
1

Embedded Systems Design: A Unified

Hardware/Software Introduction

Chapter 7 Digital Camera Example

2Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Outline

• Introduction to a simple digital camera

• Designer’s perspective

• Requirements specification

• Design

– Four implementations

3Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

• Putting it all together
– General-purpose processor

– Single-purpose processor
• Custom

• Standard

– Memory

– Interfacing

• Knowledge applied to designing a simple digital
camera
– General-purpose vs. single-purpose processors

– Partitioning of functionality among different processor types

Introduction

4Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Introduction to a simple digital camera

• Captures images

• Stores images in digital format
– No film

– Multiple images stored in camera

• Number depends on amount of memory and bits used per image

• Downloads images to PC

• Only recently possible
– Systems-on-a-chip

• Multiple processors and memories on one IC

– High-capacity flash memory

• Very simple description used for example
– Many more features with real digital camera

• Variable size images, image deletion, digital stretching, zooming in and out, etc.

5Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Designer’s perspective

• Two key tasks

– Processing images and storing in memory

• When shutter pressed:

– Image captured

– Converted to digital form by charge-coupled device (CCD)

– Compressed and archived in internal memory

– Uploading images to PC

• Digital camera attached to PC

• Special software commands camera to transmit archived

images serially

6Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Charge-coupled device (CCD)

• Special sensor that captures an image

• Light-sensitive silicon solid-state device composed of many cells

When exposed to light, each

cell becomes electrically

charged. This charge can

then be converted to a 8-bit

value where 0 represents no

exposure while 255

represents very intense

exposure of that cell to light.

Some of the columns are

covered with a black strip of

paint. The light-intensity of

these pixels is used for zero-

bias adjustments of all the

cells.

The electromechanical shutter

is activated to expose the

cells to light for a brief

moment.

The electronic circuitry, when

commanded, discharges the

cells, activates the

electromechanical shutter,

and then reads the 8-bit

charge value of each cell.

These values can be clocked

out of the CCD by external

logic through a standard

parallel bus interface.

Lens area

Pixel columns

Covered columns

Electronic

circuitry

Electro-

mechanical

shutter

P
ix

el
 r

o
w

s

7Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Zero-bias error

• Manufacturing errors cause cells to measure slightly above or below actual

light intensity

• Error typically same across columns, but different across rows

• Some of left most columns blocked by black paint to detect zero-bias error

– Reading of other than 0 in blocked cells is zero-bias error

– Each row is corrected by subtracting the average error found in blocked cells for

that row

123 157 142 127 131 102 99 235

134 135 157 112 109 106 108 136

135 144 159 108 112 118 109 126

176 183 161 111 186 130 132 133

137 149 154 126 185 146 131 132

121 130 127 146 205 150 130 126

117 151 160 181 250 161 134 125

168 170 171 178 183 179 112 124

136 170 155 140 144 115 112 248 12 14

145 146 168 123 120 117 119 147 12 10

144 153 168 117 121 127 118 135 9 9

176 183 161 111 186 130 132 133 0 0

144 156 161 133 192 153 138 139 7 7

122 131 128 147 206 151 131 127 2 0

121 155 164 185 254 165 138 129 4 4

173 175 176 183 188 184 117 129 5 5

Covered

cells

Before zero-bias adjustment After zero-bias adjustment

-13

-11

-9

0

-7

-1

-4

-5

Zero-bias

adjustment

8Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Compression

• Store more images

• Transmit image to PC in less time

• JPEG (Joint Photographic Experts Group)
– Popular standard format for representing digital images in a compressed

form

– Provides for a number of different modes of operation

– Mode used in this chapter provides high compression ratios using DCT
(discrete cosine transform)

– Image data divided into blocks of 8 x 8 pixels

– 3 steps performed on each block

• DCT

• Quantization

• Huffman encoding

9Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

DCT step

• Transforms original 8 x 8 block into a cosine-frequency
domain
– Upper-left corner values represent more of the essence of the image

– Lower-right corner values represent finer details

• Can reduce precision of these values and retain reasonable image quality

• FDCT (Forward DCT) formula
– C(h) = if (h == 0) then 1/sqrt(2) else 1.0

• Auxiliary function used in main function F(u,v)

– F(u,v) = ! x C(u) x C(v) "x=0..7 "y=0..7 Dxy x cos(#(2u + 1)u/16) x cos(#(2y + 1)v/16)

• Gives encoded pixel at row u, column v

• Dxy is original pixel value at row x, column y

• IDCT (Inverse DCT)
– Reverses process to obtain original block (not needed for this design)

10Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Quantization step

• Achieve high compression ratio by reducing image
quality
– Reduce bit precision of encoded data

• Fewer bits needed for encoding

• One way is to divide all values by a factor of 2

– Simple right shifts can do this

– Dequantization would reverse process for decompression

1150 39 -43 -10 26 -83 11 41

-81 -3 115 -73 -6 -2 22 -5

14 -11 1 -42 26 -3 17 -38

2 -61 -13 -12 36 -23 -18 5

44 13 37 -4 10 -21 7 -8

36 -11 -9 -4 20 -28 -21 14

-19 -7 21 -6 3 3 12 -21

-5 -13 -11 -17 -4 -1 7 -4

144 5 -5 -1 3 -10 1 5

-10 0 14 -9 -1 0 3 -1

2 -1 0 -5 3 0 2 -5

0 -8 -2 -2 5 -3 -2 1

6 2 5 -1 1 -3 1 -1

5 -1 -1 -1 3 -4 -3 2

-2 -1 3 -1 0 0 2 -3

-1 -2 -1 -2 -1 0 1 -1

After being decoded using DCT After quantization

Divide each cell’s

value by 8

11Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

• Serialize 8 x 8 block of pixels
– Values are converted into single list using zigzag pattern

• Perform Huffman encoding
– More frequently occurring pixels assigned short binary code

– Longer binary codes left for less frequently occurring pixels

• Each pixel in serial list converted to Huffman encoded values
– Much shorter list, thus compression

Huffman encoding step

12Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Huffman encoding example

• Pixel frequencies on left

– Pixel value –1 occurs 15 times

– Pixel value 14 occurs 1 time

• Build Huffman tree from bottom up

– Create one leaf node for each pixel
value and assign frequency as node’s
value

– Create an internal node by joining any
two nodes whose sum is a minimal
value

• This sum is internal nodes value

– Repeat until complete binary tree

• Traverse tree from root to leaf to
obtain binary code for leaf’s pixel
value

– Append 0 for left traversal, 1 for right
traversal

• Huffman encoding is reversible

– No code is a prefix of another code

144

5 3 2

1 0 -2

-1

-10 -5 -3

-4 -8 -9614

1 1

2

1 1

2

1

2
2

4

3

5

4

6
5

9

5

10

5

11

5

14

6

17

8

18
15

29

35

64

1

-1 15x

0 8x

-2 6x

1 5x

2 5x

3 5x

5 5x

-3 4x

-5 3x

-10 2x

144 1x

-9 1x

-8 1x

-4 1x

6 1x

14 1x

-1 00

0 100

-2 110

1 010

2 1110

3 1010

5 0110

-3 11110

-5 10110

-10 01110

144 111111

-9 111110

-8 101111

-4 101110

6 011111

14 011110

Pixel

frequencies
Huffman tree

Huffman

codes

13Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Archive step

• Record starting address and image size
– Can use linked list

• One possible way to archive images
– If max number of images archived is N:

• Set aside memory for N addresses and N image-size variables

• Keep a counter for location of next available address

• Initialize addresses and image-size variables to 0

• Set global memory address to N x 4

– Assuming addresses, image-size variables occupy N x 4 bytes

• First image archived starting at address N x 4

• Global memory address updated to N x 4 + (compressed image size)

• Memory requirement based on N, image size, and average
compression ratio

14Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Uploading to PC

• When connected to PC and upload command received

– Read images from memory

– Transmit serially using UART

– While transmitting

• Reset pointers, image-size variables and global memory pointer

accordingly

15Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Requirements Specification

• System’s requirements – what system should do

– Nonfunctional requirements

• Constraints on design metrics (e.g., “should use 0.001 watt or less”)

– Functional requirements

• System’s behavior (e.g., “output X should be input Y times 2”)

– Initial specification may be very general and come from marketing dept.

• E.g., short document detailing market need for a low-end digital camera that:

– captures and stores at least 50 low-res images and uploads to PC,

– costs around $100 with single medium-size IC costing less that $25,

– has long as possible battery life,

– has expected sales volume of 200,000 if market entry < 6 months,

– 100,000 if between 6 and 12 months,

– insignificant sales beyond 12 months

16Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Nonfunctional requirements

• Design metrics of importance based on initial specification

– Performance: time required to process image

– Size: number of elementary logic gates (2-input NAND gate) in IC

– Power: measure of avg. electrical energy consumed while processing

– Energy: battery lifetime (power x time)

• Constrained metrics

– Values must be below (sometimes above) certain threshold

• Optimization metrics

– Improved as much as possible to improve product

• Metric can be both constrained and optimization

17Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Nonfunctional requirements (cont.)

• Performance

– Must process image fast enough to be useful

– 1 sec reasonable constraint

• Slower would be annoying

• Faster not necessary for low-end of market

– Therefore, constrained metric

• Size

– Must use IC that fits in reasonably sized camera

– Constrained and optimization metric

• Constraint may be 200,000 gates, but smaller would be cheaper

• Power

– Must operate below certain temperature (cooling fan not possible)

– Therefore, constrained metric

• Energy

– Reducing power or time reduces energy

– Optimized metric: want battery to last as long as possible

18Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Informal functional specification

• Flowchart breaks functionality

down into simpler functions

• Each function’s details could then

be described in English

– Done earlier in chapter

• Low quality image has resolution

of 64 x 64

• Mapping functions to a particular

processor type not done at this

stage

serial output
e.g., 011010...

yes no

CCD

input

Zero-bias adjust

DCT

Quantize

Archive in
memory

More

8$8

blocks?

Transmit serially

yes

no Done?

19Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Refined functional specification

• Refine informal specification into
one that can actually be executed

• Can use C/C++ code to describe
each function

– Called system-level model,
prototype, or simply model

– Also is first implementation

• Can provide insight into operations
of system

– Profiling can find computationally
intensive functions

• Can obtain sample output used to
verify correctness of final
implementation

image file

101011010

110101010
010101101

...

CCD.C

CNTRL.C

UART.C

output file

101010101
010101010

101010101

0...

CODEC.CCCDPP.C

Executable model of digital camera

20Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

CCD module

• Simulates real CCD

• CcdInitialize is passed name of image file

• CcdCapture reads “image” from file

• CcdPopPixel outputs pixels one at a time

char CcdPopPixel(void) {
 char pixel;
 pixel = buffer[rowIndex][colIndex];
 if(++colIndex == SZ_COL) {
 colIndex = 0;
 if(++rowIndex == SZ_ROW) {
 colIndex = -1;
 rowIndex = -1;
 }
 }
 return pixel;
}

#include <stdio.h>

#define SZ_ROW 64

#define SZ_COL (64 + 2)

static FILE *imageFileHandle;

static char buffer[SZ_ROW][SZ_COL];

static unsigned rowIndex, colIndex;

void CcdInitialize(const char *imageFileName) {

 imageFileHandle = fopen(imageFileName, "r");

 rowIndex = -1;

 colIndex = -1;

}

void CcdCapture(void) {

 int pixel;

 rewind(imageFileHandle);

 for(rowIndex=0; rowIndex<SZ_ROW; rowIndex++) {

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 if(fscanf(imageFileHandle, "%i", &pixel) == 1) {

 buffer[rowIndex][colIndex] = (char)pixel;

 }

 }

 }

 rowIndex = 0;

 colIndex = 0;

}

21Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

CCDPP (CCD PreProcessing) module

• Performs zero-bias adjustment

• CcdppCapture uses CcdCapture and CcdPopPixel to obtain
image

• Performs zero-bias adjustment after each row read in

#define SZ_ROW 64

#define SZ_COL 64

static char buffer[SZ_ROW][SZ_COL];

static unsigned rowIndex, colIndex;

void CcdppInitialize() {

 rowIndex = -1;

 colIndex = -1;

}

void CcdppCapture(void) {

 char bias;

 CcdCapture();

 for(rowIndex=0; rowIndex<SZ_ROW; rowIndex++) {

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] = CcdPopPixel();

 }

 bias = (CcdPopPixel() + CcdPopPixel()) / 2;

 for(colIndex=0; colIndex<SZ_COL; colIndex++) {

 buffer[rowIndex][colIndex] -= bias;

 }

 }

 rowIndex = 0;

 colIndex = 0;

}

char CcdppPopPixel(void) {

 char pixel;

 pixel = buffer[rowIndex][colIndex];

 if(++colIndex == SZ_COL) {

 colIndex = 0;

 if(++rowIndex == SZ_ROW) {

 colIndex = -1;

 rowIndex = -1;

 }

 }

 return pixel;

}

22Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

UART module

• Actually a half UART

– Only transmits, does not receive

• UartInitialize is passed name of file to output to

• UartSend transmits (writes to output file) bytes at a time

#include <stdio.h>
static FILE *outputFileHandle;
void UartInitialize(const char *outputFileName) {
 outputFileHandle = fopen(outputFileName, "w");
}
void UartSend(char d) {
 fprintf(outputFileHandle, "%i\n", (int)d);
}

23Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

CODEC module

• Models FDCT encoding

• ibuffer holds original 8 x 8 block

• obuffer holds encoded 8 x 8 block

• CodecPushPixel called 64 times to fill

ibuffer with original block

• CodecDoFdct called once to

transform 8 x 8 block

– Explained in next slide

• CodecPopPixel called 64 times to

retrieve encoded block from obuffer

static short ibuffer[8][8], obuffer[8][8], idx;

void CodecInitialize(void) { idx = 0; }

void CodecDoFdct(void) {

 int x, y;

 for(x=0; x<8; x++) {

 for(y=0; y<8; y++)

obuffer[x][y] = FDCT(x, y, ibuffer);

 }

 idx = 0;

}

void CodecPushPixel(short p) {

 if(idx == 64) idx = 0;

 ibuffer[idx / 8][idx % 8] = p; idx++;

}

short CodecPopPixel(void) {

 short p;

 if(idx == 64) idx = 0;

 p = obuffer[idx / 8][idx % 8]; idx++;

 return p;

}

24Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

25Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

CNTRL (controller) module

• Heart of the system

• CntrlInitialize for consistency with other modules only

• CntrlCaptureImage uses CCDPP module to input

image and place in buffer

• CntrlCompressImage breaks the 64 x 64 buffer into 8 x

8 blocks and performs FDCT on each block using the

CODEC module

– Also performs quantization on each block

• CntrlSendImage transmits encoded image serially using

UART module

void CntrlSendImage(void) {
 for(i=0; i<SZ_ROW; i++)
 for(j=0; j<SZ_COL; j++) {
 temp = buffer[i][j];
 UartSend(((char*)&temp)[0]); /* send upper byte */
 UartSend(((char*)&temp)[1]); /* send lower byte */
 }
 }
}

#define SZ_ROW 64

#define SZ_COL 64

#define NUM_ROW_BLOCKS (SZ_ROW / 8)

#define NUM_COL_BLOCKS (SZ_COL / 8)

static short buffer[SZ_ROW][SZ_COL], i, j, k, l, temp;

void CntrlInitialize(void) {}

void CntrlCaptureImage(void) {

 CcdppCapture();

 for(i=0; i<SZ_ROW; i++)

 for(j=0; j<SZ_COL; j++)

 buffer[i][j] = CcdppPopPixel();

}

void CntrlCompressImage(void) {

 for(i=0; i<NUM_ROW_BLOCKS; i++)

 for(j=0; j<NUM_COL_BLOCKS; j++) {

 for(k=0; k<8; k++)

 for(l=0; l<8; l++)

 CodecPushPixel(

 (char)buffer[i * 8 + k][j * 8 + l]);

 CodecDoFdct();/* part 1 - FDCT */

 for(k=0; k<8; k++)

 for(l=0; l<8; l++) {

 buffer[i * 8 + k][j * 8 + l] = CodecPopPixel();

 /* part 2 - quantization */

 buffer[i*8+k][j*8+l] >>= 6;

 }

 }

}

26Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Putting it all together

• Main initializes all modules, then uses CNTRL module to capture,

compress, and transmit one image

• This system-level model can be used for extensive experimentation

– Bugs much easier to correct here rather than in later models

int main(int argc, char *argv[]) {
 char *uartOutputFileName = argc > 1 ? argv[1] : "uart_out.txt";
 char *imageFileName = argc > 2 ? argv[2] : "image.txt";
 /* initialize the modules */
 UartInitialize(uartOutputFileName);
 CcdInitialize(imageFileName);
 CcdppInitialize();
 CodecInitialize();
 CntrlInitialize();
 /* simulate functionality */
 CntrlCaptureImage();
 CntrlCompressImage();
 CntrlSendImage();
}

27Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Design

• Determine system’s architecture

– Processors

• Any combination of single-purpose (custom or standard) or general-purpose processors

– Memories, buses

• Map functionality to that architecture

– Multiple functions on one processor

– One function on one or more processors

• Implementation

– A particular architecture and mapping

– Solution space is set of all implementations

• Starting point

– Low-end general-purpose processor connected to flash memory

• All functionality mapped to software running on processor

• Usually satisfies power, size, and time-to-market constraints

• If timing constraint not satisfied then later implementations could:

– use single-purpose processors for time-critical functions

– rewrite functional specification

28Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 1: Microcontroller alone

• Low-end processor could be Intel 8051 microcontroller

• Total IC cost including NRE about $5

• Well below 200 mW power

• Time-to-market about 3 months

• However, one image per second not possible
– 12 MHz, 12 cycles per instruction

• Executes one million instructions per second

– CcdppCapture has nested loops resulting in 4096 (64 x 64) iterations

• ~100 assembly instructions each iteration

• 409,000 (4096 x 100) instructions per image

• Half of budget for reading image alone

– Would be over budget after adding compute-intensive DCT and Huffman
encoding

29Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 2:

Microcontroller and CCDPP

• CCDPP function implemented on custom single-purpose processor

– Improves performance – less microcontroller cycles

– Increases NRE cost and time-to-market

– Easy to implement

• Simple datapath

• Few states in controller

• Simple UART easy to implement as single-purpose processor also

• EEPROM for program memory and RAM for data memory added as well

8051

UART CCDPP

RAMEEPROM

SOC

30Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Microcontroller

• Synthesizable version of Intel 8051 available

– Written in VHDL

– Captured at register transfer level (RTL)

• Fetches instruction from ROM

• Decodes using Instruction Decoder

• ALU executes arithmetic operations

– Source and destination registers reside in

RAM

• Special data movement instructions used to

load and store externally

• Special program generates VHDL description

of ROM from output of C compiler/linker

To External Memory Bus

Controller

4K ROM

128

RAM

Instruction

Decoder

ALU

Block diagram of Intel 8051 processor core

31Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

UART

• UART in idle mode until invoked

– UART invoked when 8051 executes store instruction

with UART’s enable register as target address

• Memory-mapped communication between 8051 and

all single-purpose processors

• Lower 8-bits of memory address for RAM

• Upper 8-bits of memory address for memory-mapped

I/O devices

• Start state transmits 0 indicating start of byte

transmission then transitions to Data state

• Data state sends 8 bits serially then transitions to

Stop state

• Stop state transmits 1 indicating transmission done

then transitions back to idle mode

invoked

I = 8

I < 8

Idle:

I = 0

Start:

Transmit
LOW

Data:

Transmit

data(I),

then I++

Stop:

Transmit

HIGH

FSMD description of UART

32Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

CCDPP

• Hardware implementation of zero-bias operations

• Interacts with external CCD chip
– CCD chip resides external to our SOC mainly because combining

CCD with ordinary logic not feasible

• Internal buffer, B, memory-mapped to 8051

• Variables R, C are buffer’s row, column indices

• GetRow state reads in one row from CCD to B

– 66 bytes: 64 pixels + 2 blacked-out pixels

• ComputeBias state computes bias for that row and

stores in variable Bias

• FixBias state iterates over same row subtracting

Bias from each element

• NextRow transitions to GetRow for repeat of

process on next row or to Idle state when all 64

rows completed

C = 64

C < 64

R = 64 C = 66

invoked

R < 64

C < 66

Idle:

R=0

C=0

GetRow:

B[R][C]=Pxl

C=C+1

ComputeBias:

Bias=(B[R][11] +
B[R][10]) / 2

C=0

NextRow:

R++

C=0

FixBias:

B[R][C]=B[R][C]-Bias

FSMD description of CCDPP

33Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Connecting SOC components

• Memory-mapped

– All single-purpose processors and RAM are connected to 8051’s memory bus

• Read

– Processor places address on 16-bit address bus

– Asserts read control signal for 1 cycle

– Reads data from 8-bit data bus 1 cycle later

– Device (RAM or SPP) detects asserted read control signal

– Checks address

– Places and holds requested data on data bus for 1 cycle

• Write

– Processor places address and data on address and data bus

– Asserts write control signal for 1 clock cycle

– Device (RAM or SPP) detects asserted write control signal

– Checks address bus

– Reads and stores data from data bus

34Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Software

• System-level model provides majority of code

– Module hierarchy, procedure names, and main program unchanged

• Code for UART and CCDPP modules must be redesigned

– Simply replace with memory assignments

• xdata used to load/store variables over external memory bus

• _at_ specifies memory address to store these variables

• Byte sent to U_TX_REG by processor will invoke UART

• U_STAT_REG used by UART to indicate its ready for next byte

– UART may be much slower than processor

– Similar modification for CCDPP code

• All other modules untouched

static unsigned char xdata U_TX_REG _at_ 65535;
static unsigned char xdata U_STAT_REG _at_ 65534;
void UARTInitialize(void) {}
void UARTSend(unsigned char d) {
 while(U_STAT_REG == 1) {
 /* busy wait */
 }
 U_TX_REG = d;
}

Rewritten UART module

#include <stdio.h>
static FILE *outputFileHandle;
void UartInitialize(const char *outputFileName) {
 outputFileHandle = fopen(outputFileName, "w");
}
void UartSend(char d) {
 fprintf(outputFileHandle, "%i\n", (int)d);
}

Original code from system-level model

35Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Analysis

• Entire SOC tested on VHDL simulator

– Interprets VHDL descriptions and

functionally simulates execution of system

• Recall program code translated to VHDL

description of ROM

– Tests for correct functionality

– Measures clock cycles to process one

image (performance)

• Gate-level description obtained through

synthesis

– Synthesis tool like compiler for SPPs

– Simulate gate-level models to obtain data

for power analysis

• Number of times gates switch from 1 to 0

or 0 to 1

– Count number of gates for chip area

Power

VHDL

simulator

VHDL VHDL VHDL

Execution time

Synthesis

tool

gates gates gates

Sum gates

Gate level

simulator

Power

equation

Chip area

Obtaining design metrics of interest

36Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 2:

Microcontroller and CCDPP

• Analysis of implementation 2

– Total execution time for processing one image:

• 9.1 seconds

– Power consumption:

• 0.033 watt

– Energy consumption:

• 0.30 joule (9.1 s x 0.033 watt)

– Total chip area:

• 98,000 gates

37Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 3: Microcontroller and

CCDPP/Fixed-Point DCT

• 9.1 seconds still doesn’t meet performance constraint

of 1 second

• DCT operation prime candidate for improvement

– Execution of implementation 2 shows microprocessor

spends most cycles here

– Could design custom hardware like we did for CCDPP

• More complex so more design effort

– Instead, will speed up DCT functionality by modifying

behavior

38Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

DCT floating-point cost

• Floating-point cost

– DCT uses ~260 floating-point operations per pixel transformation

– 4096 (64 x 64) pixels per image

– 1 million floating-point operations per image

– No floating-point support with Intel 8051

• Compiler must emulate

– Generates procedures for each floating-point operation

• mult, add

– Each procedure uses tens of integer operations

– Thus, > 10 million integer operations per image

– Procedures increase code size

• Fixed-point arithmetic can improve on this

39Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Fixed-point arithmetic

• Integer used to represent a real number

– Constant number of integer’s bits represents fractional portion of real number

• More bits, more accurate the representation

– Remaining bits represent portion of real number before decimal point

• Translating a real constant to a fixed-point representation

– Multiply real value by 2 ^ (# of bits used for fractional part)

– Round to nearest integer

– E.g., represent 3.14 as 8-bit integer with 4 bits for fraction

• 2^4 = 16

• 3.14 x 16 = 50.24 % 50 = 00110010

• 16 (2^4) possible values for fraction, each represents 0.0625 (1/16)

• Last 4 bits (0010) = 2

• 2 x 0.0625 = 0.125

• 3(0011) + 0.125 = 3.125 % 3.14 (more bits for fraction would increase accuracy)

40Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Fixed-point arithmetic operations

• Addition

– Simply add integer representations

– E.g., 3.14 + 2.71 = 5.85

• 3.14 & 50 = 00110010

• 2.71 & 43 = 00101011

• 50 + 43 = 93 = 01011101

• 5(0101) + 13(1101) x 0.0625 = 5.8125 % 5.85

• Multiply

– Multiply integer representations

– Shift result right by # of bits in fractional part

– E.g., 3.14 * 2.71 = 8.5094

• 50 * 43 = 2150 = 100001100110

• >> 4 = 10000110

• 8(1000) + 6(0110) x 0.0625 = 8.375 % 8.5094

• Range of real values used limited by bit widths of possible resulting values

41Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Fixed-point implementation of CODEC

• COS_TABLE gives 8-bit fixed-point
representation of cosine values

• 6 bits used for fractional portion

• Result of multiplications shifted right
by 6

void CodecDoFdct(void) {
 unsigned short x, y;
 for(x=0; x<8; x++)
 for(y=0; y<8; y++)
 outBuffer[x][y] = F(x, y, inBuffer);
 idx = 0;
}

static const char code COS_TABLE[8][8] = {

 { 64, 62, 59, 53, 45, 35, 24, 12 },

 { 64, 53, 24, -12, -45, -62, -59, -35 },

 { 64, 35, -24, -62, -45, 12, 59, 53 },

 { 64, 12, -59, -35, 45, 53, -24, -62 },

 { 64, -12, -59, 35, 45, -53, -24, 62 },

 { 64, -35, -24, 62, -45, -12, 59, -53 },

 { 64, -53, 24, 12, -45, 62, -59, 35 },

 { 64, -62, 59, -53, 45, -35, 24, -12 }

};

static const char ONE_OVER_SQRT_TWO = 5;

static short xdata inBuffer[8][8], outBuffer[8][8], idx;

void CodecInitialize(void) { idx = 0; }

static unsigned char C(int h) { return h ? 64 : ONE_OVER_SQRT_TWO;}

static int F(int u, int v, short img[8][8]) {

 long s[8], r = 0;

 unsigned char x, j;

 for(x=0; x<8; x++) {

 s[x] = 0;

 for(j=0; j<8; j++)

 s[x] += (img[x][j] * COS_TABLE[j][v]) >> 6;

 }

 for(x=0; x<8; x++) r += (s[x] * COS_TABLE[x][u]) >> 6;

 return (short)((((r * (((16*C(u)) >> 6) *C(v)) >> 6)) >> 6) >> 6);

}

void CodecPushPixel(short p) {

 if(idx == 64) idx = 0;

 inBuffer[idx / 8][idx % 8] = p << 6; idx++;

}

42Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 3: Microcontroller and

CCDPP/Fixed-Point DCT

• Analysis of implementation 3
– Use same analysis techniques as implementation 2

– Total execution time for processing one image:
• 1.5 seconds

– Power consumption:
• 0.033 watt (same as 2)

– Energy consumption:
• 0.050 joule (1.5 s x 0.033 watt)

• Battery life 6x longer!!

– Total chip area:
• 90,000 gates

• 8,000 less gates (less memory needed for code)

43Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 4:

Microcontroller and CCDPP/DCT

• Performance close but not good enough

• Must resort to implementing CODEC in hardware

– Single-purpose processor to perform DCT on 8 x 8 block

8051

UART CCDPP

RAMEEPROM

SOC
CODEC

44Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

CODEC design

• 4 memory mapped registers

– C_DATAI_REG/C_DATAO_REG used to
push/pop 8 x 8 block into and out of
CODEC

– C_CMND_REG used to command
CODEC

• Writing 1 to this register invokes CODEC

– C_STAT_REG indicates CODEC done
and ready for next block

• Polled in software

• Direct translation of C code to VHDL for
actual hardware implementation

– Fixed-point version used

• CODEC module in software changed
similar to UART/CCDPP in
implementation 2

static unsigned char xdata C_STAT_REG _at_ 65527;
static unsigned char xdata C_CMND_REG _at_ 65528;
static unsigned char xdata C_DATAI_REG _at_ 65529;
static unsigned char xdata C_DATAO_REG _at_ 65530;
void CodecInitialize(void) {}
void CodecPushPixel(short p) { C_DATAO_REG = (char)p;
}
short CodecPopPixel(void) {
 return ((C_DATAI_REG << 8) | C_DATAI_REG);
}
void CodecDoFdct(void) {
 C_CMND_REG = 1;
 while(C_STAT_REG == 1) { /* busy wait */ }
}

Rewritten CODEC software

45Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Implementation 4:

Microcontroller and CCDPP/DCT

• Analysis of implementation 4
– Total execution time for processing one image:

• 0.099 seconds (well under 1 sec)

– Power consumption:
• 0.040 watt

• Increase over 2 and 3 because SOC has another processor

– Energy consumption:
• 0.00040 joule (0.099 s x 0.040 watt)

• Battery life 12x longer than previous implementation!!

– Total chip area:
• 128,000 gates

• Significant increase over previous implementations

46Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Summary of implementations

• Implementation 3

– Close in performance

– Cheaper

– Less time to build

• Implementation 4

– Great performance and energy consumption

– More expensive and may miss time-to-market window

• If DCT designed ourselves then increased NRE cost and time-to-market

• If existing DCT purchased then increased IC cost

• Which is better?

Implementation 2 Implementation 3 Implementation 4

 Performance (second) 9.1 1.5 0.099

 Power (watt) 0.033 0.033 0.040

 Size (gate) 98,000 90,000 128,000

 Energy (joule) 0.30 0.050 0.0040

47Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Summary

• Digital camera example

– Specifications in English and executable language

– Design metrics: performance, power and area

• Several implementations

– Microcontroller: too slow

– Microcontroller and coprocessor: better, but still too slow

– Fixed-point arithmetic: almost fast enough

– Additional coprocessor for compression: fast enough, but

expensive and hard to design

– Tradeoffs between hw/sw – the main lesson of this book!

