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ABSTRACT

While there have been many reported implementations of
Networks-on-Chip (NoCs) on FPGAs, they have not seen
the same acceptance as NoCs on ASICs. One reason is
that communication on an FPGA is already costly due to
the die resources and time delays inherent in the recon-
figurable structure. Layering another general-purpose net-
work on top of the reconfigurable network simply incurs
too many performance penalties. There is, however, already
a largely unused, global network available in FPGAs. As
a proof-of-concept, we demonstrate that the Xilinx FPGA
configuration circuitry, which is normally idle during sys-
tem operation, can function as a relatively high-performance
NoC. MetaWire performs transfers through an overclocked
Virtex-4 Internal Configuration Access Port (ICAP) and is
shown to provide a bandwidth exceeding 200 MBytes/sec.

1. INTRODUCTION

An FPGA’s ability to implement efficient application- and
algorithm-specific computational structures is as much due
to abundant, custom routing as to configurable logic, arith-
metic and memory blocks. This is both a great strength of
the technology and a great burden for the designer. The per-
formance of architectures with less flexible routing, such
as course-grained reconfigurable arrays and multicore pro-
cessors, is more often limited by communication bottle-
necks than insufficient computational resources. Network-
on-Chip (NoC) offers designers less complexity at the ex-
pense of less flexibility. While this tradeoff has seen suc-
cess in the ASIC community, NoC implementations in pro-
grammable logic have not received widespread use. One
reason is that an NoC, implemented on top of the recon-
figurable routing of the FPGA, places one general-purpose
routing layer on top of another general-purpose routing
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layer; the resulting resource and performance overheads rep-
resent a level of inefficiency not typically accepted in hard-
ware designs.
There is a need, however, to manage the complexity and

performance requirements of increasingly large FPGA de-
signs, a task that is increasingly difficult given the cur-
rent approach to communication on FPGAs. A reason-
able approach is to combine current FPGA routing archi-
tectures with NoC, mapping communication within a hard-
ware block to the routing architecture and communication
between blocks to the NoC. Data transfers within a hardware
block are often single-word transactions, while high-level
communication between blocks tends to transfer buffers,
lines, packets or frames. We propose that the configuration
circuitry on an FPGA is well-suited to use as a NoC because
it is a global, addressable high-speed network that is cur-
rently underutilized. As a proof-of-concept, we demonstrate
that the existing configuration circuitry on a Xilinx FPGA
can be used as a high-speed NoC, achieving an aggregate
speed of over 200 MBytes/sec. We further show that an ap-
plication can multiplex node-to-node communication links
over this NoC. We then point out modifications that can be
made to this configuration circuitry that will improve perfor-
mance and usability without devoting significant resources.
In Section 2, we survey related work. Section 3 gives

a design overview of the MetaWire controller with the im-
plementation and testing described in Section 4. A demon-
stration in a signal processing application is given in Sec-
tion 4.4. Conclusions are drawn in Section 5.

2. PRIORWORK

Typical networks, such as multiprocessor shared memory
systems, inter-chip networks, and LANs, are limited in the
number of pins on their connectors, and hence the number
of wires per link. To compensate, large buffers are imple-
mented in the nodes of these networks to handle the re-
assembling of smaller width data. The constraints are re-
versed for NoCs [2]. The number of wires per link is much
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less restricted, allowing for faster and wider link transfers,
but silicon area for buffers becomes a large concern. In
addition, power and network reliability become important.
Network links are predicted to dominate NoC power dis-
sipation, requiring four times as much power compared to
NoC logic [1]. Communication between cores in a chip can-
not tolerate errors or dropped packets because cores are de-
signed with the assumption that communication is error-free
when using traditional wires. Another interesting character-
istic of NoC is that all network objects (routers and network
interfaces), can be synchronized together, due to the small
area of the network. Global synchronization allows for rout-
ing algorithms that guarantee throughput and latency per-
formance of network traffic [5, 3]. NoCs are also scalable
in that additional links, routers and network interfaces can
be added without changing the electrical properties of an
existing NoC. This is especially true when networks have
allocated space in a layout. Such is the case in NoCs where
logic cores reside in rectangular areas, with network links
and routers placed between edges of adjacent logic cores.
To reduce the penalties of FPGA interconnect scaling,

Fong proposed the concept of “wire emulation” as a means
for cross-chip communication in Xilinx FPGAs [4]. Com-
munication between cores is realized through packetized
data, replacing the dedicated wiring and buses once re-
quired. Logical channels can be established on the network
to describe a collection of dedicated wires or buses. Wire
reuse is an advantage of packet communication over dedi-
cated wiring schemes because multiple logical channels can
be transmitted over the same network link. Fong demon-
strated how two or more cores can communicate within a
Virtex-II FPGA without FPGA programmable interconnects
between them. These data transfers are accomplished us-
ing self-reconfiguration, which is a combination of configu-
ration memory readback and partial-reconfiguration of dis-
tributed RAM blocks. The self-reconfiguration driver, con-
sisting of ICAP control and debug logic, consumes 7 percent
of the total resources in an XC2V1000-4 FPGA. Data trans-
fer throughput was measured to be 11.1 MBytes/sec from
one source to one destination.

3. METAWIRE FRAMEWORK

MetaWire extends the approach taken in Fong’s work with
an emphasis on robustness and applicability, as well as
by exploring the advancements offered by current and fu-
ture FPGA architectures. The Virtex-4 family introduces
an ICAP supporting higher bandwidth than that of Virtex-
II/Pro. Additional bandwidth gain results from changes in
the configuration fabric which permit the use of BRAM in-
stead of distributed RAM as the readback/configuration tar-
get. Lastly, configuration frames in Virtex-4 and Virtex-5
span a fraction of the full device height, allowing the de-
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Fig. 1. Abstract MetaWire application.

signer to dedicate fewer RAM resources to communication
and locate those resources more flexibly.
Whereas Fong’s prototype was demonstrated with a sin-

gle point-to-point link (single-sourcemulticast was modeled
but not implemented), MetaWire’s objective is to distribute
the bandwidth of the ICAP across any number of point-to-
point links. No provision was made in Fong’s work for rate
negotiation and interfacing with functional blocks, and the
prototype was not demonstrated in the context of an applica-
tion. Testing was performed on the basis of manually initi-
ated transfers consisting of one readback/configuration, and
data errors were not resolved. In contrast, MetaWire has
been developed for sustained data transfer suitable for inte-
gration in streaming applications.
As Figure 1 illustrates, a link consists of two MetaWire

Interfaces (MWIs): a transmitter and a receiver. MWIs may
attach to a functional block or to a traditional wired link.
The central MetaWire Controller (MWC) fulfills three roles:
interfacing with the ICAP, multiplexing the configuration
fabric’s bandwidth, and providing up- and downstream flow
control for each link. Whereas the data are moved “wire-
lessly” from transmitter to receiver, a small number of low-
bandwidth, wired handshaking signals connect each MWI
to the MWC. These signals allow the controller to support
independent, time-varying data rates across each link.
The objective of MetaWire is to explore the limits of the

FPGA configuration fabric in an active, data-transfer role;
there are a number of refinements that could be made to the
framework presented here. The hardware in the following
sections is defined in Verilog.

3.1. Interface Units

The responsibility of a transmitting MWI, illustrated in
Figure 2, is to collect data from the wired domain and
store it to a set of BRAMs which form the transmitting
RAM (TXRAM). Because data that are stored in a Virtex-
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4 BRAM via user-circuit ports are immediately reflected
in the frames obtained from readback, the TXRAM serves
as the data’s entry point into the FPGA configuration fab-
ric. When a transmitting MWI has accumulated a unit
of data, termed a block, it notifies the MWC by assert-
ing blockExists. The MWC performs readback via
the ICAP and responds by pulsing blockRead, inform-
ing the transmitter that the next block may be written to the
TXRAM. The bufWriteProhibit control is a global
signal requesting all MWIs to suspend writing to TXRAM,
which accommodates certain conflicts between the configu-
ration plane and user circuits (see Section 4.1).
Figure 2 also shows the receiving MWI’s structure.

Frames loaded into a BRAM via active partial configura-
tion immediately update the BRAM’s contents, allowing the
MWI’s RXRAM to act as the data exit point from the con-
figuration plane into the wired domain. The control signals
spaceExists and blockWrite indicate that the MWI
can accept a block and that the MWC has just written a
block, respectively.
To fit the maximum data payload into each configura-

tion frame, the RXRAM and TXRAM utilize all four ver-
tically adjacent BRAMs (termed a cluster) that share a row
of frames in Virtex-4, as shown in the figure. The size
of a data block is defined by the number B of contiguous
configuration frames within a cluster, which are transferred
from MWI to MWI in an atomic operation. Parameter B
is a system-wide constant defined at compile time, and may
range from 1 frame to 64 frames (the width of one BRAM
column). Blocks are treated as unstructured arrays of 16-bit
words, with no packet-like header; however, the MWIs and
MWC could, as an alternative to the fixed, point-to-point
model, support a destination address field in each block,
providing application-level access to the frame-addressable,
switch-like capability of the underlying configuration fabric.

blockExists[0]
spaceExists[0]

ICAP Transfer

Core

Block

Buffer

sourceFA

destFA

nFrames

startWrite

ready

readDone

writeDone

Frame Address ROM

Command

ROM

startRead

Scheduler &

Misc. Control 

Logic

Src FA Link 0

Src FA Link 1

Src FA Link N−1

Dest FA Link 0

Dest FA Link 1

Dest FA Link N−1

.  .  .

blockExists[1]
spaceExists[1]

blockExists[N−1]
spaceExists[N−1]

.  .  .

blockRead[0]

blockWrite[0] .  .  .

i

bufWriteProhibit

Frame

Processing

ICAP

Fig. 3. MetaWire Controller.

3.2. Controller

As shown in Figure 3, the central component of the con-
troller is the ICAP Transfer Core, which performs a read-
back ofB frames, stores them in a local buffer, then executes
a partial configuration consisting of these frames. Readback
and configuration are performed using the specified source
and destination frame addresses (FAs), which denote the
physical locations of the TXRAM and RXRAM. FAs are
used generically by the configuration circuitry to identify
the type and location of every resource in the FPGA.
A ROM within the Transfer Core stores the sequence of

configuration commands which must be issued to the device
to initiate and conclude every readback and configuration
[7]. These commands include specifying the type of opera-
tion to perform (readback or configuration), the starting FA
for the operation, and the amount of data to readback or con-
figure. Writing these commands, along with the requirement
to read and write a certain amount of flush data, constitute
overhead in the transfer process.
Frame processing logic performs two types of opera-

tions on readback data: turning off the four save-data bits
found in each BRAM frame, and conditional frame rever-
sal. The save-data bits (which are always asserted in read-
back frames) indicate that existing data in the bit’s respective
BRAM should not be overwritten by the new frame. Frame
reversal accounts for the fact that frames in the upper and
lower halves of a Virtex-4 FPGA are bitwise reversed with
respect to one another [7].

3.3. ICAP Utilization and Link Scheduling

The MetaWire architecture provides maximum aggregate
bandwidth when the ICAP experiences minimum idle time.
Figure 4 illustrates the events within the Controller and
MWIs when the ICAP sees full utilization, in this case ex-
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ecuting two block transfers on Link A, separated by one
transfer on Link B. The purpose of the FIFOs, evident in
the figure, is to permit the functional blocks at the links’
end-points to consume and produce data steadily, without
the need to be periodically halted—reducing a functional
block’s effective throughput—while waiting for the Con-
troller to empty or fill the RXRAM or TXRAM.
In anN -link system, the Controller allocates block trans-

fers in a simple round-robin fashion, sequentially scanning
the status of each link. When the scheduler determines that
link i meets the readiness condition, blockExists[i]
AND spaceExists[i], the Transfer Core moves one
block across link i, after which the scheduler resumes the
scan at link (i + 1) mod N , thereby preventing a starva-
tion condition. (When N = 1, readback must begin before
spaceExists[i] is asserted in order to achieve full uti-
lization.)

3.4. Performance Model

If the overhead introduced by the scheduler and the ex-
change of handshaking signals is neglected, MetaWire’s ag-
gregate throughput T is obtained from the number of pay-
load bytes in one block, (PL·B), divided by the time needed
to transfer one block. Table 1 describes the parameters in
Equation 1 and gives their values in the current implemen-
tation.

T =
PL · B · f

WW
PW · (2 · FL · B + FD + C) + MC

(1)

The latency L is modeled as the time from when a trans-
mitting node asserts blockExists to when the receiving
node’s blockWrite is asserted. The expected throughput
and latency are plotted in Figure 5.

L =
WW
PW · (2 · FL · B + FD + C − WCC) + MC

f
(2)

Param. Description Value
B Block size (frames) 1 - 64
f Config. port clock frequency (MHz) 144
PW Config. port width (bytes) 4
WW Config. word width (bytes) 4
PL Payload per frame (bytes) 128
FL Config. frame length (words) 41
C Config. commands, total (words) 33
WCC Write conclusion cmds. (words) 1
FD Flush data, read + write (words) 84
MC Misc. wait and transition cycles 10

Table 1. MetaWire performance parameters.

4. IMPLEMENTATION

This section describes the challenges encountered in exploit-
ing the Virtex-4 configuration fabric, followed by verifica-
tion results and resource requirements. Finally, we present a
signal processing application.

4.1. ICAP Limitations

Limited documentation and tool support are available for
the ICAP. The following observations reflect our findings
with an XC4VLX60 part in speed grade 10 and “engineer-
ing sample” silicon revision. Because MetaWire’s use of
the configuration fabric steps outside Xilinx’s characteriza-
tion and documentation, it should be noted that the follow-
ing observations could conceivably vary even among chips
of identical part number, speed grade, and revision.
Overclocking the ICAP beyond Xilinx’s 100 MHz spec-

ification is possible. With the ICAP configured for 32-
bit width, reliable operation has been obtained at 48, 96,
and 144 MHz. Higher clock frequencies have not been at-
tempted.
The setup and hold times for the ICAP’s pins appear to be

uncharacterized by the ISE tools as of version 10.1. At 96
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MHz and higher, the ICAP Transfer Core worked intermit-
tently when placement was left up to ISE’s placer. Adding
placement-constrained registers between our logic and the
ICAP “pins” proved necessary to obtain stable performance.
The Virtex-4 Configuration Guide warns that BRAM

readback should not be performed while the user’s design
is accessing a BRAM [7]. While page limitations prohibit
a detailed description of the conflict scenarios we observed,
readback of a given BRAM cluster conflicts with user-circuit
reads and writes on the same cluster, as well as a limited
number of clusters elsewhere on the chip. In contrast, con-
figuration of a cluster only interferes with user-circuit access
to that cluster.

4.2. Integrity and Performance Verification

The targeted hardware platform includes a Virtex-4
XC4VLX60 part which connects via a shared bus to an
ARM9-based DaVinci processor from Texas Instruments. In
order to validate Equation 1, the on-chip testbench shown
in Figure 6 was developed to saturate and measure the
ICAP/MetaWire bandwidth, while at the same time verify-
ing data integrity.

Block size Texpected Tmeasured

(frames) (MBytes/sec) (MBytes/sec)
1 88.19 86.54
2 126.68 124.96
4 162.04 160.63
8 188.32 187.37
16 204.94 204.37
32 214.40 214.09
64 219.47 219.31

Table 2. Throughput measurements.

Resource TX MWI RX MWI MWC
Flip-flops 50 56 265
4-input LUTs 78 104 466
18-kbit BRAMs 5 5 4

Table 3. MetaWire resource requirements.

The test data source is a Direct Digital Synthesis (DDS)
core–a sinusoid generator–from Xilinx CoreGen. The core
produces 16-bit samples at a rate of up to one sample per
clock cycle, and an identical DDS acts as a reference for
sample-by-sample verification of the links. Flow control
synchronizes the reference DDS with the rate of the incom-
ing test data. The period of the sinusoid is a non-integer that
results in long runs of unique binary words.
Two or more concurrentMetaWire links are needed to sat-

urate the ICAP bandwidth. A single link proves inadequate
due to a 16-bit path between the FIFO and TX/RXRAM in
the MWI design. The ICAP and all test circuits are clocked
at 144 MHz, and the test runs indefinitely with zero data
errors. The results given in Table 2 are obtained from 25-
second tests with two links in series, and are shown with the
expected throughput from Equation 1. Positioning MWIs
at opposite ends of the chip has confirmed that, on the
XC4VLX60, performance is independent of link distance.
The measured ICAP utilization, an indicator of scheduler

and handshaking overhead, ranges from 98.1 percent (B=1)
to 99.9 percent (B=64). When the testbench is extended
to eight links in series, the same aggregate throughput and
utilization are measured, to the precision reported here. Data
transfer remains error-free. More than eight links have not
been tested due to placement constraints arising from the
conflicts described in Section 4.1.

4.3. Logic Resource Requirements

The logic overhead incurred by MetaWire is presented in
Table 3. These values represent the hardware when config-
ured for B equal to 32 frames, which dictates the size of the
frame buffer and hence the controller’s BRAM requirement.
Both MWIs use a 2 kByte (one BRAM) FIFO.
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4.4. AM Radio Application

In order to demonstrate compatibility with non-trivial func-
tional blocks in an application with real-time requirements,
we have applied MetaWire to the digital AM radio receiver
shown in Figure 7. This datapath, a very basic form of re-
ceiver, implements direct digital down-conversionof any de-
sired channel in the AM spectrum. While AM radio itself is
not an exciting application of modern FPGAs, the receiver
consists of common elements in software defined radios.

MetaWire is delegated three links of differing rates with a
combined throughput of 24.816 Mbytes/sec. The MetaWire
controller and the ICAP are clocked at 144 MHz, while the
remainder of the system, including the MWIs, is clocked at
96 MHz. ICAP utilization is observed to be 11.61 percent,
which agrees with the bandwidth load/capacity ratio for this
clock frequency and block size (B=32). The MetaWire
hardware, in concert with the other links, autonomously ne-
gotiates data flow; only the A/D converter and the audio
playback client define a data rate. Audio output is clear
and audibly indistinguishable from that of the reference re-
ceiver (in which MetaWire links are replaced by conven-
tional FIFO-based connections), suggesting error-free trans-
fer; see Section 4.2 for objective link verification.

Finally, to make a rough assessment of the power foot-
print of the configuration fabric, we evaluated the current
consumed by theMetaWire-based receiver and the reference
receiver, implemented with similar floorplanning. Power
consumption was measured to be 500 mW higher with
MetaWire, a 61 percent increase over the FPGA’s 822 mW
consumption with the reference design. In contrast, the in-
crease predicted by Xilinx’s XPower tool, which presum-
ably does not include the configuration fabric in its model,
is only 84 mW, a 10 percent increase.

5. CONCLUSIONS

MetaWire may benefit designs in which offloading long-
haul, streaming communication would alleviate local rout-
ing congestion. However, while page limitations prevent
a concrete assessment of congestion reduction, such net-
benefit scenarios are likely to be rare given the configura-
tion fabric’s modest bandwidth, which is currently orders of
magnitude less than the aggregate bandwidth offered by the
dense interconnect matrix in modern FPGAs. Nevertheless,
MetaWire may offer a solution to inter-module communica-
tion in reconfiguration flows that support dynamic module
instantiation and placement [6], by simplifying or eliminat-
ing run-time routing.
More significantly, MetaWire prompts the argument that

if a configuration fabric not intended for a role in data trans-
fer can offer the feasibility and performance demonstrated
here, a dedicated NoC fabric or a combined NoC and con-
figuration plane might yield an efficient layer of FPGA com-
munication hierarchy that would enhance silicon utilization
and reduce the compile times of large systems-on-chip. Im-
provements to the resource overhead, inter-node connec-
tivity, and system-wide bandwidth shown with MetaWire
would be achieved through extensions to existing configu-
ration architectures, such as support for direct, concurrent
frame transfers, and dedicated, cluster-local ports for flow
control signaling and destination address specification.
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