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ABSTRACT

We propose a new method for defragmenting the mod-
ule layout of a reconfigurable device, enabled by a novel
approach for dealing with communication needs between
relocated modules and with inhomogeneities found in
commonly used FPGAs. Our method is based on dy-
namic relocation of module positions during runtime,
with only very little reconfiguration overhead; the ob-
jective is to maximize the length of contiguous free
space that is available for new modules. We describe
a number of algorithmic aspects of good defragmen-
tation, and present an optimization method based on
tabu search. Experimental results indicate that we can
improve the quality of module layout by roughly 50%
over static layout. Among other benefits, this improve-
ment avoids unnecessary rejection of modules.

1. INTRODUCTION

1.1. Reconfiguration and Communication

FPGAs suffer from a significant area overhead (mon-
etary cost), a higher power consumption, or a speed
penalty as compared to ASIC solutions [1]. Partial run-
time reconfiguration is an applicable technique to over-
come these issues. By loading just the required modules
to an FPGA at runtime, it is possible to build smaller
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systems, and thus, less power-hungry devices. For in-
stance, an embedded system may start up with some
boot-loader and test modules. These modules may be
exchanged by a crypto-accelerator to speed up the au-
thentication process of the user. Later, different mod-
ules will be loaded to the FPGA by partial runtime
reconfiguration with respect to the user demand or the
state of the system. Note that a lot of systems provide
mutual exclusive functionality (e.g., the record or the
play mode of a multimedia device) that is suitable to
share some FPGA resources at runtime.
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Figure 1: Dynamically reconfigurable system. The sys-
tem shares some logic tiles l and memory tiles m among
a set of modules within the dynamic part of the system.
Some modules require a memory tile at a fixed offset
with respect to the start position within the modules
(e.g., the third tile of module1 is a memory tile).

However, in order to take more benefit from run-
time reconfiguration, such systems should be able to
provide the reconfigurable resources in a very flexible
way to the modules. Most related work is based on the
assumption that a reconfigurable area is used exclu-
sively by one partially reconfigurable module (e.g., [2])
at a point of time. Thus, such approaches do not allow
exchanging a large module with multiple smaller ones.
This originates from a lack of adequate communication
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techniques suitable to connect multiple partially recon-
figurable modules within the same resource area to the
rest of the system.

However, [3] introduces a system that provides a bus
based communication for integrating up to 16 partially
reconfigurable modules into one large resource area that
is divided into 16 individual tiles. Another approach
for efficient reconfigurable buses [4] demonstrates that
high placement flexibility, low resource overhead, and
high throughput can be achieved at the same time. In
[5] these authors present a system with a reconfigurable
area partitioned into 60 tiles, each being capable to con-
nect a tiny 8 bit module over a so-called ReCoBus to
the system. In this system, larger interfaces or modules
could be implemented by combining multiple adjacent
tiles together (e.g., 4 tiles are required for building a
32 bit interface). In addition, this system can link I/O
pins to the partially reconfigurable modules.

When using such systems, an efficient resource man-
agement becomes necessary. One problem that has to
be solved at runtime is the fragmentation of the tiles
due to the time variant execution of some modules on
the same resource area. For FPGAs available from the
Xilinx Inc., which are best suitable to build dynam-
ically partial reconfigurable systems, the tiles will be
vertically aligned column by column (Fig. 1). A mod-
ule requiring multiple tiles to implement its logic will
demand an according consecutive adjacent set of tiles
without gaps. This problem is discussed in this paper.

1.2. Dynamic Storage Allocation: Old and New

The ever-increasing capabilities of modern reconfigu-
rable devices give rise to a large number of new chal-
lenges; solving one of them in turn gives rise to new
possibilities and challenges. As described above, there
are new solutions for dealing with the communication
of relocated devices; this opens up new possibilities for
dynamic relocation of modules. The resulting chal-
lenge is the dynamic allocation of module requests to
a reconfigurable device: given an array-shaped device
(e.g., a column-by-column reconfigurable Xilinx Virtex-
II FPGA) and a sequence of module requests of vary-
ing resource requirements (e.g., logic tiles or memory
blocks), assign each module to a contiguous set of slots
on the device. (See Fig. 2(a).)

At first glance, this problem has a striking resem-
blance to one of the classical problems of computing:
dynamic storage allocation considers a memory array
and a sequence of storage requests of varying size, look-
ing for an assignment of each request to a contiguous1

1Note that this part of the comparison refers to classical re-
search; of course modern storage devices place virtual memory
blocks on discontiguous physical space, at the expense of extra
overhead for the pointer structures. This approach for allocating

Figure 2: Dynamic storage allocation: (a) Each mod-
ule occupies a contiguous block of array positions. (b)
Moving a module to a new position in order to increase
maximum free space.

block of memory cells, such that the length of each block
corresponds to the size of the request. Once this allo-
cation has been performed, it is static in space: after
a block has been occupied, it will remain to be fixed
until the corresponding data is no longer needed and
the block is released. As a consequence, a sequence of
allocations and releases can result in fragmentation of
the memory array, making it hard or even impossible
to store new data.

Over the years, a large variety of methods and re-
sults for allocating storage have been proposed. The
classical sequential fit algorithms, first fit, best fit, next
fit and worst fit can be found in [6] and [7].

Buddy systems partition the storage into a number
of standard block sizes and allocate a block in a free
subinterval of the smallest standard size sufficient to
contain the block. Differing only in the choice of the
standard size different, buddy systems are proposed in
[8, 9, 10, 11, 12, 6]. Newer approaches that use cache-
oblivious structures for allocating space in memory hi-
erarchies include [13, 14].

There are three notable differences between the dy-
namic allocation of modules to a reconfigurable device
and dynamic storage allocation:

1. Using pointers for creating virtual contiguous free
blocks is not an option for the placement of mod-
ules.

2. In contrast to uniform memory, the reconfigurable
device may contain inhomogeneities (e.g., mem-
ory tiles).

3. It is possible to relocate modules on a reconfig-
urable device during runtime, even before a mod-
ule’s lifetime has expired.

There is a certain amount of related work from within
the FPGA community. Becker et al. [15] present a
method for enhancing the relocability of partial recon-
figurability of partial bitstreams for FPGA runtime con-
figuration, with a special focus on heterogeneities. That

discontinuous space is not possible for placing the modules on a
reconfigurable device, which is the challenge faced by this paper.
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work studies the underlying prerequisites and technical
conditions for dynamic relocation. Another relevant ap-
proach was presented by Compton et al. [16]; see also
Koch et al. [17]. These papers do not consider the algo-
rithmic implications and how the relocation capabilities
can be exploited to optimize module layout in a fast,
interruption-free, no-break fashion, which is what we
consider in this paper. Our approach is significantly dif-
ferent from traditional garbage collection, which would
require a freeze of the layout, an offline computation
of the new layout, and a complete reconfiguration of
all modules. Instead, we just copy one module at a
time, and simply switch the running computations to
the new module when the move is complete. This leads
to no-break, dynamic defragmentation of module lay-
out, resulting in much better utilization of the space
available for modules.

The rest of this paper is organized as follows. In the
following Section 2 we will give a description of the un-
derlying model, giving rise to the problem description in
Section 3. As it turns out, solving the corresponding op-
timization problem is NP-hard, as shown in Section 4;
however, for moderate module density, it is still possi-
ble to compute optimal results, as shown in Section 5.
For higher densities, we develop a heuristic optimiza-
tion method, based on tabu search and described in
Section 6. Experimental results for a Xilinx Virtex-II
device are presented and discussed in Section 7. Con-
cluding thoughts are presented in Section 8.

2. SCENARIO AND MODEL
When modules are relocated for defragmentation, we
have to distinguish between only moving the module
configuration, and the configuration and the internal
state. In the first case, we just make a copy of the
reconfiguration data to the new position and start the
next computation on the module at the new position (
e.g., a discrete cosine transformation on the next frame
in a video system). In the second case, both modules
have to be interrupted and the state (represented by all
internal flip-flop and memory values) will be copied to
the target module. As compared to the reconfiguration
process, the state copying can be performed with short
interruption when using hardware-checkpointing [18].

If we would allow overlapping regions for the defrag-
mentation, e.g., the source and the target module may
overlap, the interruption time will dominate the recon-
figuration process, because we have to copy the routing
information and logic settings in addition to the state.
As a consequence, we will prevent our defragmentation
algorithms to use overlapping regions to place modules.

A further aspect we consider is that common FP-
GAs typically provide logic tiles l and memory tiles m,
as demonstrated in Fig. 1. The placement of a module

within the reconfigurable resource area on the FPGA
must fit exactly to the particular module. The require-
ment of a module can be modeled as a string and the
search of a valid placement position is then a string
matching problem in the reconfigurable resources pro-
vided by the dynamic part of the system. This restricts
the possible module start positions, and the number of
free tiles is not sufficient to determine whether a module
can be placed. For instance, module1 in Fig. 1 has the
resource requirement l l m l l and can be placed only at
the positions A, H, and O, which are currently occupied
by the modules module2 and module3. In the example,
the system has 12 free logic tiles and 2 free memory
tiles, but we are currently not able to place module1,
which requires just 4 logic tiles and 1 memory tile, on
the FPGA.

3. PROBLEM DESCRIPTION
In this paper, we consider a reconfigurable device that
allows allocating modules in a contiguous manner on
an array L of length �; modules will be denoted by
M1, . . . , Mn. A module Mi placed in the array occupies
a contiguous subinterval, denoted by LMi . Modules are
always placed such that LMi ∩ LMj = ∅ for i �= j, i. e.,
two different modules do not overlap.

Modules placed in the array divide L into sections
that are occupied by a module and sections that are
not occupied; the latter are called free intervals. Re-
configuration allows us to relocate a module Mi of size
mi from subinterval LMi to a new position within a free
interval LM of length m within the array, provided that
the following two conditions are fulfilled:

• LM ∩⋃n
i=1 LMi = ∅

• m ≥ mi.

Note that the first condition implies that LM and
LMi are not allowed to intersect, i. e., the subinterval
occupied by Mi before the move and the new subinter-
val have to be disjoint. Furthermore, it ensures that
the new position is not occupied by any other module.
The second condition ensures that there is sufficient free
space to provide a new position for the module.

Now the Maximum Defragmentation Problem (MDP)
asks for a sequence of relocation moves, such that the
resulting connected free space is as large as possible.

4. PROBLEM COMPLEXITY
In this section, we state two complexity results: one
for deciding whether one contiguous free block can be
formed, and one for the maximization version of the
defragmentation problem. We show that the decision
version is strongly NP-complete and that no approx-
imation algorithm with a useful approximation factor
exists for the maximization version.
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Figure 3: (Top) Reducing 3-Partition to the MDP. (Bottom) Sketch of the inapproximability proof.

The 3-Partition Problem is the main ingredient of
the reduction. It belongs to the class of strongly NP-
complete and can be stated as follows [19]:

Given: A finite set of 3k elements C1, . . . , C3k with
sizes c1 . . . , c3k, a bound B ∈ N such that ci satisfies
B
4 < ci < B

2 for i = 1, . . . , 3k and
∑3k

i=1 ci = kB.
Question: Can the elements be partitioned into

k disjoint sets S1, S2 . . . , Sk such that for 1 ≤ i ≤ k,∑
Cj∈Si

cj = B?
Because the ci are lower bounded by B

4 and upper
bounded by B

2 , each set Sj contains exactly three ele-
ments. We state our complexity result:

Theorem 1. The Maximum Defragmentation Prob-
lem with free spaces F1, . . . , Fk is strongly NP-complete;
moreover, the problem does not allow any determinis-
tic polynomial-time approximation algorithm within any
polynomial approximation factor, unless P=NP.

Proof. Given an instance of the 3-Partition problem
with input c1 . . . , c3k, we construct an instance of the
MDP in the following way: we place 3k modules M1, . . . ,
M3k with mi = ci, 1 ≤ i ≤ 3k, side by side, starting at
the left end of L. Then starting at the right boundary
of M3k we place k + 1 modules of size kB + 1, alter-
nating with k free spaces of size B. We denote these
modules by M3k+1 to M4k+1 and the free spaces by F1

to Fk. Fig. 3(Top) shows the overall structure of the
constructed instance. Now we ask for the construction
of a free space of size K = kB. Because the size of
the total free space is equal to kB, none of the modules
M3k+1, . . . , M4k can ever be moved. Hence, the only
way to connect the total free space is to move the mod-
ules M1 to M3k to the free spaces. But any solution
of this kind implies a solution to the given 3-Partition
instance.

This construction can also be used to establish the
claimed inapproximability result: as can be seen from
Fig. 3 (b), the gap between the possible solution values
in case of existence and nonexistence of a 3-Partition
can be made arbitrarily big.

5. MODERATE DENSITY

In this section, we consider a special case in which the
MDP can be solved with linear computing time and at
most 2n moves. We define for an array L of length �
the density to be δ = 1

�

∑n
i=1 mi. We show that if

δ ≤ 1
2
− 1

2�
· max
i=1,...,n

{mi} (1)

the total free space can always be connected with 2n
steps by Algorithm 1:

Algorithm 1: LeftRightShift
Input: A array L with n modules M1, . . . , Mn

such that (1) is fulfilled.
Output: A placement of M1, . . . , Mn such that

there is only one free space at the left
end of L.

for i = 1 to n do1

Shift Mi to the left as far as possible.2

end3

for i = n to 1 do4

Shift Mi to the right as far as possible.5

end6

We need the following two observations for proving
the correctness of Algorithm 1. Both follow immedi-
ately from the definition of the density and from (1); in
the following, fi denotes the size of Fi.

k∑

i=1

fi ≥ l

2
+

1
2
· max
i=1,...,n

{mi} (2)

δ <
1
2

and therefore
n∑

i=1

mi <

k∑

j=1

fj (3)

Theorem 2. Algorithm 1 connects the total free space
with at most 2n moves and uses O(n) computing time.

Proof. The number of shifts and the computing time
are obvious. We will show that at the end of the first
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Figure 4: (Left to right) Size of the maximal free space before and after defragmentation using our heuristic and
a simple greedy approach in an array with no heterogeneities. Size of the maximal free space before and after
defragmentation of the Virtex-II FPGA. Number of free space before and after defragmentation in an array with
no heterogeneities. Number of free spaces before and after defragmentation of the Virtex-II FPGA.

loop, the rightmost free space is greater than any mod-
ule and therefore all modules can be shifted to the right
in the second loop.

Let F1, . . . , Fk denote the free spaces in L at the
end of the first loop. Then every Fi, i ∈ {1, . . . , k − 1}
is bounded to the right by a module Mj with mj > fi
(otherwise mj could be shifted). If this would hold for
Fk as well, we could conclude that

∑k
i=1 fi <

∑n
i=1 mi,

which contradicts (3). Hence, there is no module to the
right of Fk and we get with m� = max1,...,n{mi}

l

2
+

1
2
m�

(2)

≤
k∑

i=1

fi <

n∑

i=1

mi + fk
(1)

≤ l

2
− 1

2
m� + fk

implying m� < fk.

6. A HEURISTIC METHOD
We implemented a standard tabu search with a tabu list
of length n

2 . In every iteration all homogeneous mod-
ules Mi are moved to the left end and the right end
of the free subintervals that are greater than or equal
to mi. All inhomogeneous modules are moved to any
feasible position. Each move is evaluated by a fitness
function that divides the size of the maximal free space
by the size of the total free space. The move yield-
ing the configuration with the highest fitness is chosen.
Ties are broken by choosing the first one. The resulting
configuration is added to the tabu list.

If the current solution is the best one found so far
it is stored. The heuristic ends if either a fitness of 1.0
(i.e., optimality) is achieved or 2n2 iterations have been
performed. There are instances where O(n2) moves are

necessary; see [20] for details. Moreover, we conjecture
that the number of necessary moves is in Θ(n2).

7. EXPERIMENTAL RESULTS

We performed experiments on two different arrays, both
having 94 slots. The first array does not contain any
heterogeneities, while the second one is the Virtex-II
FPGA with heterogeneities at positions 3, 24, 45, 50,
71, and 82. Moreover, we compared our heuristic with
a simple greedy approach which moves every module to
the most promising position (i.e., to the position where
the ratio of the size of the maximal free space and the
size of the total free space is maximal).

Generating the input was done in two steps, de-
pending on the size of the maximal free subinterval F �.
In the first step the module size is chosen with equal
probability from the set {1, . . . , f�}. This ensures that
the modules can be inserted. The exact position is cho-
sen again with equal probability among all feasible po-
sitions inside F �. If the subinterval occupied by the
module contains an heterogeneity, this heterogeneity is
assigned to the corresponding position of the module.
The size of the first module is shrunken by a factor of
0.6 in order to ensure that it can be moved.

For the density ranging from 0.3 to 0.9 with steps
of size 0.05 we performed 100 runs of the tabu search
for each value and took the average value of the num-
ber of free subintervals and the size of the maximal free
subinterval. The results are show in Fig. 4. The left
diagrams show the size of the maximal free space of
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the array before the defragmentation and the size af-
terwards. In the array with no heterogeneities there is
an improvement of up to 40%. On the Virtex-II FPGA
the size of any maximal free space is limited to 20 slots
due to the heterogeneities. For a density of less the 1

2
the tabu search achieves this upper bound for almost all
instances. For larger densities it achieves an improve-
ment of approximately 35%.

The change in the number of free spaces before and
after defragmentation is displayed in the right charts
of Fig. 4. In the array with no heterogeneities there is
an increase of 50%. For the Virtex-II FPGA there is
almost no improvement for low densities (less then 1

2 )
and an improvement of approximately for larger ones.

8. CONCLUSION

In this paper we have presented a new approach for
defragmenting the module layout on a dynamically re-
configurable device in a no-break fashion. Obviously,
improved algorithmic results can lead to further im-
provements. One of the possible extensions considers a
more controlled overall placement of modules, instead
of simply fixing fragmentation. As the necessary al-
gorithmic methods are more involved, we leave this to
future work.
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