
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002 399

HW/SW Codesign Techniques for Dynamically
Reconfigurable Architectures

Juanjo Noguera and Rosa M. Badia

Abstract—Hardward/software (HW/SW) codesign and recon-
figurable computing are commonly used methodologies for digital-
systems design. However, no previous work has been carried out
in order to define a HW/SW codesign methodology with dynamic
scheduling for run-time reconfigurable architectures. In addition,
all previous approaches to reconfigurable computing multicontext
scheduling are based on static-scheduling techniques. In this paper,
we present three main contributions: 1) a novel HW/SW codesign
methodology with dynamic scheduling for discrete event systems
using dynamically reconfigurable architectures; 2) a new dynamic
approach to reconfigurable computing multicontext scheduling;
and 3) a HW/SW partitioning algorithm for dynamically reconfig-
urable architectures. We have developed a whole codesign frame-
work, where we have applied our methodology and algorithms to
the case study of software acceleration. An exhaustive study has
been carried out, and the obtained results demonstrate the bene-
fits of our approach.

Index Terms—Dynamic scheduling, dynamically reconfigurable
architectures, HW/SW codesign, HW/SW partitioning.

I. INTRODUCTION

THE CONTINUED progress of semiconductor technology
has enabled the “system-on-chip” (SoC) to become a

reality. In this sense, programmable logic manufacturers have
also proposed new products. An example of this is the Altera’s
new device Excalibur, which integrates a processor core (ARM,
MIPS, or NIOS), embedded memory and programmable logic
[1]. New types of devices, which are run-time reconfigurable,
have also been proposed thanks to the advents of the dynam-
ically reconfigurable logic (DRL). An example of this, is the
Virtex family from Xilinx, which is partially reconfigurable at
run time [2]. A hybrid device, which combines both above ex-
plained features, is the CS2112 chip from Chameleon Systems,
Inc. This device integrates a RISC core, embedded memory, and
a run-time reconfigurable fabric on a single chip [3]. Clearly,
all these devices could be used as the final-target architecture
of a hardware/software (HW/SW) codesign methodology.
Reconfigurable computing (RC) [16] is an interesting

alternative to application specific integrated circuits (ASICs)
and the general-purpose processor systems, since it provides
the flexibility of software processors and the efficiency and

Manuscript received October 30, 2000; revised January 18, 2002. This work
was supported by CICYT-TIC project TIC2001-2476-C03-02.
J. Noguera is with Hewlett-Packard Inkjet Commercial Division, Department

of Research and Development, San Cugat del Valles, 08190 Spain (e-mail:
jnoguera@bpo.hp.com).
R. M. Badia is with the Technical University of Catalonia (DAC-UPC),

Computer Architecture Department, Barcelona, 08034 Spain (e-mail:
rosab@ac.upc.es).
Digital Object Identifier 10.1109/TVLSI.2002.801575

throughput of hardware coprocessors. DRL devices and ar-
chitectures present new and exciting challenges to the design
automation community. The major challenge introduced by
DRL devices is the reconfiguration latency, which must be
minimized in order to maximize application performance.
In order to achieve run-time reconfiguration, the system
specification (typically, a task graph) must be partitioned into
temporal exclusive segments (called reconfiguration contexts).
This process is usually known as temporal partitioning and
it is a way to address the problem of reconfiguration latency.
A different approach is to find an execution order for a set of
tasks that meets system-design objectives (i.e., minimize the
application execution time). This is known as DRL multicontext
scheduling.
There are a great number of approaches to HW/SW code-

sign of embedded systems, which use different techniques for
partitioning and scheduling. However, DRL devices and archi-
tectures change many of the basic assumptions in the HW/SW
codesign process. The flexibility of dynamic reconfiguration
(multiple configurations, partial and run-time reconfiguration,
etc.) requires new methodologies and the development of new
algorithms, as conventional codesign approaches do not con-
sider the features of these new DRL devices and architectures.

A. Previous Related Work
Traditionally, HW/SW codesign challenges and DRL chal-

lenges have been addressed independently.
Earlier approaches to the HW/SW codesign, model the

system based on a template of a CPU and an ASIC [11],
[14]. HW/SW partitioning and scheduling techniques can be
differentiated in several ways. For instance, partitioning can be
classified as fine-grained (if it partitions the system specifica-
tion at the basic-block level) or as coarse-grained (if system
specification is partitioned at the process or task level). Also,
HW/SW scheduling can be classified as static or dynamic. A
scheduling policy is said to be static when tasks are executed
in a fixed order determined offline, and dynamic when the
order of execution is decided online. HW/SW tasks’ sequence
can change dynamically in complex embedded systems (i.e.,
control-dominated applications), since such systems often have
to operate under many different conditions. Although, there
has been a lot of previous work in static HW/SW scheduling,
the dynamic scheduling problem in HW/SW codesign has
only been addressed in a few research efforts. A strategy for
the mixed implementation of dynamic real-time schedulers
in HW/SW is presented in [27]. In [4] a review of several
approaches to control-dominated and dataflow-dominated
software scheduling is presented.

1063-8210/02$17.00 © 2002 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

400 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

On the other hand, several approaches can be found in the
literature addressing reconfiguration latency minimization.
Configuration prefetching techniques have been used for
reconfiguration latency minimization. They are based on the
idea of loading the next reconfiguration context before it
is required, hence, overlapping device reconfiguration and
application execution. Hauck first introduced configuration
prefetching in [15], where a single-context prefetching tech-
nique is presented. Also, several references can be found in
the literature addressing temporal partitioning and multicontext
scheduling for reconfiguration latency minimization. See [24]
as an example. All these previous approaches address the
problem of reconfiguration latency minimization, but they do
not address HW/SW partitioning and scheduling.
Recent research efforts have addressed this open problem.

In [7], an integrated algorithm for HW/SW partitioning and
scheduling, temporal partitioning, and context scheduling is
presented. A more recent work [22] presents a fine-grained
HW/SW partitioning algorithm (at loop level). Both previous
approaches are similar to [12] which take the reconfiguration
time into account when performing the partitioning, but they do
not consider the effects of configuration prefetching for latency
minimization. In [17], this topic is introduced, and a HW/SW
cosynthesis approach for partially reconfigurable devices is
presented. They do not address multicontext devices. Moreover,
this approach, which is based on an ILP formulation, is limited
by the high execution times of the algorithm, which hardly
gives solutions for task graphs having more than ten tasks.

B. Motivation and Contributions of the Paper

New approaches are possible because 1) all existing ap-
proaches to DRL multicontext scheduling are based on static
(compile time) scheduling techniques and 2) no previous
work has been carried out in order to define a HW/SW code-
sign methodology with dynamic scheduling based on DRL
architectures.
In this paper, we address these two open problems and

present the following: 1) a novel HW/SW codesign method-
ology with dynamic scheduling for dynamically reconfigurable
architectures, 2) a dynamic approach to DRL multicontext
scheduling, and 3) an automatic HW/SW partitioning algorithm
for DRL architectures. The proposed algorithm takes into ac-
count the reconfiguration latency when performing the HW/SW
partitioning. The experiments carried out demonstrate that the
benefits of using a prefetching technique, for reconfiguration
latency minimization, can be improved if it is considered at the
HW/SW partitioning level.
The rest of the paper is organized as follows: Section II

introduces the HW/SW codesign methodology with dynamic
scheduling, and the target architectures (named, local, and
shared memory architectures). In Sections III and IV, we
present two-different algorithms (HW/SW partitioning and
DRL multicontext scheduling) for the shared and local memory
architectures. In Section V, we apply our methodology and
algorithms to the software acceleration of telecom networks
simulation, and present the obtained results. An improved
HW/SW partitioning algorithm for DRL architectures is

presented in Section VI. Finally, Section VII presents the
conclusions of this work.

II. HW/SW CODESIGN FOR DISCRETE EVENT SYSTEMS

Discrete event (DE) systems design has been recently ad-
dressed using HW/SW codesign techniques [13], [21]. How-
ever, none of these approaches is based on DRL devices as the
hardware platform.
The methodology presented here addresses the problem of

HW/SW codesign with dynamic scheduling for DE systems
using a heterogeneous architecture that contains a standard
off-the-shelf processor and a DRL based architecture. It is
important to note that the proposed methodology follows
an object orientation paradigm, and uses the object oriented
concepts in all its steps (specification, HW/SW partitioning and
scheduling, etc.). The majority of previous related work only
uses this object oriented approach at the system specification
(modeling) level. See [37], as an example.

A. Definitions

1) Discrete event class is a concurrent process type with a
certain behavior, which is specified as a function of the
state variables and input events. See Fig. 1(a).

2) Discrete event object is a concrete instance of a DE class.
Several DE objects from a single DE class are possible.
Given twoDE objects (and) theymay differ
in the value of their state variables. See Fig. 1(b).

3) Event is a member of where is a set
of tags, (the real numbers), a given set of DE
classes, a set of DE objects, and a set of values. Tags
are used to model time and values represent operands or
results of event computation.

4) Event stream (ES) is a list of events sequentially ordered
by tag. Tags can represent, for example, event occurrence
or event deadline. See Fig. 1(c).

5) Discrete event functional unit is a physical component
(i.e., DRL device or SW processor) where an event

can be executed. A functional unit has an
active pair (class, object), . See Fig. 1(d).
Our methodology assumes that: (1) several DE classes

could be mapped into a single DE functional unit, and (2)
all DE objects from a DE class are mapped into the same
DE functional unit where the DE class has been mapped.

6) Object switch is the mechanism that allows a DE func-
tional unit to change from one DE object to another, both
DE objects belonging to a same DE class. For example,
if an input event has to be processed
in a DE functional unit with an active pair
then an object switch should be performed. Object switch
means a change of values in the state variables from the
ones of a concrete DE object to the others of another
DE object .

7) Class switch is themechanism that allows aDE functional
unit to change from one DE class to another. For example,
if an input event should be processed
in a DE functional unit with an active pair ,

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

NOGUERA AND BADIA: HW/SW CODESIGN TECHNIQUES 401

(a) (b) (c) (d)

Fig. 1. HW/SW codesign methodology definitions.

Fig. 2. HW/SW codesign methodology.

then a class switch should be performed. Class switch, in
case of a DRL device, means a context reconfiguration.

B. HW/SW Codesign Methodology With Dynamic Scheduling

The methodology we propose is depicted in Fig. 2. It is di-
vided in three stages: application stage, static stage, and dy-
namic stage. The key points in our methodology are: (1) appli-
cation and dynamic stages handle DE classes and objects, and
(2) static stage only handles DE classes.
The application stage includes discrete event system speci-

fication and design constraints. We assume the use of an ho-
mogenous modeling language for system specification, where
a set of independent DE classes must be first modeled. After-
wards, these DE classes are used to specify the entire system as a
set of interrelated DE objects, which communicate among them
using events. These DE objects are interrelated creating a con-
crete topology. A DE object computation is activated upon the
arrival of an event. By design constraints we understand any de-
sign requirement necessary when synthesizing the design (i.e.,
timing or area requirements).
The static stage includes typical phases of a codesignmethod-

ology: (1) estimation, (2) HW/SW partitioning, (3) HW and SW
synthesis, and (4) extraction.
As previously stated, the static stage handles DE classes.

However, the system has been specified as a set of interrelated
DE objects, which are instances of previously specified DE
classes. The final goals of the methodology’s extraction phase

are, for a given DE class, to obtain 1) a list of all its instances
(DE objects) and 2) a list of all different DE classes and objects
connected to it. Both lists are afterwards attached to each DE
class found in the system specification. Once this step has
finished, DE classes can be viewed as a set of independent
tasks.
Note that although our methodology, addresses DRL archi-

tectures, a temporal partitioning phase can not be found. The
DE object/class extraction phase should be viewed as the tem-
poral partitioning algorithm. Indeed, the temporal partitioning
algorithm is included within our concept of DE class, as DE
classes are functionally independent tasks.
We classify our HW/SW partitioning approach as coarse-

grained, since it works at the DE class level. Different HW/SW
partitioning algorithms can be applied depending on the appli-
cation. The solution obtained by the HW/SW partitioning algo-
rithm should meet design constraints.
The estimation phase also deals with DE classes and the used

estimators depend on the final application. Typically used es-
timators (HW/SW execution time, DRL area, etc.) can be ob-
tained using high-level synthesis and profiling tools.
The dynamic stage includes HW/SW Scheduling and DRL

multicontext Scheduling. Both schedulers base their function-
ality on the events present in the event stream. Our methodology
assumes that both of them are implemented in hardware using
a centralized control scheme. As it is shown in Fig. 2, these
scheduling policies (HW/SW and DRL) cooperate and run
in parallel during application run-time execution, in order to

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

402 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

(a)

(b)

Fig. 3. DRL target architectures.

meet design constraints. With this goal, application execution
time is minimized by parallelizing event executions with DRL
reconfigurations.
The aim of the HW/SW scheduler is to decide at run time the

execution order of the events stored in the event stream. Several
policies could be implemented by the HW/SW scheduler based
on the application requirements (i.e., earliest deadline first, use
or not of a pre-emptive technique).
On the other hand, the DRLmulticontext scheduler should be

viewed as a tool used by the HW/SW scheduler. A tool in the

sense that its goal is to facilitate or minimize the class switching
mechanism to the HW/SW scheduler. As in the HW/SW parti-
tioning and scheduling, we assume that different DRL sched-
ulers can be defined depending on the application.

C. Target Architectures

The methodology we propose can be mapped to a target ar-
chitecture with two variants: the shared memory architecture or
the local memory architecture.

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

NOGUERA AND BADIA: HW/SW CODESIGN TECHNIQUES 403

1) SharedMemory Target Architecture: The sharedmemory
target architecture is depicted in Fig. 3(a). This architecture in-
cludes a software processor, a DRL-based hardware coprocessor
and shared memory resources.
The software processor is a uniprocessing system, which can

only execute one event at the same time. The DRL-based copro-
cessor can execute multiple events concurrently. HW/SW coop-
erate (interact) via a DMA based memory-sharing mechanism.
The DRL-based coprocessor architecture is divided in:

1) HW/SW and DRL multicontext scheduler; 2) DRL array;
3) object state memory; 4) DRL context memory; and (5)
event-stream memory. The HW/SW and DRL multicontext
schedulers must implement functions associated to the dynamic
stage of our methodology, as previously explained. Events
get the central scheduler through I/O ports or as a result of
a previous event computation. The event stream is stored in
the event stream memory. DRL contexts (which correspond
to several DE classes from an application) are stored in the
DRL context memory, and they can be loaded to any DRL cell
using the class bus. Finally, DE objects states (state variables)
are stored in the object state memory. Any DRL cell using the
object bus can access the object state variables. The proposed
DRL coprocessor architecture is scalable and it is possible to
apply any associative mapping between DE objects/classes and
DRL cells.
The DRL array communicates with these memories and the

central scheduler through several and functionally independent
busses (object, class, and event busses). We assume that each
DRL array element, named DRL cell, can implement any DE
class with a required area 20 K gates.
2) Local Memory Target Architecture: Another possibility

for the target architecture is to assume that the object state
memory is distributed or local to each DRL cell, all the rest
remaining as described in the Section I-C1 [see Fig. 3(b)].
As previously stated, with a shared object state memory, any
associative mapping between DE objects/classes and DRL cells
can be implemented. Instead, if a local object state memory is
considered, the mapping between DE classes/objects and DRL
cells should be direct, as the state variables for each object
would be local to a concrete DRL cell. Both target architec-
tures influence the development of the HW/SW partitioning
algorithm and the scheduling algorithms (HW/SW and DRL
multicontext).

III. ALGORITHMS FOR THE SHARED MEMORY
TARGET ARCHITECTURE

In this section, we present two algorithms for the shared
memory architecture: 1) a resource constrained HW/SW
partitioning algorithm and (2) a dynamic DRL multicontext
scheduling algorithm.

A. HW/SW Partitioning Algorithm

1) Problem Statement: A set of independent DE classes
is the input to the HW/SW partitioning

algorithm, which throughout its execution will work with two
subsets (and).

Fig. 4. List-based HW/SW partitioning algorithm for the shared memory
architecture.

• is the subset of DE classes mapped to hardware,
, .

• is the subset of DE classes mapped to software,
, .

• , .
A concrete class of the input set of classes, is character-

ized by a set of estimators

AET AET SVM DRLA NO (1)

where
AET average execution time for a hardware imple-

mentation of the class ;
AET average execution time for a software implemen-

tation of the class ;
SVM state variables memory size required by the

class;
DRLA DRL required area for the class;
NO number of objects of this class.
Let us also consider that design constraints are: (1) object

state memory, (2) class (DRL context) memory, and (3) the DRL
cell area. The total object state memory is denoted by OSMA
(object state memory available). DRLA stands for the DRL cell
available Area.
We state our problem as maximizing the number of DE

classes mapped to the DRL architecture while meeting memory
resources and DRL cell available area constraints

(2)

2) HW/SW Partitioning Algorithm: The proposed HW/SW
algorithm is a list-based partitioning algorithm. The algorithm
maps more time consuming DE classes to hardware. Thus, the
set of input DE classes must be sequentially ordered and more
time consuming DE classes should be prioritized whenmapping
to hardware. This objective is implemented using a cost func-
tion. For this example, we propose the following cost function,
although other cost functions could be applied

(3)

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

404 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

(a) (b)

Fig. 5. DRL cell and CPU possible states.

Indeed, this cost function prioritized DE classes with signifi-
cant difference in its HW and SW execution times. We assume
that lower values, as a result of applying this cost function, are
better than higher values. So, our sort function classifies values
from lowest to highest.
The pseudocode of the proposed HW/SW partitioning algo-

rithm is shown in Fig. 4. It obtains the initial sequentially or-
dered list after the cost function has been applied to
all DE classes. Afterwards, the algorithm performs a loop and
tries to map as many DE classes to hardware as possible, while
memory and DRL area constraints are met.
Available Resources (DeClass) function checks that the

current hardware partition plus DE class complies with
memory constraints. Function GetFirst (List) returns
and extracts the first DE class from the initial ordered list.

B. Dynamic DRL Architecture Management
In this section, we present the dynamic architecture manage-

ment, and concretely, a dynamic event-drivenDRLmulticontext
scheduler for the shared memory target architecture.We assume
that only the first event of the event stream, which is sorted by
the shortest tag, is being processed on aDE functional unit (DRL
cell or CPU) at the same time. That is, the HW/SW scheduler
only schedules one event at the same time, which indeed is its
main objective. Modifications of this scheduler are possible in
order to have several events being processed in parallel.
A second objective of the HW/SW scheduler is to manage the

active objects and classes of the DRL cells and CPU, performing
the class and object switches required to execute an event. This
functionality can be observed in Fig. 5, which represents the
finite state machines for the DRL cells, and the CPU. As intro-
duced in Section II-B, the HW/SW scheduler is implemented
using a centralized control scheme, whichmeans that this sched-
uler controls all DRL cells and CPU state transitions, as shown
in Fig. 5.
Let us explain Fig. 5(a). We can observe that initially a DRL

cell is in the idle state, which represents that the DRL has fin-
ishedwith the execution of an event, and it is available to process
a new event [see edge H, Fig. 5(a)]. Then, the HW/SW sched-
uler selects (following the previous commented policy) an event
to execute in this available DRL cell. To schedule an event can
mean to perform different tasks: 1) to enter into the class switch
state, if the event class is not loaded into the DRL cell (edge B);
2) to enter into the object switch state, if the event object is not
loaded into the DRL cell (edge D); and/or 3) to enter into the
execution state if the DRL cell has already active the required

Fig. 6. HW/SW and DRL dynamic scheduling.

Fig. 7. Dynamic DRL multicontext scheduling.

class and object (edge I). The class switch, object switch, and
execution states are characterized by a processing time, which
is known at compile time. That is, when a DRL cell enters into
one of these three states, the time that the DRL cell will remain
in the state is fixed. Whenever, one of these states has finished
its execution, there is a change of the active state. For example,
if the active state is class switch, the next active state would be-
come object switch (edge C). The same idea is applied to edge E.
However, in order to minimize class switching (DRL recon-

figuration) overheads to the HW/SW scheduler and improve the
total application execution time, it is possible to start loading

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

NOGUERA AND BADIA: HW/SW CODESIGN TECHNIQUES 405

(a) (b) (c)

Fig. 8. DRL multicontext scheduling examples.

the required DE class into the DRL array before it is actually
required by the HW/SW scheduler (edge A). This is the aim
of the DRL multicontext scheduler, which will be explained
in Section III-B1. This scheduling policy is based on a look-
ahead strategy into the event stream memory (see Fig. 6). Event
window (EW) describes the number of events that are observed
in advance and is left as a parameter of our scheduler.
By introducing this class switch (reconfiguration) prefetching

mechanism, it is possible to overlap the reconfiguration of a
DRL cell with the event execution in another DRL cell. Using
this approach, it is possible that a given DRL cell finishes with
class and object switch, but the event can not be processed be-
cause the execution of the previous events in the event stream
(with shortest tags) has not finished. In this case, the DRL cell
enters into the waiting state (edge F). Finally, the DRL cell will
exit this state and enter into the execution state (edge G), when
ordered by the HW/SW scheduler. The time that a DRL cell
will remain in the waiting state is not fixed, and it will be de-
termined at run time, according to the dynamic behavior of the
event stream.
Following, Fig. 5(b) is explained. This figure depicts the fi-

nite state machine for the CPU. As in the previous case, initially
the CPU is in the idle state. Whenever, a concrete event must be
processed by the CPU, the HW/SW scheduler will start a com-
munication process with the CPUusing the system bus (edgeA).
Indeed, this communication state means to send to the CPU, the
event to be processed. The CPU will perform a class switch if it
is required. If an object switch is required, the CPU will enter in
this state (edge C), and if not it will enter in the execution state
(edge B). Moreover, and with the idea of minimizing commu-
nications overheads, it is possible to start the CPU communica-
tion process, while an event is being executed in the DRL array.
So, the HW/SW scheduler will start the communication process
using the event window concept. In the same manner as in the
case of a DRL cell, the CPU has a waiting state.
1) DRL Multicontext Scheduling Algorithm: The aim of the

DRL multicontext scheduler is to minimize class switching
(DRL reconfiguration) overheads to the HW/SW scheduler, in
order to minimize the application execution time. From the DE
classes that are loaded in the DRL array, and the DE classes
which will be required within the event window (EW), the
DRL scheduler must decide, 1) which DE class must be loaded
and (2) in which DRL cell it will be loaded.
The pseudocode for the dynamic DRL multicontext sched-

uling algorithm is shown in Fig. 7. As stated, this scheduler de-
pends on the size of the event window. This algorithm is exe-

cuted at the end of the processing of a concrete event, but con-
currently with the execution of the next event. That is, when
an event finishes its execution, a new event will start to be pro-
cessed. As a consequence, the event window will be moved to
the next position, and it is probable that new classes are needed.
The basis of the behavior of the proposed DRL multicontext

scheduling algorithm is the use of the array DRLArrayUtiliza-
tion, which represents the expected active DE classes and asso-
ciated tags of the DRL array within the event window. This array
is obtained from the current state of the DRL array and the event
window, using the function ObtainDRLArrayUtilization.
Afterwards, the algorithm calculates the number of DRL cells

that will not be required within the event window (variable).
These DRL cells (if there is any) are available for a class
(context) switch. So, this is the first condition that the algorithm
checks.
If there is not any DRL cell available for a class switch, the

algorithm selects (to reconfigure) the DRL cell that has an active
DE class that will be required latest. Note that this is not a typical
last recently used (LRU) replacement policy. The algorithm also
selects a DE class to be loaded. The first DE class found in the
event stream, which is not loaded within the DRL array will
be selected. Finally, it will check that the event tag (associated
with the first class not present in the DRL array) is lower than
the DRL tag (the tag at which the loaded class into the DRL cell
will be required). We assume that all tags are different, although
this difference could be small. If this condition is asserted, the
algorithm sets the DRL cell into the class switch state using the
function DRL_Behavior().
On the other hand, if there are DRL cells available for a

class switch, the algorithm enters into a loop that goes through
the entire event window (beginning from the current event,CE).
If it finds a class (associated with an event), which is not loaded
within the DRL array, the algorithm selects the first available
DRL cell to reconfigure.
Fig. 8 shows three different possible cases for the DRL mul-

ticontext scheduler, and how does it work. In these examples,
it is depicted: (1) the event stream (with associated classes and
tags) and the current processed event, which is shadowed, (2)
the DRL array, and for each DRL cell, the current loaded class;
the shadowed DRL cell means that it is executing the current
event, and (3) the array used by the DRL multicontext sched-
uler, DRLArrayUtilization.
In Fig. 8(a), it is possible to observe that all loaded classes

will be required within the event window. Thus, the DRLAr-
rayUtilization shows, for each DRL cell, at which tag it will

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

406 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

Fig. 9. List-based HW/SW partitioning algorithm for the local memory architecture.

be required. For example, it is observed that has loaded
DE class 2, and the position of the DRLArrayUtilization asso-
ciated to has a value of 5, which means that with
active DE class 2, will be required at tag 5. Fig. 8(a). represents
the case in which because all loaded classes in the DRL
array are required within the event window. In this case, the al-
gorithm will select to reconfigure (it is the one which
will be required latest, and DE class 5 to be loaded (it is the first
class in the event stream which is not active). However, no re-
configuration will be performed because the tag of event with
DE class 5 is greater than the tag at which the will be
required. Fig. 8(b). represents a similar case, in which .
The difference between this and the previous case, is that in this
case, the reconfiguration will be performed because the tag of
event with DE class 5 is smaller than the tag at which the
will be required. Finally, Fig. 8(c). represents the case in which

and are not required within the event window, so
. In this case, several reconfigurations can be performed

and DE classes 5 and 6 will be loaded.

IV. ALGORITHMS FOR THE LOCAL MEMORY
TARGET ARCHITECTURE

In this section we present a HW/SW partitioning algorithm
and a DRL multicontext scheduling algorithm for the local
memory target architecture.

A. HW/SW Partitioning Algorithm

As we have explained, when the local memory target archi-
tecture is assumed, a direct mapping of DE classes to DRL cells
has to be used. This section presents a HW/SW partitioning al-
gorithm, which as in the previous considered architecture, is list
based. As in the previous case, more time consuming DE classes
are mapped to hardware. Moreover, this algorithm not only de-
cides the classes that will be executed in hardware, but also de-

cides in which DRL cell will always be executed the events of
each class.
Fig. 9 shows the proposed algorithm. Initially, it sorts the list

of DE classes using the same sort function as in Sec-
tion III. Afterwards, it performs a loop where for each DE class
it is decided whether the class is mapped to hardware or soft-
ware. If it is mapped to hardware, the class is assigned to a
concrete DRL cell. The algorithm assigns DE classes to DRL
cells in a cyclic way, but it should be checked that there is
enough memory in the local object state memory to host the
new DE class. This is performed by the function AvailableRe-
sources(DEClass ,DRLCell), which checks that:
• There is enough DRL context memory to store the con-
texts of the classes of plus .

• There is enough local Object State Memory to store the
state of classes assigned to plus

B. Dynamic DRL multicontext Scheduler
In this section, we present a dynamic event-driven DRL mul-

ticontext scheduler for the local memory target architecture. The
basic ideas and assumptions explained in the case of the DRL
multicontext scheduler for the shared memory architecture are
also valid in this case. The DRL cell behavior is also the same
in this scheduler [see Fig. 5(a)].
The only difference between this scheduler and the one pre-

sented for the shared memory architecture, is the mapping be-
tween classes/objects and DRL cells. In this case, the mapping
is direct and decided (fixed) at compile-time within the HW/SW
partitioning algorithm. So, this DRLmulticontext scheduler has
as input a table that contains, for all DE classes found in the
system specification, the DRL cell where a concrete DE class
has to be executed.
The algorithm sequentially obtains the required classes (from

the events found within the event stream), and for each class it
checks if the destination DRL cell (obtained from the DRL/DE
classmapping table) is available or not to perform a class switch.

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

NOGUERA AND BADIA: HW/SW CODESIGN TECHNIQUES 407

Fig. 10. SONATA network architecture.

TABLE I
DE CLASSES AND DE OBJECTS FOR THE SONATA EXAMPLE

V. A CASE STUDY: TELECOM NETWORKS SIMULATION

It is widely accepted that software acceleration is an impor-
tant field which hardware/software codesign can address. An
example of this can be found in [10]. We explain a case study of
software acceleration of broad-band telecom networks simula-
tion, which is a challenging application. Parallel computing [5]
and reconfigurable computing techniques [26], [29], [33] can be
used for simulation execution time improvement.

A. Introduction and Simulation Model
For our case study, we have used the SONATA1 network [6].

It is a network based on the switchless network concept, which
uses a combination of wavelength division multiple access
(WDMA) and time division multiple access (TDMA) methods
(see Fig. 10). Note that the proposed simulation model depends
on a parameter . This parameter will be used afterwards in
order to perform several experiments to test and obtain results
from applying our methodology.
The key point of this case study is how to apply the proposed

methodology to the simulation of broad-band telecom networks.
Specially important, is the mapping between network elements
(found in the network model), and DE objects and classes which
are the basic elements used in our methodology. From Fig. 10,
1Switchless Optical Network for Advanced Transport Architecture is partially

funded by the European Commission under ACTS program.

as an example, we can affirm that there are network elements,
which are instances from certain network element types. For ex-
ample, from Fig. 10 it is possible to find seven different network
element types: , , network control, passive wavelength
router, etc. In this sense, these network element types should
be viewed as DE classes within the scope of our methodology.
In the same way, network elements should be viewed as DE ob-
jects. For this case study, we will not consider the wavelength
converter array network element. In this case study we assume
to have six different network element types (see Table I).

B. Developed Codesign Framework
In order to test our proposed methodology and algorithms,

we have implemented a whole codesign framework, which is
depicted in Fig. 11. In the proposed methodology, DRL target
architectures, and dynamic multicontext schedulers, there are
several parameters that do not have a fixed value. For example:
1) the number of DRL cells within the target architecture and
its reconfiguration time and 2) the size of the event window
used by the DRL multicontext schedulers. Moreover, the sim-
ulation model depends on parameter , too. We have devel-
oped a codesign framework to study the effects of these pa-
rameters in our proposals. We have implemented two different
tools: 1) a HW/SW partitioning tool and 2) a HW/SW cosim-
ulation tool. Within both tools we have implemented the algo-
rithms described in this paper, but new algorithms can be easily

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

408 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

Fig. 11. Developed codesign framework.

included in these tools, as they have been implemented in amod-
ular manner.
In the developed framework, all parameters can be fixed

using configuration files. File DRL_Architecture.cfg is used to
setup parameters like the number of DRL cells, their reconfigu-
ration time, and the size of the event window used by the DRL
multicontext scheduler. In the file PartTool.cfg, it is specified
the cost function, and the parameters that HW/SW partitioning
algorithm should use. The developed codesign framework
assumes that the methodology’s estimation and extraction
phases have already been performed. So, a set of independent
DE classes with its estimators (file DE_Classes.lst), is the input
to the HW/SW partitioning tool.
The several network elements found in the SONATA net-

work, were modeled using the telecommunication description
language TeD [5]. TeD‘simulator runs on top of a parallel
computer, and we have performed real simulations of our
SONATA model in order to obtain real simulation event traces
(event stream). Afterwards, these event traces were adapted
(using a DE generator tool) to be an input to our cosimulation
tool. This tool is responsible for implementing the described
dynamic stage of our methodology.

C. Experiments and Results

We carried out several experiments on top of this framework.
Two groups of experiments, group I and II, have been performed
varying the parameter found in the SONATA network simu-
lationmodel (see Fig. 10). Once fixed this parameter, several ex-
periments have been performed varying the DRL architectures
and its parameters (file DRL_Architecture.cfg).
We set for experiments of group I, and

for experiments in group II. Given these values the HW/SW par-
titioner for experiments of group I maps all DE classes to hard-
ware, and for experiments of group II the HW/SW partitioner
maps four DE classes to hardware and two DE classes to soft-
ware. Both groups of experiments have been performed on top
of the local and shared memory architectures.

(a)

(b)

(c)

Fig. 12. Architecture performance evaluation results.

Results for group I experiments are shown in Fig. 12. This
shows three different reconfiguration times: 2000 ns, 1000 ns,

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

NOGUERA AND BADIA: HW/SW CODESIGN TECHNIQUES 409

TABLE II
NUMBER OF RECONFIGURATIONS (TOTAL, HW/SW SCHEDULER, DRL MULTICONTEXT SCHEDULER) AND NUMBER OF TIMES THE WAITING IS REACHED

and 500 ns, as we wanted to evaluate the impact of this pa-
rameter as well. Fig. 12(a) shows the total network simulation
execution time when the number of DRL cells increases (EW
is fixed to four). A value means an all-software
simulation execution. From Fig. 12(a), it can be observed that
using a single DRL cell with a reconfiguration time of 2000 ns,
give worst results than an all-software solution. Clearly, with a
single DRL cell, it is not possible to perform in parallel, event
computation, and DRL cells reconfiguration. So, fast reconfig-
uration times are needed in order to obtain any improvement.
When the number of DRL cells increases, event execution and
DRL reconfiguration can be performed in parallel, so recon-
figuration overhead effects are minimized and improvement is
obtained. From Fig. 12(a) and for this example, it can be seen,
that both target architectures (local and shared) obtain almost
the same results when the number of DRL cells is less or equal
to two.
Moreover, in this case study, when the number of DRL cells is

equal or higher than three, the shared memory architecture ob-
tains better results than the local memory architecture. This is
due to the type ofmapping betweenDE classes/objects andDRL
cells. As previously introduced, using a local-memory architec-
ture implies a direct mapping, while using a shared-memory
architecture means an associative mapping. The type of map-
ping determines if all reconfigurations can be initiated by the
DRLmulticontext scheduler, and are transparent to the HW/SW
scheduler. We have obtained that all reconfigurations can be
initiated by the DRL multicontext scheduler when using the
shared-memory architecture. When using the local-memory ar-
chitecture, the DRL multicontext scheduler can not hide all re-
configurations to the HW/SW scheduler.

Finally, it is possible to observe for this example that the
shared memory architecture converges faster (i.e., it requires
less DRL cells) than a local-memory architecture, to achieve the
same results that would be obtained using as many DRL cells as
DE classes found in the system specification. Clearly, this static
approach will not have reconfiguration overheads.
Fig. 12(b) and (c) show the effect of the event window size

on the execution time for a fixed number of DRL cells. These
results belong to group I experiments, and they have been ob-
tained for both target architectures, too. The results obtained
show that the best event window size depends on the number
of DRL cells. If the size of the event window is set to zero, it
indeed means that the prefetching mechanism is deactivated. In
this situation, and assuming an architecture with two DRL cells
[Fig. 12(b)], the local-memory architecture obtains better results
than the shared-memory architecture.
However, when the prefetching mechanism is activated, the

shared-memory architecture obtains better results. This same
behavior can be observed for an architecture with three DRL
cells [see Fig. 12(c)]. From both figures it can be observed that
when a local-memory architecture is considered, results get sat-
urated when the size of the event window equals the number
of DRL cells. If a shared memory is considered, it can be ob-
served that a high improvement in the results is obtained when
the event window size equals the number of DRL cells. In this
case, increasing the event window means some little improve-
ment in the results, but not really significant [see Fig. 12(b) and
(c)]
Now, results from Table II will be explained in more de-

tail. This table shows four different values when fixed the ar-
chitecture, number of DRL cells, its reconfiguration time, and

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

410 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

the event window size. For each set, the first line indicates the
total number of reconfigurations, which has been classified be-
tween the number of reconfigurations performed by theHW/SW
scheduler (the second line, which is in black) and the DRL mul-
ticontext scheduler (the third line in the column). Moreover, in
this table, it is shown to total number of times that all DRL cells
visit the waiting state [remember Fig. 5(a)], which is the bottom
line and is shadowed. Intuitively, it can be thought that when
fewer reconfigurations are performed in total, better results (ex-
ecution times) would be obtained. But, if we observe Table II,
it is clear that previous statement is false. For example, if we
observe results for a shared memory with three DRL cells and
a reconfiguration time of 2000 ns, it is seen that increasing the
event windowmeans performing more reconfigurations in total,
but also better executions times are obtained.
From Table II, we can observe that using the shared memory

architecture, the DRL multicontext scheduler can initiate all
reconfigurations (when the prefetch is active); except the
correspondent to the first event, which will be performed by
the HW/SW scheduler. This is not the case of a local-memory
architecture, where the HW/SW scheduler must initiate mul-
tiple reconfigurations. It is important to comment the number
of times that the DRL cells reach the waiting state. Remember
that if a DRL cell visits the waiting state, it means that the
DRL cell is ready to process an event, but it cannot be executed
because previous events computation have not finished. So in
our approach this is the best possible situation, which indeed
means that class switch and object switch are complete before
the HW/SW scheduler starts the execution of the event. From
Table II, and using the shared-memory architecture with three
DRL cells and a reconfiguration time of 2000 ns, we can
observe that the number of times that the DRL cells reach the
waiting state increases as the event window also increases. In
this previous situation, and assuming an event window of four,
the DRL multicontext scheduler initiates 49 reconfigurations
and 14 of them (the number of times the waiting state is
reached) are completely transparent to the HW/SW scheduler.
The other 35 reconfigurations will only be partially overlapped
with the execution of previous events. That is, the HW/SW
scheduler will wait for the reconfiguration to finish. From
Table II, we can also observe that reducing the reconfiguration
time means more visits to the waiting state, that is, more
reconfigurations will be completely transparent to the HW/SW
scheduler.
Results for group II experiments are shown in

Fig. 13, and they have been compared to group I experiments
when a shared-memory architecture is considered.

Remember that for model , the HW/SW partitioning
algorithm mapped all classes to hardware, while in model

the same algorithm mapped four classes to hardware and
two to software, as there are not enough memory resources (ob-
ject-state memory) in the target architecture. Both experiments
have been used to study the impact of the obtained HW/SW par-
titioning on the execution time.
Fig. 13(a) shows the total execution time when the number of

DRL cells increases. We can observe that using one DRL cell,
the experiments from group II are always better than the group I
experiments, independently of the reconfiguration time. That is,

(a)

(b)

(c)

Fig. 13. Simulation models results.

HW/SW partitioning for group II is better than the HW/SW par-
titioning for group I. However, when using twoDRL cells with a

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

NOGUERA AND BADIA: HW/SW CODESIGN TECHNIQUES 411

reconfiguration time of 2000 ns and 1000 ns, it can be observed
that group II experiments obtain the best results. But, this is not
the case if we use two DRL cells with a reconfiguration time of
500 ns, where group I experiments obtain the best results [see
Fig. 13(a) carefully].
The same behavior can be clearly observed when using three

or more DRL cells, where the results from group I experiments
are better than results from group II experiments, if DRL cells
with 1000 ns and 500 ns are used. So, from these results we can
conclude that the best HW/SW partitioning not only depends
on the number of DE classes, their HW/SW execution time and
object-state memory requirements, but also on the number of
DRL cells used and their reconfiguration time. It is clear, that a
more accurate HW/SW partitioning algorithm becomes neces-
sary. Before introducing this new algorithm in Section VI, let us
comment on Fig. 13(b) and (c). They show the effect of the event
window size on the execution time [as in Fig. 12(b) and (c)].
The important point here is that when having classes mapped to
HW and SW (as it is the case of group II experiments) the best
event window size is equal to the number of DRL cells plus one.
This is clearly due to the fact that there is one more DE func-
tional unit (CPU), than in the case of having all classes mapped
to hardware. So, indeed this means that DRL reconfigurations
can be overlapped with CPU executions.

VI. IMPROVED HW/SW PARTITIONING ALGORITHM

As introduced in Section III-A, a set of independent DE
classes is the input to the HW/SW
partitioning algorithm. A concrete class of the input set of
classes is characterized by a set of estimators . Remember
expression (1).
An important comment is needed for estimators AET and

AET . These estimators are static, which only give informa-
tion about the execution time of a concrete event execution.
They do not take into account the dynamic behavior of the event
stream. And even more important, these estimators do not take
into account the features or parameters of the dynamically re-
configurable architecture (reconfiguration time, number of con-
texts, etc). These parameters indeed have a direct impact into
the performance given by the HW/SW partitioning.
Let us consider first the AET estimator, and how it can be

modified to take into account the features of our target recon-
figurable architecture. As explained in the introduction, recon-
figuration latency minimization is one of the major challenges
introduced by reconfigurable computing. In our approach, we
propose a hardware based prefetching technique, which over-
laps execution and reconfiguration. The following expression
represents how it is going to be taken into account at theHW/SW
partitioning level 1) the parameters from reconfigurable plat-
form and 2) the configuration prefetching technique for recon-
figuration latency minimization. We define as

AE AET (4)

where
1) is the probability of reconfiguration, i.e., the proba-
bility that when an event of class is going to be exe-
cuted there is not any DRL cell that has class loaded.

This probability is a function of the number of classes
found in the set , and the number of DRL cells. Its
value is depicted in expression (5).

if
if . (5)

In case we havemore or equal DRL cells than HW classes
each class can be mapped on a dif-

ferent DRL cell and no reconfigurations will be required
. Otherwise, if there are more HW classes than

available DRL cells, there is a nonnull probability of re-
configurations. Given classes andDRL cells, there
are combinations2 of classes loaded in the DRL
cells. From all these cases, reconfiguration is required if
the event class is not loaded. These unfavorable cases can
be calculated as . So, can be calculated as

From this expression, it can be derived the one indicated
in (5).

2) is the reconfiguration time needed for a DRL cell to
change its context.

3) EW is the size (in number of events) of the prefetch. We
experimentally obtained that the best EW is represented
by expression (3).

if
if . (6)

4) is defined as the average executing time for all the
classes of set . Each class belongs either to subset
or to subset , so only one of its estimators will be
considered to calculate the average executing time, which
is given by the following expression.

(7)

represents the average execution time for class
on top of the reconfigurable architecture. This value is obtained
adding to its execution time the reconfiguration overhead, which
is not a fixed value and depends on the number of DRL cells,
its reconfiguration time and the number of classes in the subset

. From (4), it is possible to observe that the reconfiguration
overhead depends on 1) the reconfiguration probability [which
will be higher whenmore classes are present in subset , for
a fixed number of DRL cells] and 2) the reconfiguration time,
which could be reduced using the prefetching technique. As the
prefetching techniques are based on the overlapping of the ex-
ecution of an event in a DRL cell with the reconfiguration of
another DRL cell, the reconfiguration time could be reduced.
This reconfiguration time can be reduced by a factor that is pro-
portional to the EW, and to the average execution time of the set
of classes C.
2Combinations of elements taken from DRL to DRL

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

412 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

Fig. 14. Improvement of the initial solution.

Let us now consider the estimator, and how it is mod-
ified to take into account the features of the event stream, the
software processor, and the HW/SW communication strategy.
This is shown in the following expression:

(8)

where
1) is the probability of HW/SW communication,
which is a function of the number of classes found in the
set . In our approach, we assume that HW/SW com-
munication could also be improved using a prefetching
technique, which overlaps an event execution on the
DRL architecture with the HW/SW communication, for
an event that will be executed by the software processor
in the near future (within the EW). Its value is depicted
in (9). This probability represents the case in which
two events, that have to be executed into the software
processor, are consecutive in the event stream, and thus
HW/SW communication can not be hidden

(9)

2) is the average HW/SW communication time. It
represents the average transfer time using the system bus.

We have already introduced that our partitioning algorithm
is resource constrained. The design constraints are object state

memory and class (DRL context) memory. We formulate our
problem as maximizing the number of DE classes mapped to
the subset while 1) meeting memory and DRL area con-
straints and 2) the average execution time for all classes present
in is less than its average software execution time

such that

1. SVM OSMA and DRLA DRLA

2. AET AET (10)

This new HW/SW partitioning algorithm that we are
proposing is divided in three main steps: 1) obtaining an initial
solution; 2) improvement of the initial solution; and 3) class
packing in reconfiguration contexts.
In order to perform this incremental approach, classes are la-

beled with an active state. We consider the following states:
1) free; 2) fixed_HW and fixed_SW; and 3) tagged_HW and
tagged_SW. Free state means that the class is not assigned to any
subset (or). Initially all classes are free. Fixed_HW
means that the class belongs to subset , and that it can
not be moved from this subset. Fixed_SW means the same as
fixed_HW but with respect to . Tagged_HWmeans that the
class belongs to subset , but that the class could be moved
to . Tagged_SW means the same as tagged_HW but with
respect to .

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

NOGUERA AND BADIA: HW/SW CODESIGN TECHNIQUES 413

A. Obtaining the Initial Solution
Obtaining an initial solution is addressed using the list-based

partitioning algorithm presented in Section III-A. In this case,
the following cost function has been used.

AET AET (11)

The difference is that in Section III-A, the algorithmwas used
to perform the HW/SW partitioning, and in this case, the algo-
rithm is used to decidewhich classeswill be definitivelymapped
to SW (fixed_SW) because of the limited resources. The rest of
classes will be classified as tagged_SW, and they will be the
input to the following step of the algorithm.

B. Improvement of the Initial Solution
Improvement of the initial solution is achieved using an iter-

ative algorithm. This algorithm is based on the idea of moving
classes from the subset (concretely, the ones labeled as
tagged_SW) to the subset . This movement of a class is
mainly determined by the expressions introduced previously at
the beginning of this section [see (4) to (9)].
The pseudocode of the proposed algorithm is shown in

Fig. 14. The input to this algorithm is the sorted list of classes,
where each class is labeled with a state. Classes are still ordered
by the same cost function. The algorithm iterates within a
loop while there is any movement. When trying to perform
the movement, the algorithm initially gets the first class in the
list that is labeled as tagged_SW, and momentarily labels the
class as tagged_HW. After that, the algorithm evaluates the
partitioning of (5)–(7) assuming that the class is mapped to
HW. Once this process has finished, it returns the class to its
initial label (tagged_SW) and evaluates (9) assuming that the
class is assigned to SW.
At this point it is possible to evaluate (4) and (8), for all the

preceding classes in the list. This means, to evaluate the influ-
ence that will have moving a new class into the reconfigurable
hardware, on the average executing time of the other classes. For
each class, the algorithm checks if the average execution time in
HW is less than the average execution time in SW. If this condi-
tion is not asserted the algorithm stops, otherwise it checks the
state of the class in order to move the class to HW. This process
of moving a class to HW is performed in two steps; 1) the class
changes its state from tagged_SW to tagged_HW and 2) the class
changes its state from tagged_HW to fixed_HW. Each one of
these steps will be performed in different iterations of the al-
gorithm. The mapping process is done this way to prevent the
algorithm to enter into a nonconverging state. The result of ap-
plying this algorithm will be some classes labeled as fixed_HW
and tagged_HW. These classes will be finally mapped to the re-
configurable HW. The rest of classes will be mapped to SW.

C. Class Packing in Reconfiguration Contexts
Once the improvement of the initial solution is finished, it is

possible to perform a second type of optimization. Previously,
the reconfiguration-latency problem has been addressed using a
prefetching technique. However, a second possibility for min-
imizing the reconfiguration latency is to reduce the number of
reconfigurations that are performed.

Fig. 15. Left-edge class packing.

This objective can be achieved if all classes labeled as
fixed_HW and tagged_HW are packed into the minimum
number of reconfiguration contexts. In this case, a reconfigu-
ration context represents the implementation of several classes
into a single DRL cell. In the worst case, each reconfiguration
context will implement a single class. In the best case, a single
reconfiguration context will be needed for all classes. Classes
are packed into reconfiguration contexts according to their
DRL area. A reconfiguration context can implement N classes
if the sum of the DRL required area of these N classes does not
exceed the area of the DRL cell.
We have addressed the problem of obtaining the minimum

number of reconfiguration contexts using a left-edge based al-
gorithm. The left-edge algorithm is well known for its applica-
tion in channel-routing tools for physical-design automation. It
has been also adapted to solve the register allocation problem
in high-level synthesis [20]. We have adapted and used this al-
gorithm to address our problem. Using this approach we always
get optimal results for the number of reconfiguration contexts.
The pseudocode for the left-edge class packing is shown in

Fig. 15. The basic idea of this algorithm is to sort the input
classes (labeled as fixed_HW and tagged_HW), using their area
as the ordering factor. Once this is done, the algorithm searches
sequentially for the next class that can be included within
the current reconfiguration context. Function GetAssigned-
ToRC indicates if class has already been assigned to
any reconfiguration context or not.

D. Experiments and Results
In order to test this novel HW/SW partitioning algorithm, we

have applied the algorithm to four different network configura-
tions (named, simulation example 1, 2, 3, and 4). The used sim-
ulation examples have different features, which are defined in
the following: Simulation examples 1 and 2, have 7 DE classes,
while simulation examples 3 and 4, have 8 DE classes. Simu-
lation examples 1 and 2 differ because of the DE classes DRL
required area. In simulation example 1, the DE classes require

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

414 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 10, NO. 4, AUGUST 2002

(a)

(b)

Fig. 16. Final results. (a) HW/SW partitioning and (b) execution times.

a DRL area that facilitates class packing into reconfiguration
contexts. Simulation example 2 is the opposite case, where each
class has an area equivalent to a DRL context. Finally, the sim-
ulation examples 3 and 4 differ in the HW and SW execution
times. In simulation example 3, the difference between the HW
and the SW execution time is not significant, while in simula-
tion example 4, this difference is considerable.
The proposed partitioning algorithm has been implemented

within our codesign framework, and the DRL multicontext
scheduler for a shared-memory architecture has been adapted
to deal with groups of classes, as the reconfiguration contexts.
A whole bunch of cosimulations, varying the number of DRL
cells and their reconfiguration times, have been carried out.
The obtained results for this HW/SW partitioning algorithm

are shown is Fig. 16. They are a sample of the obtained results.
Fig. 16(a), shows for each simulation example the HW/SW par-
titioning results when three DRL cells with two different re-
configuration times are considered. Classes mapped to HW, are
grouped to DRL contexts. In this table, it can be observed the
effect of the reconfiguration time in the HW/SW partitioning.
That is, when the reconfiguration time is lower, more classes
are mapped to HW.
In the other hand, Fig. 16(b). shows the obtained simulation

execution time. For each simulation example, four execution
times are presented: 1) an all SW implementation; 2) a HW im-
plementation with unlimited number of DRL cells and object
state memory; 3) a mixed HW/SW implementation with 3 DRL
cells with a reconfiguration time of 2000 ns, and (4) a mixed

HW/SW implementation with 3 DRL cells with a reconfigura-
tion time of 500 ns. These last two results were obtained using
the previously obtained HW/SW partitions.
From this Fig. 16(b), the great difference can be observed be-

tween the all SW implementation and the rest of implementa-
tions (even in the case of simulation example 3, because of the
HW/SW communication overhead). In general, we can observe
that the obtained results, for a mixed HW/SW implementation
(for both reconfiguration times), do not have a really significant
difference compared to an all HW implementation.

VII. CONCLUSION

DRL devices and architectures change many of the basic as-
sumptions in the HW/SW codesign process. The flexibility of
DRL architectures requires the development of new method-
ologies and algorithms. In this paper, we have presented three
major contributions: 1) a new HW/SW codesign methodology
with dynamic scheduling for discrete event systems using dy-
namically reconfigurable architectures; 2) a novel approach to
dynamic DRL multicontext scheduling; and 3) a HW/SW parti-
tioning algorithm for dynamically reconfigurable architectures.
We have applied our methodology to the software accelera-

tion of broad-band telecom networks simulation. We have de-
veloped a whole codesign framework, in order to perform an
exhaustive study of our methodology and proposed algorithms
and schedulers. This exhaustive study has been carried out, and
the obtained results demonstrate the benefits of our approach.

ACKNOWLEDGMENT

The authors acknowledge the Department of Research and
Development of Hewlett-Packard Inkjet Commercial Division,
Barcelona, Spain, for its support in the preparation of his Ph.D.
dissertation.

REFERENCES
[1] [Online]. Available: http://www.altera.com/
[2] [Online]. Available: http://www.xilinx.com/
[3] [Online]. Available: http://www.chameleonsystems.com/
[4] F. Balarin, L. Lavagno, P. Murthy, and A. S. Vincentelli, “Scheduling for

embedded real-time systems,” IEEE Design and Test, Jan–Mar. 1998.
[5] S. Bhatt, R. Fujimoto, A. Ogielski, and K. Perumalla, “Parallel simula-

tion techniques for large-scale networks,” IEEE Commun. Mag., vol. 46,
pp. 42–47, Aug. 1998.

[6] N. Caponio et al., “Single layer optical platform based on WDM/TDM
multiple access for large scale switchless networks,” Euro. Trans.
Telecom..

[7] K. Chatta and R. Vemuri, “Hardware–software codesign for dynamically
reconfigurable architectures,” in Proc. of FPL’99, Glasgow, Scotland,
Sept. 1999.

[8] D. Deshpande, A. Somani, and A. Tyagi, “Configuration caching vs data
caching for striped FGPA’s,” in Proc. ACM/SIGDA Int. Symp. on FPGA,
Monterey, CA, Feb. 1999, pp. 206–214.

[9] R. P. Dick and N. K. Jha, “CORDS: Hardware–software co-synthesis
of reconfigurable real-time distributed embedded systems,” in Proc. Int.
Conf. Computer-Aided Design ’98, San Jose, CA, Nov. 1998.

[10] M. D. Edwards et al., “Acceleration of software algorithms using hard-
ware/software co-design techniques,” J. Syst. Architecture, vol. 42, no.
9/10, p. 1997.

[11] R. Ernst, J. Henkel, and T. Benner, “Hardware–software cosynthesis for
microcontrollers,” IEEE Design Test Comput., vol. 10, pp. 64–75, Dec.
1993.

[12] J. Fleischman et al., “A hardware/software prototyping environment for
dynamically reconfigurable embedded systems,” in Proc. CODES’98,
Seattle, WA, Mar. 1998.

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

NOGUERA AND BADIA: HW/SW CODESIGN TECHNIQUES 415

[13] R. Gerndt and R. Ernst, “An event-driven multi-threading architecture
for embedded systems,” in Proc. Codes/CASHE ’97, Braunschweig,
Germany, Mar. 1997, pp. 29–33.

[14] R. Gupta andG.DeMicheli, “Hardware–software cosynthesis for digital
systems,” IEEE Design Test Comput., vol. 10, pp. 29–41, Sept. 1993.

[15] S. Hauck, “Configuration prefetch for single context reconfigurable co-
processors,” in Proc. ACM/SIGDA Int. Symp. FPGA, Monterey, CA,
Feb. 1998, pp. 65–74.

[16] R. Hartenstein, “A decade of reconfigurable computing: A Visionary
retrospective,” in Proc. DATE’01, Munich, Germany, Mar. 2001.

[17] B. Jeong et al., “Hardware–software cosynthesis for run-time incremen-
tally reconfigurable FPGA’s,” in Proc. of Asia South-Pacific Design Au-
tomation Conf. (ASP-DAC’2000), Yokohama, Japan, Jan. 2000.

[18] A. Kalavade and E. A. Lee, “The extended partitioning problem: Hard-
ware/software mapping, scheduling and implementation-bin selection,”
J. Design Automation Embedded Syst., vol. 2, pp. 163–226, Mar. 1997.

[19] M. Kaul, R. Vemuri, R. Govindarajan, and I. Ouaiss, “An automated
temporal partitioning and loop fission approach for FPGA based recon-
figurable synthesis of DSP applications,” in Proc. Design Automation
Conf. (DAC), New Orleans, LA, June 1999.

[20] F. J. Kurdahi and A. C. Parker, “REAL: A program for register alloca-
tion,” in Proc. 24th Design Automation Conf., Miami, FL, June 1987.

[21] E. A. Lee, “Modeling concurrent real-time processes using discrete
events,” in Annuals Software Engineering, Special Volume on Real-Time
Software Engineering. Norwell, MA: Kluwer, 1998.

[22] Y. Li et al., “Hardware–software co-design of embedded reconfigurable
architectures,” in Proc. 37th Design Automation Conf, DAC’2000..

[23] Z. Li and S. Hauck, “Don’t care discovery for FPGA configuration com-
pression,” in Proc. ACM/SIGDA Int. Symp. FPGA, Monterey, CA, Feb.
1999, pp. 91–98.

[24] R. Maestre, F. J. Kurdahi, N. Bagerzadeh, H. Singh, R. Hermida, and M.
Fernandez, “Kernel scheduling in reconfigurable computing,” in Proc.
DATE, Munich, Germany, Mar. 1999.

[25] R.Maestre, F. J. Kurdahi, M. Fernandez, and R. Hermida, “A framework
for scheduling and context allocation in reconfigurable computing,” in
Proc. Symp Syst Synthesis, San Jose, CA, Nov. 1999, pp. 134–140.

[26] D. McConnell and P. Lysaght, “Queue simulation using dynamically re-
configurable FPGA’s,” in Proc. U.K. Teletraffic Symp., Scotland, U.K.,
Mar. 1996.

[27] V. Mooney and G. De Micheli, ““Real time analysis and priority
scheduler generation for hardware-software systems with a synthe-
sized run-time system,” in Proc. Int. Conf. Computer-Aided Design
(ICCAD’97), San Jose, CA, Nov. 1997, pp. 605–612.

[28] R. Nieman and P. Marwedel, “Hardware/software partitioning using in-
teger programming,” in Proc. European Design and Test Conf., Paris,
France.

[29] J. Noguera, R. M. Badia, J. Domingo, and J. Sole, “Reconfigurable com-
puting: An innovative solution for multimedia and telecommunication
network simulation,” in Proc. 25th Euro. Conf., Milan, Italy, Sept. 1999.

[30] , “Run-time HW/SW codesign for discrete event systems using dy-
namically reconfigurable architectures,” in Proc. ISSS’2000, Madrid,
Spain, Sept. 2000.

[31] , “A HW/SW partitioning algorithm for dynamically reconfig-
urable architectures,” in Proc. DATE’01, Munich, Germany, Mar. 2001.

[32] K. Purna andD. Bhatia, “Temporal partitioning and scheduling data flow
graphs for re-configurable computers,” IEEE Trans. Comput., vol. 48,
pp. 579–590, June 1999.

[33] A. Touhafi, W. F. Brissinck, and E. F. Dirkx, “Simulation of ATM
switches using dynamically reconfigurable FPGA’s,” in Proc. FPL’98,
vol. 1482, Lecture Notes in Computer Sciences, Tallin, Estonia, Sept..

[34] F. Vahid, “Modifying min-cut for hardware and software functional par-
titioning,” in Codes/CASHE’97, Braunschweig, Germany, Mar. 1997,
pp. 43–48.

[35] , “A three-step approach to the functional partitioning of large be-
havioral processes,” in Proc. Int. Symp. Syst. Synthesis, Dec. 1998, pp.
152–157.

[36] M. Vasilko and D. Ait-Boudaoud, “Scheduling for dynamically recon-
figurable FPGA’s,” in Proc. Int. Workshop on Logic and Architecture
Synthesis., Grenoble, France, Dec. 1995, IFIP TC10 WG10.5, pp.
328–336.

[37] W. Wolf, “Object-oriented cosynthesis of distributed embedded sys-
tems,” ACM Trans. Design Automation Electron. Syst., vol. 1, no. 3,
pp. 301–314, July 1996.

Juanjo Noguera received the B.Sc. degree in computer science from the
Autonomous University of Barcelona, Barcelona, Spain, in 1997. He is
currently working toward the Ph.D. degree at the Technical University of
Catalonia, Barcelona, Spain.
Since June 2001, he has been with Hewlett-Packard Inkjet Commercial Divi-

sion, Research and Development Department, San Cugat del Valles, Spain. He
was formally with the Spanish National Center forMicroelectronics, Barcelona,
Spain, and was an Assistant Professor with the Computer Architecture Depart-
ment, Technical University of Catalonia. His research interests include HW/SW
codesign, reconfigurable architectures and system-on-chip design techniques.
He has published papers in international conference proceedings.

Rosa M. Badia received the B.Sc. and Ph.D. degrees in computer science from
the Technical University of Catalonia, Barcelona, Spain, in 1989 and 1994,
respectively.
Currently, she is an Associate Professor with the Department of Computer

Architecture, Technical University of Catalonia and Project Manager at
the CEPBA-IBM Research Institute, Barcelona, Spain. Her research inter-
ests include computer-aided design tools for very large scale integration
(VLSI), reconfigurable architectures, performance prediction, analysis of
message-passing applications, and GRID computing. She has published papers
in international journals and conference proceedings.

Authorized licensed use limited to: University of Florida. Downloaded on March 17, 2009 at 18:35 from IEEE Xplore. Restrictions apply.

