096 x 100) instructions per image
» Half of budget for reading image alone

— Would be over budget after adding compute-intensive DCT and Huffman

encoding

Embedded Systems Design: A Unified 28
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 2:
Microcontroller and CCDPP

EEPROM /47/ 8051 RAM

Fi Fi
/ /

soC UART ccppp

» CCDPP function implemented on custom single-purpose processor
— Improves performance — less microcontroller cycles
— Increases NRE cost and time-to-market
— Easy to implement
¢ Simple datapath
« Few states in controller
» Simple UART easy to implement as single-purpose processor also
» EEPROM for program memory and RAM for data memory added as well

Embedded Systems Design: A Unified 29
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

UART

¢« UART in idle mode until invoked

— UART invoked when 8051 executes store instruction

with UART’s enable register as target address
FSMD description of UART

* Memory-mapped communication between 8051 and
all single-purpose processors

Start:

Transmit
LOW

* Lower 8-bits of memory address for RAM
« Upper 8-bits of memory address for memory-mapped
1/O devices
» Start state transmits 0 indicating start of byte
transmission then transitions to Data state

Transmit
data(l),
then T++

» Data state sends 8 bits serially then transitions to
Stop state

» Stop state transmits 1 indicating transmission done
then transitions back to idle mode

Microcontroller

* Synthesizable version of Intel 8051 available
— Written in VHDL
— Captured at register transfer level (RTL)

+ Fetches instruction from ROM

* Decodes using Instruction Decoder
Decoder

* ALU executes arithmetic operations

. Controller
— Source and destination registers reside in ALU
> le—>| Rrau
RAM ¥

* Special data movement instructions used to
To E> 1 M Bi
load and store externally External Memory Bus

Block diagram of Intel 8051 processor core

* Special program generates VHDL description
of ROM from output of C compiler/linker

» Internal buffer, B, memory-mapped to 8051
¢ Variables R, C are buffer’s row, column indices
* GetRow state reads in one row from CCD to B

* ComputeBias state computes bias for that row and

» FixBias state iterates over same row subtracting

Embedded Systems Design: A Unified 31
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Embedded Systems Design: A Unified 30
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

CCDPP

« Hardware implementation of zero-bias operations
» Interacts with external CCD chip

— CCD chip resides external to our SOC mainly because combining
CCD with ordinary logic not feasible

FSMD description of CCDPP

invoked

— 66 bytes: 64 pixels + 2 blacked-out pixels

ComputeBias:
Bias=(B[R][11] +

BIR][10])/2
=0

NextRow:
R+
c-0

stores in variable Bias

FixBias:
BIR][CJ=B[R][C]-Bias

. C=64
Bias from each element

* NextRow transitions to GetRow for repeat of

process on next row or to Idle state when all 64
rows completed

Embedded Systems Design: A Unified 32
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Connecting SOC components

]
* Memory-mapped

— All single-purpose processors and RAM are connected to 8051’s memory bus
* Read
— Processor places address on 16-bit address bus
— Asserts read control signal for 1 cycle
— Reads data from 8-bit data bus 1 cycle later
— Device (RAM or SPP) detects asserted read control signal
— Checks address
— Places and holds requested data on data bus for 1 cycle
e Write
— Processor places address and data on address and data bus
— Asserts write control signal for 1 clock cycle
— Device (RAM or SPP) detects asserted write control signal
— Checks address bus
— Reads and stores data from data bus

Embedded Systems Design: A Unified 33
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Analysis

« Entire SOC tested on VHDL simulator

— Interprets VHDL descriptions and
functionally simulates execution of system

* Recall program code translated to VHDL Obtaining design metrics of interest
description of ROM

— Tests for correct functionality

Power
equation

— Measures clock cycles to process one
image (performance)

Gate level
simulator

Power

— Synthesis tool like compiler for SPPs
— Simulate gate-level models to obtain data Exceution time @

for power analysis

* Gate-level description obtained through
synthesis

> Chip area

« Number of times gates switch from 1 to 0
orOtol

— Count number of gates for chip area

Embedded Systems Design: A Unified 35
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Software

* System-level model provides majority of code
— Module hierarchy, procedure names, and main program unchanged
* Code for UART and CCDPP modules must be redesigned

— Simply replace with memory assignments
* xdata used to load/store variables over external memory bus
» _at_specifies memory address to store these variables
* Bytesentto U _T'X REG by processor will invoke UART
* U STAT REG used by UART to indicate its ready for next byte
— UART may be much slower than processor

— Similar modification for CCDPP code
¢ All other modules untouched

Original code from system-level model Rewritten UART module

#include <stdio.h> static unsigned char xdata U_TX_REG _at_ 65535;
static FILE *outputFileHandle; static unsigned char xdata U_STAT REG _at_ 65534;
void UartInitialize(const char *outputFileName) { void UARTInitialize(void) {}

outputFileHandle = fopen(outputFileName, "w"); void UARTSend (unsigned char d) (

) » while(U_STAT REG == 1) {
void UartSend(char d) { /+ busy wait +/

fprintf (outputFileHandle, "%i\n", (int)d); }
¥ U_TX REG = d;
}

Embedded Systems Design: A Unified 34
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 2:
Microcontroller and CCDPP

|
 Analysis of implementation 2

— Total execution time for processing one image:
* 9.1 seconds

Power consumption:
* 0.033 watt
Energy consumption:
* 0.30 joule (9.1 s x 0.033 watt)
— Total chip area:
* 98,000 gates

Embedded Systems Design: A Unified 36
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 3: Microcontroller and
CCDPP/Fixed-Point DCT
|
* 9.1 seconds still doesn’t meet performance constraint

of 1 second

* DCT operation prime candidate for improvement
— Execution of implementation 2 shows microprocessor
spends most cycles here
— Could design custom hardware like we did for CCDPP
* More complex so more design effort

— Instead, will speed up DCT functionality by modifying
behavior

Embedded Systems Design: A Unified 37
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Fixed-point arithmetic

]
» Integer used to represent a real number
— Constant number of integer’s bits represents fractional portion of real number
* More bits, more accurate the representation
— Remaining bits represent portion of real number before decimal point
» Translating a real constant to a fixed-point representation
— Multiply real value by 2 ~ (# of bits used for fractional part)
— Round to nearest integer
— E.g., represent 3.14 as 8-bit integer with 4 bits for fraction
< 2%M4=16
* 3.14x16=50.24=50=00110010
* 16 (274) possible values for fraction, each represents 0.0625 (1/16)
« Last 4 bits (0010) = 2
* 2x0.0625=0.125
e 3(0011) +0.125=3.125 = 3.14 (more bits for fraction would increase accuracy)

Embedded Systems Design: A Unified 39
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

DCT floating-point cost

|
* Floating-point cost
— DCT uses ~260 floating-point operations per pixel transformation
— 4096 (64 x 64) pixels per image
1 million floating-point operations per image

No floating-point support with Intel 8051
* Compiler must emulate
— Generates procedures for each floating-point operation
* mult, add
— Each procedure uses tens of integer operations

Thus, > 10 million integer operations per image
— Procedures increase code size

» Fixed-point arithmetic can improve on this

Embedded Systems Design: A Unified 38
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Fixed-point arithmetic operations

[
* Addition

— Simply add integer representations
~ Eg.,3.14+271=585
* 3.14 > 50=00110010
e 2.71 > 43=00101011
* 50+43=93=01011101
« 5(0101) + 13(1101) x 0.0625 = 5.8125 ~ 5.85
e Multiply
— Multiply integer representations
— Shift result right by # of bits in fractional part
- E.g.,3.14*¥2.71 =8.5094
+ 50 *43=2150=100001100110
* >>4=10000110
- 8(1000) + 6(0110) x 0.0625 = 8.375 = 8.5094
* Range of real values used limited by bit widths of possible resulting values

Embedded Systems Design: A Unified 40
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Fixed-point implementation of CODEC

+ COS_TABLE gives 8-bit fixed-point
representation of cosine values

* 6 Dbits used for fractional portion

+ Result of multiplications shifted right
by 6

jstatic unsigned char C(int h) { return h ? 64 : ONE_OVER_SQRT_ TWO;}
static int F(int u, int v, short img[8](8]) {
long s[8], r = 0;
unsigned char x, j;
for (x=0; x<8; x++) {
s(x] = 0;
for (=0; 3<8; j++)
s[x] += (img(x][j] * COS_TABLE[j][v]) >> 6;
b
for (x=0; x<8; x++) r += (s[x] * COS_TABLE([x] [u]) >> 6;

return (short) ((((r

* (((16*C(u)) >> 6) *C(v)) >> 6)) >> 6) >> 6);

[Static const char code COS_TABLE[B][8] = I
(64, 62, 59, 53, 45, 35, 24, 12
{64, 53, 24, -12, -45, =62, =59, -35
{ 64, 35, -24, -62, -45, 12, 59, 53
(64, 12, -59, -35, 45, 53, -24, -62
{ 64, -12, -59, 35, 45, =53, -24, 62
{ 64, -35, -24, 62, -45, -12, 59, =-53
{64, -53, 24, 12, -45, 62, =59, 35
(64, -62, 59, =-53, 45, =35, 24, -12

bi

[static const char ONE_OVER_SORT_TWO = 5;
static short xdata inBuffer(8][8], outBuffer[8](8], idx;

[void CodecInitialize(void) { idx = 0; }

[void CodecPushPixel (short p) (

if(idx == 64) idx = 0;

inBuffer[idx / 8] [idx % 8] = p << 6; idxt+;
b

void CodecDoFdct (void) (
unsigned short x, y;
for (x=0; x<8; x++)
for(y=0; y<8; y++)
outBuffer(x] [y] = F(x, y, inBuffer);
idx = 0;
i

Embedded Systems Design: A Unified 41
Hardware/Software Introduction, (c) 2000 Vahid/Givargis
Implementation 4:
Microcontroller and CCDPP/DCT
/
Performance close but not good enough
Must resort to implementing CODEC in hardware
— Single-purpose processor to perform DCT on 8 x 8 block

Embedded Systems Design: A Unified 43

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 3: Microcontroller and
CCDPP/Fixed-Point DCT

Analysis of implementation 3

* 1.5 seconds
Power consumption:

* 0.033 watt (same as 2)
Energy consumption:

« 0.050 joule (1.5 s x 0.033 watt)

* Battery life 6x longer!!
— Total chip area:

* 90,000 gates

Use same analysis techniques as implementation 2
Total execution time for processing one image:

» 8,000 less gates (less memory needed for code)

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

42

CODEC design

* 4 memory mapped registers

— C_DATAI REG/C_DATAO_REG used to
push/pop 8 x 8 block into and out of
CODEC

— C_CMND_REG used to command
CODEC
* Writing 1 to this register invokes CODEC
— C _STAT REG indicates CODEC done
and ready for next block
» Polled in software
* Direct translation of C code to VHDL for
actual hardware implementation
— Fixed-point version used
* CODEC module in software changed
similar to UART/CCDPP in
implementation 2

Rewritten CODEC software

[ftatic unsigned char xdata C_STAT REG _at_ 65527;
static unsigned char xdata C_CMND REG _at_ 65528;
[static unsigned char xdata C_DATAI REG _at_ 65529;
lstatic unsigned char xdata C_DATAO_REG at 65530;
oid CodecInitialize(void) {}

oid CodecPushPixel (short p) { C_DATAO_REG = (char)p;

U
short CodecPopPixel (void) {
return ((C_DATAI_REG << 8) | C_DATAI_REG);
)
oid CodecDoFdct (void) {
C_CMND_REG = 1;

while('C_STAT REG == 1) { /* busy wait */ }

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

44

Implementation 4:
Microcontroller and CCDPP/DCT

I ——)
* Analysis of implementation 4
— Total execution time for processing one image:
* 0.099 seconds (well under 1 sec)
— Power consumption:
* 0.040 watt
* Increase over 2 and 3 because SOC has another processor
— Energy consumption:
+ 0.00040 joule (0.099 s x 0.040 watt)
* Battery life 12x longer than previous implementation!!
— Total chip area:
+ 128,000 gates
+ Significant increase over previous implementations

Embedded Systems Design: A Unified 45
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Summary

|
+ Digital camera example
— Specifications in English and executable language

— Design metrics: performance, power and area

» Several implementations
— Microcontroller: too slow
— Microcontroller and coprocessor: better, but still too slow
— Fixed-point arithmetic: almost fast enough

— Additional coprocessor for compression: fast enough, but
expensive and hard to design

— Tradeoffs between hw/sw — the main lesson of this book!

Embedded Systems Design: A Unified 47
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Summary of implementations

ion 2 ion 3 ion 4
Performance (second)| 9.1 1.5 0.099
Power (watt) 0.033 0.033 0.040
Size (gate) 98,000 90,000 128,000
Energy (joule) 0.30 0.050 0.0040

* Implementation 3
— Close in performance
— Cheaper
— Less time to build
* Implementation 4
— Great performance and energy consumption
— More expensive and may miss time-to-market window

* If DCT designed ourselves then increased NRE cost and time-to-market
« Ifexisting DCT purchased then increased IC cost

e Which is better?

Embedded Systems Design: A Unified 46
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

