
Energy-Efficient Optimal Real-Time Scheduling on Multiprocessors∗

Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki
Graduate School of Science and Technology

Keio University, Yokohama, Japan
{funaoka,shinpei,yamasaki}@ny.ics.keio.ac.jp

Abstract

Optimal real-time scheduling is effective to not only
schedulability improvement but also energy efficiency for
real-time systems. In this paper, we propose real-time static
voltage and frequency scaling (RT-SVFS) techniques based
on an optimal real-time scheduling algorithm for multipro-
cessors. The techniques are theoretically optimal when the
voltage and frequency can be controlled both uniformly and
independently among processors. Simulation results show
that the independent RT-SVFS technique closely approaches
the lower bound on energy consumption if the voltage and
frequency can be controlled minutely.

1. Introduction

Multiprocessor architectures such as Simultaneous Mul-
tithreading (SMT) and Chip Multiprocessing (CMP) are be-
coming more attractive for intelligent embedded systems. It
is important for embedded systems that real-time tasks such
as robot controls and image processing meet their real-time
constraints. Therefore powerful processors are desirable for
these systems. On the other hand, the trade-off between sys-
tem performance and energy efficiency is critically impor-
tant for battery-based embedded systems. Real-time oper-
ating systems must go together with both requirements.

Real-time voltage and frequency scaling techniques have
been introduced to solve the problem. The processors of
most recent computer systems are based on CMOS logic.
Maximum processor frequency f depends on supply volt-
age V (i.e., V = g(f)), and energy consumption P is pro-
portional to processor frequency and square of supply volt-
age (i.e., P ∝ fV 2) [5]. Real-time voltage and frequency
scaling techniques can potentially save energy at a cubic or-
der, while they meet real-time constraints. Real-time volt-
age and frequency scaling is based on the essential charac-
teristic of real-time tasks; namely the tasks can be executed

∗This research is supported by CREST, JST.

slowly as long as all deadlines are met.

Real-time voltage and frequency scaling techniques are
constructed on real-time scheduling theories to meet real-
time constraints. For single-processor systems, EDF [13]
is an optimal real-time scheduling algorithm. On the other
hand, EDF-FF and EDF-US, which are the extensions for
multiprocessors, are not optimal [14, 4]. Approximately
50% processor time is wasted to meet real-time constraints
on the algorithms at the worst-case. In other words, the
algorithms theoretically require twice as many processors
or powerful processors as optimal algorithms do. Accord-
ingly the systems which leverage the algorithms expend
more energy than ideal. Fortunately three optimal real-
time scheduling algorithms for multiprocessors are pre-
sented (i.e., PD2 [1], EKG [2], and LNREF [7, 8]). PD2

incurs significant run-time overhead due to its quantum-
based scheduling approach. EKG concentrates workloads
on some processors due to the approach similar to parti-
tioned scheduling. From the viewpoint of energy efficiency,
energy consumption is minimized when the workloads are
balanced among processors [3]. LNREF is an efficient al-
gorithm on the balance as compared to the other optimal
algorithms. Therefore we construct real-time voltage and
frequency scaling techniques based on LNREF.

There are two approaches “static and dynamic” for real-
time voltage and frequency scaling. Changing voltage and
frequency takes some time to ensure system memory ac-
cess due to physical limitations. Intel Pentium M [10] pro-
cessors require 10-15µs per voltage and frequency scaling.
It is possible to ignore the overhead in some cases. How-
ever next-generation real-time systems such as humanoid
robots are controlled in the 200µs or faster control loop.
For these systems, frequent voltage and frequency scal-
ing incurs significant overhead. Furthermore the optimal
real-time scheduling algorithms for multiprocessors cause
more frequent context switches than the other algorithms
do. Static voltage and frequency scaling is a good solu-
tion for these systems. In this paper, static techniques tar-
geting the systems which can not ignore the overhead are
presented. Additionally static approaches are desirable for

11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC)

978-0-7695-3132-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ISORC.2008.19

23

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 15:05 from IEEE Xplore. Restrictions apply.

industrial systems because the system analysis is simple.
Optimal real-time static voltage and frequency scaling

(RT-SVFS) on multiprocessors is a NP-hard partition prob-
lem since selectable processor frequency is discontinuous
on practical systems. It is sufficient to completely solve the
problem at the beginning if the system never changes indef-
initely. However some real-time systems would like to vary
their configurations without system standstill (e.g., system
updates, physical reconfigurations). Additionally aperiodic
tasks, which are executed by the server approach [17], are
deemed to be the system reconfiguration if the arrivals
are infrequent. Therefore real-time voltage and frequency
scaling techniques must accommodate to dynamic environ-
ments even if the techniques are static approaches. Exhaus-
tive algorithms for the NP-hard problem at every reconfigu-
ration incur significant overhead. Consequently we assume
that processor frequency can be controlled continuously at
first. Then we prove that our techniques are theoretically
optimal under the assumption. Finally the effectiveness of
the technique is shown in the simulation on practical envi-
ronments (i.e., discontinuous frequency).

The remainder of this paper is organized as follows. The
next section discusses the related work. In section 3, we
show the system model. Section 4 explains T-N Plane Ab-
straction, which is the basis of our RT-SVFS techniques. In
section 5, we present new RT-SVFS techniques for optimal
real-time scheduling on multiprocessors. Section 6 evalu-
ates the technique on practical environments. Finally we
conclude with a summary and future work in section 7.

2. Related Work

Many real-time voltage and frequency scaling tech-
niques have been proposed in many aspects for single pro-
cessor systems. Pillai and Shin [15] show two RT-SVFS
techniques based on EDF and RM [13]. EDF is an optimal
real-time scheduling algorithm for single processors. Our
uniform RT-SVFS on multiprocessors is analogous to EDF-
based RT-SVFS. Real-time dynamic voltage and frequency
scaling (RT-DVFS) techniques are also proposed for hard
real-time systems [15], soft real-time systems [18], and dy-
namic real-time systems [12] to achieve more energy effi-
ciency. On the other hand, previous works [19, 6, 16] for
multiprocessors are based on partitioned scheduling or non-
optimal global scheduling. As mentioned above, the algo-
rithms require twice as many processors or powerful proces-
sors as optimal algorithms at the worst case. Consequently
no optimal RT-SVFS technique is presented heretofore.

Our previous work [9] minimizes not total energy con-
sumption but total processor frequency. This paper is the
first work that realizes both optimal real-time scheduling
and theoretically optimal RT-SVFS on multiprocessors.

3. System Model

In this paper, we present the problem of scheduling a set
of hard periodic tasks with voltage and frequency scaling
on a multiprocessor system. The system is modeled as a
taskset T = {T1, . . . , TN}, which is a set of N periodic
tasks to be executed on M processors P = {P1, . . . , PM}.
Each processor Pk is characterized by continuous normal-
ized processor frequency αk (0 ≤ αk ≤ 1). Each processor
can execute at most one task simultaneously. Each task can
not be executed in parallel among processors. Each task
Ti is characterized by two parameters, worst-case execu-
tion time ci and period pi. A task Ti executed on a proces-
sor Pk requires ci/αk processor time at every pi interval.
The relative deadline di is equal to its period pi. All tasks
must complete the execution by the deadlines. The ratio
ci/pi, denoted ui (0 < ui ≤ 1), is called task utilization.
U =

∑
Ti∈T ui denotes taskset utilization. Maximum task

utilization is defined as Umax = max{ui|Ti ∈ T}. We as-
sume that all tasks may be preempted and migrated among
processors at any time, and are independent (i.e., they do
not share resources and do not have any precedence).

In this paragraph, the differences between the system
model and practical environments are discussed. (1) In
practical environments, operable processor frequencies are
discontinuous. The set of operable frequencies is defined as
f = {f1, . . . , fm|f1 < · · · < fm}. The lowest frequency
fi ∈ f such that αk ≤ fi/fm will be selected to bridge the
gap between theory and practicality. (2) Processor through-
put is not proportional to processor frequency in many cases
as opposed to the system model described above. In prac-
tical systems, the frequency which can achieve the corre-
sponding system throughput will be selected. (3) The sys-
tem model assumes that no overhead occurs at run-time.
In practical environments, the scaled frequency interferes
with the scheduling and the resource control even if the fre-
quency is not changed dynamically. The worst-case over-
head must be included in the worst-case execution time ci.

4. T-N Plane Abstraction

T-N Plane Abstraction [7, 8] is an abstraction technique
of real-time scheduling. T-N Plane Abstraction is based on
the fluid scheduling model [11]. In fluid scheduling, each
task is executed at a constant rate at all times. Figure 1
illustrates the difference between the fluid schedule and a
practical schedule. The figure represents time on horizontal
axis and task’s remaining execution time on vertical axis. In
the fluid scheduling model, each task Ti is executed along
its fluid schedule path, the dotted line from (ri, ci) to (ri +
pi, 0), where ri is task’s release time. It is impossible for
the fluid scheduling model to realize optimal schedule on
practical systems since one processor must execute some

24

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 15:05 from IEEE Xplore. Restrictions apply.

Ti

time

fluid schedule pathremaining

a practical schedule pathci

release time deadline

execution time

pi

ri

Figure 1. Fluid schedule and a practical
schedule.

T1

time

T2

TN

fluid schedule path T-N plane
remaining execution time

deadline

p1

p2

pN

k T-N planek+1k-1th thth

execution time
nodal remaining

c2

c1

cN

Figure 2. T-N Plane Abstraction.

tasks simultaneously. Note that the deadline is the only time
at which we must track the fluid schedule path.

Figure 2 shows how real-time scheduling is abstracted.
Deadlines divide time as the vertical dotted lines. The right
isosceles triangles called T-N planes (Time and Nodal re-
maining execution time domain planes) are placed between
every two consecutive deadlines. We make the rightmost
vertex of the T-N plane coincide with the intersection of the
fluid schedule path and the right side of the divided time-
span. Since T-N planes in the same time-span are congru-
ent, we have only to keep in mind an overlapped T-N plane
shown in the lower of the figure at a time. The T-N plane
represents time on horizontal axis and task’s nodal remain-
ing execution time, denoted li for each task Ti, on vertical
axis. If the nodal remaining execution time becomes zero at

Event B

Event C

tf
0

tf
nodal remaining execution time

time
t1 t2

T1

T3
T4

T2

P1

P2

time

T1

T2

T1 T1

T3 T4

token

no nodal laxity diagonal (NNLD)

fluid schedule path

t

Figure 3. LNREF scheduling algorithm.

the rightmost vertex of the T-N plane, the execution accedes
to the fluid schedule path for each deadline.

Figure 3 shows an overlapped T-N plane, where tokens
representing tasks move from t0 to tf . The tokens are on
their fluid schedule paths at the beginning of the T-N plane
as shown in the following theorem, where ri,j = li,j/(tf −
tj) denotes the nodal utilization of Ti at time tj .

Theorem 1 (Cho et al.) The initial nodal utilization value
ri,0 = ui for all task Ti. �

A token moves diagonally down if the task is executed; oth-
erwise it moves horizontally. If all tokens arrive at the right-
most vertex, all tasks meet their deadlines. We call the suc-
cessful arrival to the rightmost vertex, nodally feasible. For
nodal feasibility, new events at which the scheduling deci-
sion is made again in the T-N plane are laid on. Event C and
event B occur when tokens hit the oblique side (NNLD) and
the bottom side of the T-N plane, respectively. We assume
that the jth event occurs at time tj . M tokens which have
the Largest Nodal Remaining Execution time are selected
First (LNREF) on M processors for each event. LNREF is
an optimal real-time scheduling algorithm for multiproces-
sors as shown in the following theorem.

Theorem 2 (Cho et al.) Any periodic taskset T with uti-
lization U ≤ M will be scheduled to meet all deadlines
on M processors by LNREF. �

For example, there are four tasks (T1, T2, T3, T4) and
two processors (P1, P2) as shown in Figure 3. Since there

25

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 15:05 from IEEE Xplore. Restrictions apply.

Ti

tf

k tf
nodal remaining execution time

time
t jt0

0

Figure 4. T-N Plane Transformation (αk = 0.5).

are two processors, two tasks can be executed simultane-
ously. At time t0, T1 and T2 are executed on P1 and P2 in
the LNREF order. Event B occurs at time t1 since T2 hits
the bottom side of the T-N plane. Then two tasks T1 and T3

are selected again. Event C occurs at time t2 since T4 hits
the oblique side (NNLD) of the T-N plane. We ingeminate
the rescheduling for each event.

5. T-N Plane Transformation

We propose “T-N Plane Transformation,” which is a
technique to apply processor frequency scaling to LNREF
scheduling. Figure 4 shows a T-N plane with frequency
αk = 0.5. Selected tokens move diagonally down along
the NNLD of the transformed T-N plane. We do not con-
sider the case where the taskset is not feasible; therefore
we assume that U ≤ M . If αk is given to the processor
Pk, the voltage Vk is uniquely defined (i.e., Vk = g(αk)).
Therefore voltage and frequency scaling is equivalent to a
frequency decision. It is difficult to formulate Vk generally
since Vk depends on the system architecture. Aydin and
Yang [3] show the following theorem.

Theorem 3 (Aydin and Yang) A task assignment that
evenly divides the total utilization U among all the proces-
sors will minimize the total energy consumption. �

Consequently we have only to keep in mind the frequency.
In the following sections, we present two RT-SVFS tech-

niques for different types of systems. SMT processors share
resources among threads; therefore we can only control the
voltage and frequency uniformly among threads. On the
other hand, we can control the voltage and frequency in-
dependently among processors in most of CMP processors
and Symmetric Multiprocessing (SMP) processors. We first
show a uniform RT-SVFS technique targeting for SMT pro-
cessors. Then an independent RT-SVFS technique target-
ing for CMP processors and SMP processors is constructed
upon the uniform RT-SVFS technique.

Algorithm: DecideUniformFrequency
1: foreach 1...M as k
2: αk = max{Umax, U/M}
3: end foreach

Figure 5. Uniform frequency scaling.

Tasks

Processors

0.8 0.6 0.5 0.4 0.3 0.2 0.2

0.8 0.8 0.8 0.8

Tasks

Processors

0.6 0.6 0.5 0.4 0.4 0.3 0.2

0.75 0.75 0.75 0.75

Figure 6. Examples of uniform frequency
scaling.

5.1. Uniform RT-SVFS

We assume that all processors have the same frequency
α(= α1 = . . . = αM). Corollary 4 shows the condition
where all tasks are feasible on the restriction.

Corollary 4 Any periodic taskset T with utilization U ≤
αM and Umax ≤ α will be scheduled to meet all deadlines
on M processors with frequency α by LNREF.
Proof All tokens are on the T-N plane at time t0, based on
Theorem 1 since Umax ≤ α. The subsequent proof is in a
similar fashion as Theorem 2 [7]. See our previous work [9]
for more detail. �

Figure 5 shows the uniform frequency scaling algorithm.
All tokens are feasible on the transformed T-N plane, based
on Corollary 4. The algorithm is theoretically optimal as
a static approach if the voltage and frequency can be con-
trolled only uniformly among threads or processors.

Corollary 5 DecideUniformFrequency is an optimal real-
time static voltage and frequency scaling algorithm if the
frequency can be controlled only uniformly among proces-
sors.
Proof If U > αM or Umax > α, tasks miss their dead-
lines. Therefore DecideUniformFrequency is optimal. �
Additionally DecideUniformFrequency differs from the in-
dependent frequency scaling algorithm described in the next
section in the sense that DecideUniformFrequency is also
optimal on practical systems in obvious, which can not con-
trol processor frequency continuously.

26

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 15:05 from IEEE Xplore. Restrictions apply.

Algorithm: DecideIndependentFrequency
Require: u1 ≥ u2 ≥ . . . ≥ uN

1: Theavy = φ

2: Tlight = T
3: foreach 1...M as i

4: if L < M and U
light
max > U light/ (M − L) then

5: Theavy = Theavy ∪ {Ti}
6: Tlight = Tlight\{Ti}
7: else
8: break
9: end if

10: end foreach
11: foreach 1...M as k
12: if Pk executes a heavy task Tk then
13: αk = uk

14: else
15: αk = U light/(M − L)
16: end if
17: end foreach

Figure 7. Independent frequency scaling.

Figure 6 shows examples of DecideUniformFrequency.
There are seven tasks and four processors for each exam-
ple. Since U = 3 and M = 4 in both examples, the ideal
frequency for each processor is U/M = 0.75 as shown in
the upper of the figure. However there is the bottleneck
task with utilization Umax = 0.8 in the lower of the figure.
If the processor frequency can be controlled independently
among processors, we can overcome the problem.

5.2. Independent RT-SVFS

We can overcome the bottleneck shown in the previous
section if each processor frequency αk can be controlled
independently among processors. The strategy for indepen-
dent RT-SVFS is analogous to EKG [2]. We classify tasks
into two types of categories (i.e., heavy and light). Each
heavy task Ti is exclusively executed on one processor Pk

with frequency αk = ui. All heavy tasks meet their dead-
lines in obvious. All light tasks are executed on the other
processors by LNREF with DecideUniformFrequency.

We show the definitions for heavy and light. Theavy and
Tlight denote the sets of heavy tasks and light tasks, respec-
tively. The light taskset utilization is defined as U light =∑

Ti∈Tlight ui. U light
max = max{ui|Ti ∈ Tlight} denotes the

maximum utilization of the light taskset. The number of
heavy tasks is represented as L = |Theavy|. We assume that
heavy tasks are executed on the processors (P1, . . . , PL).
The number of processors for light tasks is M − L. αlight

denotes the processor frequency for the light taskset.
All tasks are classified into heavy or light as shown in

Figure 7. We first sort tasks in decreasing utilization and
assume that all tasks are light. In the assumption, all tasks

are feasible by DecideUniformFrequency. Then we de-
cide whether a light task Ti with utilization ui = U

light
max

can be classified into heavy without missing any deadlines.
Lemma 6 shows the condition where the light task Ti with
utilization ui = U

light
max can be classified into heavy. We de-

fine that Z(x) represents the Z’s value at the time when
L = x, where Z is an arbitrary symbol.

Lemma 6 If U light
max(x) > U light(x)/(M − x), the light task

Ti with utilization ui = U light
max(x) can be classified into

heavy without missing any deadlines.
Proof The proof is shown by the inductive method. Since
all tasks are light at first, they are feasible by LNREF with
DecideUniformFrequency; namely αlight(0) ≤ 1. We as-
sume that all tasks are feasible at the time when L = x;
then we show that they are also feasible at the time when
L = x + 1 if U light

max(x) > U light(x)/(M − x). Since all
heavy tasks are feasible in obvious, we have only to keep in
mind whether all light tasks are feasible. If αlight(x+1) ≤ 1,
all light tasks are feasible by LNREF with DecideUniform-
Frequency after the light task Ti with utilization ui =
U light

max(x) is classified into heavy. Therefore we prove that
αlight(x + 1) ≤ 1. αlight(x) and αlight(x + 1) are calculated
by DecideUniformFrequency as follows.

αlight(x) = max{U light
max(x),

U light(x)
M − x

}

αlight(x + 1) = max{U light
max(x + 1),

U light(x) − U light
max(x)

M − (x + 1)
}

There is the strong evidence that

U light
max(x) ≥ U light

max(x + 1). (1)

Based on the assumption U light
max(x) > U light(x)/(M − x),

U light(x)
M − x

− U light(x) − U light
max(x)

M − (x + 1)

=
U light

max(x) (M − x) − U light(x)
(M − x) (M − (x + 1))

> 0

⇒ U light(x)
M − x

>
U light(x) − U light

max(x)
M − (x + 1)

. (2)

From the inequalities (1) and (2), we obtain αlight(x) ≥
αlight(x + 1). At the beginning, we assumed that all tasks
are feasible when L = x (i.e., αlight(x) ≤ 1). Consequently
αlight(x + 1) ≤ 1. �

Lemma 6 and the proof imply that (a) αk is monoton-
ically decreasing for all k (i.e., αk(x) ≥ αk(x + 1))
at the time when U light

max(x) > U light(x)/(M − x), and
(b) the repetition of the classification leads the condition
to U light

max(x) ≤ U light(x)/(M − x). After the condition
U light

max(x) ≤ U light(x)/(M − x) is satisfied, we may be able

27

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 15:05 from IEEE Xplore. Restrictions apply.

to classify the light task Ti with utilization ui = U light
max(x)

into heavy. The problem is when we stop the classifica-
tion. We define the energy consumption as E′(x) at the
time when L = x. The minimum E′(x) based on the clas-
sification are shown in the following theorem.

Theorem 7 We assume that the condition of U light
max(w) ≤

U light(w)/(M − w) is satisfied for the first time when L =
w. The minimum energy consumption is E′(w).
Proof The proof of Lemma 6 implies that αk is monotoni-
cally decreasing for all k (i.e., αk(x) ≥ αk(x + 1)) at the
time when x ≤ w. Therefore the minimum energy consump-
tion is E′(w) when x ≤ w. Meanwhile, when x ≥ w, the
sum of the processor frequency is unchanged from U . How-
ever the processor frequency αx+1 decreases from

αx+1(x) = U light/(M − x)

to
αx+1(x + 1) = U light

max(x)

when x ≥ w, since the condition where U light(x)/(M −
x) ≥ U light

max(x) is already satisfied. On the other hand, the
other processor frequency αx+2, . . . , αM for light tasks in-
creases from

αy(x) = U light/(M − x)

to

αy(x + 1) =
U light(x) − U light

max(x)
M − (x + 1)

,

where x + 2 ≤ y ≤ M for all y. From the inverse of
the inequality (2), we have αy(x) ≤ αy(x + 1), where
x + 2 ≤ y ≤ M for all y. It results in differences be-
tween αx+1 and (αx+2, . . . , αM) after the classification,
while αx+1 equal to (αx+2, . . . , αM) before the classifi-
cation. Based on Theorem 3, the energy consumption is
monotonically increasing when x ≥ w. Consequently the
minimum energy consumption is E′(w). �

The algorithm is theoretically optimal as follows.

Theorem 8 DecideIndependentFrequency is an optimal
real-time static voltage and frequency scaling algorithm if
the frequency can be controlled independently among pro-
cessors.
Proof The proof is shown by contraposition. We enumer-
ate all the possibilities with focusing attention on the task
Tm with utilization um = Umax. Because the task Tm has
maximum utilization Umax in the system, Tm must be ex-
ecuted on the processor Pk with frequency αk = um as
shown in Theorem 3. Therefore Tm is executed on either a
processor or more than one processor. (1) If Tm is executed
on a processor, the algorithm is the same as DecideInde-
pendentFrequency. (2) If Tm is executed on more than one
processor, it produces the same results that Tm is scheduled

Tasks

Processors

1.0 0.9 0.6 0.5 0.1

1.0 1.0 0.5 0.75

DecideIndependentFrequency

Exhaustive

Tasks

Processors

Heavy Light

1.0 0.9 0.6 0.5 0.1

1.0 1.0 0.75 0.75

Heavy Light

Figure 8. Examples of independent frequency
scaling on a practical system.

by partitioned scheduling. Namely a processor and Tm can
be removed from the global scheduled group, and Tm is ex-
ecuted on the processor. (1) and (2) show that partitioned
Tm’s scheduling leads us to the optimal voltage and fre-
quency scaling. Furthermore we take it from the top with re-
moving Tm and the processor executing Tm. The technique
is DecideIndependentFrequency. Consequently no static al-
gorithm achieves lower energy consumption than DecideIn-
dependentFrequency. �

DecideIndependentFrequency is not optimal on practical
environments such as System1 on Table 1 as shown in Fig-
ure 8. The numbers show task utilization and processor fre-
quency. When w = 2, the condition of U light(2)/(M−2) ≥
U light

max(2) is satisfied; therefore two tasks with utilization 1.0
and 0.9 are classified into heavy in DecideIndependentFre-
quency. On the other hand, Exhaustive shown in the next
section achieves less energy consumption than DecideInde-
pendentFrequency. However Exhaustive can not accommo-
date to dynamic environments because it is NP-hard.

5.3. An Exhaustive Algorithm

Exhaustive is a non-optimal RT-SVFS algorithm on
practical environments; however Overcoming Exhaustive
will be complex. Exhaustive achieves less energy consump-
tion than DecideIndependentFrequency since the voltage
and frequency setting generated by DecideIndependentFre-
quency is certainly scanned by Exhaustive. Exhaustive is
NP-hard since it leverages the notion of “partition of a set.”
X represents the set of all partitions of P. For each partition
of X, each part of the partition is called virtual processor.
If a virtual processor includes only one processor, the tasks

28

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 15:05 from IEEE Xplore. Restrictions apply.

Table 1. Systems for simulation.
System 1 System 2 System 3
α V α V α V

0.5 3 0.5 3 0.36 1.4
0.75 4 0.75 4 0.55 1.5
1.0 5 0.83 4.5 0.64 1.6

1.0 5 0.73 1.7
0.82 1.8
0.91 1.9
1.0 2.0

executed on the virtual processor are scheduled by EDF and
RT-SVFS for EDF [15]. Otherwise the tasks executed on
the virtual processor are scheduled by LNREF and Decide-
UniformFrequency. For each partition of P, the number of
parts is defined as V , and Y represents the set of all parti-
tion of T, where the number of parts must be equal to V . For
each partition of Y, each part of the partition is called co-
scheduled tasks. All combinations of virtual processor and
co-scheduled tasks are scanned to find a good combination.

6. Simulation

We evaluate DecideIndependentFrequency on practical
environments shown in Table 1. Each system has the opera-
ble sets of frequency α and voltage V as shown in the table.
The normalized energy consumption is

Power =

∑
Pk∈P αkV 2

k

MV 2
max

,

where Vmax is the maximum voltage in the system.
Three algorithms are compared. DecideFrequency rep-

resents DecideIndependentFrequency proposed in this pa-
per. Exhaustive solves the NP-hard partition problem.
NoVFScaling does not control voltage and frequency at
all. bound represents the theoretical lower bound which
reflects taskset utilization only and does not consider real-
time constraints. The other RT-SVFS algorithms proposed
in previous papers can not be compared since they can not
guarantee the schedulability in higher utilization.

6.1. Simulation Setup

We evaluate the average Power of 1000 tasksets for each
taskset’s utilization in the range [0.5,4.0] at intervals of 0.25
on four processors. Each taskset with the target utilization
U is generated as follows. We first assume that the taskset
is empty. Then we push a task into the taskset until U is
satisfied. Each task Ti is generated with the period pi in the
integer range [1, 100] and the execution time ci in the inte-
ger range [1, pi]. Consequently the tasks have identically-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Po
w

er

Taskset utilization

DecideFrequency
Exhaustive

NoVFScaling
bound

Figure 9. Power on System 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Po
w

er

Taskset utilization

DecideFrequency
Exhaustive

NoVFScaling
bound

Figure 10. Power on System 2.

distributed utilization. If the utilization of the taskset be-
comes over U , then we discard the last task and generate
the new task which satisfies U . Finally Power is calculated.

6.2. Simulation Results

Figures 9, 10, and 11 show the results for each system.
The figures represent system utilization U/M on the hori-
zontal axis and Power on the vertical axis. The maximum
differences between DecideFrequency and Exhaustive are
0.172 at system utilization 0.8125 on System 1, 0.165 at
system utilization 0.875 on System 2, and 0.043 at system
utilization 0.9375 on System3. Namely DecideFrequency
closely approaches the lower bound on energy consumption
since DecideFrequency is optimal theoretically.

There exist some points at which the difference is smaller
than at circumjacent points such as at system utilization
0.75 on System 1, and at system utilization 0.75 and 0.8125
on System 2 because we can select the frequency close to α

29

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 15:05 from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Po
w

er

Taskset utilization

DecideFrequency
Exhaustive

NoVFScaling
bound

Figure 11. Power on System 3.

such as 0.75 on System 1, and, 0.75 and 0.83 on System 2,
where α represents selectable one of frequencies shown in
Table 1. Namely it is highly possible that energy consump-
tion is minimized if the system utilization U/M is designed
to be close to α.

7. Conclusions and Future Work

In this paper, we present two real-time static voltage and
frequency scaling (RT-SVFS) techniques for multiproces-
sors. Uniform one is optimal both theoretically and practi-
cally. On the other hand, independent one is optimal only
theoretically; however it can solve the problem in polyno-
mial time, while the exhaustive algorithm is NP-hard. Real-
time dynamic voltage and frequency scaling (RT-DVFS) is
a topic for the future work for more energy efficiency.

References

[1] J. H. Anderson and A. Srinivasan. Early-Release Fair
Scheduling. In Proc. of the 12th Euromicro Conference on
Real-Time Systems, pages 35–43, June 2000.

[2] B. Andersson and E. Tovar. Multiprocessor Scheduling with
Few Preemptions. In Proc. of the 12th IEEE International
Conference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 322–334, Aug. 2006.

[3] H. Aydin and Q. Yang. Energy-Aware Partitioning for Multi-
processor Real-Time Systems. In Proc. of the 17th IEEE In-
ternational Parallel and Distributed Processing Symposium,
pages 22–26, Sept. 2003.

[4] T. P. Baker. An Analysis of EDF Schedulability on a Mul-
tiprocessor. IEEE Transactions on Parallel and Distributed
Systems, 16(8):760–768, Aug. 2005.

[5] T. D. Burd and R. W. Brodersen. Energy Efficient CMOS
Microprocessor Design. In Proc. of the 28th Annual Hawaii
International Conference on System Sciences, pages 288–
297, Jan. 1995.

[6] J.-J. Chen and T.-W. Kuo. Allocation Cost Minimization
for Periodic Hard Real-Time Tasks in Energy-Constrained
DVS Systems. In Proc. of the IEEE/ACM International Con-
ference on Computer-Aided Design, pages 255–260, Nov.
2006.

[7] H. Cho, B. Ravindran, and E. D. Jensen. An Optimal Real-
Time Scheduling Algorithm for Multiprocessors. In Proc. of
the 27th IEEE Real-Time Systems Symposium, pages 101–
110, Dec. 2006.

[8] H. Cho, B. Ravindran, and E. D. Jensen. Synchronization for
an Optimal Real-Time Scheduling Algorithm on Multipro-
cessors. In Proc. of the 2nd IEEE International Symposium
on Industrial Embedded Systems, pages 9–16, 2007.

[9] K. Funaoka, S. Kato, and N. Yamasaki. Real-Time Static
Voltage Scaling on Multiprocessors. In Proc. of the 19th
IASTED International Conference on Parallel and Dis-
tributed Computing and Systems, pages 142–149, Nov.
2007.

[10] S. Gochman, R. Ronen, I. Anati, A. Berkovis, T. Kurts,
A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine. The
Intel Pentium M Processor: Microarchitecture and Perfor-
mance. Intel Technology Journal, 7(2):21–36, May 2003.

[11] P. Holman and J. H. Anderson. Adapting Pfair Scheduling
for Symmetric Multiprocessors. Journal of Embedded Com-
puting, 1(4):543–564, May 2005.

[12] C. H. Lee and K. G. Shin. On-Line Dynamic Voltage Scal-
ing for Hard Real-Time Systems Using the EDF Algorithm.
In Proc. of the 25th IEEE Real-Time Systems Symposium,
pages 319–335, Dec. 2004.

[13] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environment.
Journal of the ACM, pages 46–61, Jan. 1973.

[14] J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia. Worst-
Case Utilization Bound for EDF Scheduling on Real-Time
Multiprocessor Systems. In Proc. of the 12th Euromicro
Conference on Real-Time Systems, pages 25–33, June 2000.

[15] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scal-
ing for Low-Power Embedded Operating Systems. In Proc.
of the ACM Symposium on Operating Systems Principles,
pages 89–102, 2001.

[16] D. Shu, R. Melhem, and B. R. Childers. Scheduling with
Dynamic Voltage/Speed Adjustment Using Slack Reclama-
tion in Multiprocessor Real-Time Systems. IEEE Transac-
tions on Parallel and Distributed Systems, 14(7):686–700,
July 2003.

[17] A. Srinvasan, P. Holman, and J. Anderson. Integrating Ape-
riodic and Recurrent Tasks on Fair-scheduled Multiproces-
sors. In Proc. of the 14th Euromicro Conference on Real-
Time Systems, pages 19–28, 2002.

[18] J. A. Stankovic, C. Lu, and S. H. Son. The Case for Feed-
back Control Real-Time Scheduling. In Proc. of the 11th
Euromicro Conference on Real-Time Systems, pages 11–20,
June 1999.

[19] C. Xian, Y.-H. Lu, and Z. Li. Energy-Aware Scheduling
for Real-Time Multiprocessor Systems with Uncertain Task
Execution Time. In Proc. of the 44th ACM/IEEE Design
Automation Conrefence, pages 664–669, 2007.

30

Authorized licensed use limited to: University of Florida. Downloaded on March 24, 2009 at 15:05 from IEEE Xplore. Restrictions apply.

