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ABSTRACT

Field-Programmable Gate Arrays (FPGAs) have gained wide ac-
ceptance among low- to medium-volume applications. However,
there are gaps between FPGA and custom implementations in terms
of area, performance and power consumption. In recent years, spe-
cialized blocks – memories and multipliers in particular – have
been shown to help reduce this gap. However, their usefulness has
not been studied formally on a broad spectrum of designs. As FP-
GAs are prefabricated, an FPGA family must contain members of
various sizes and combinations of specialized blocks to satisfy di-
verse design resource requirements. We formulate the family selec-
tion process as an ”FPGA family composition” problem and pro-
pose an efficient algorithm to solve it. The technique was applied
to an architecture similar to Xilinx Virtex FPGAs. The results show
that smart composition technique can reduce the expected silicon
area up to 55%. The benefit of providing multiplier blocks in FP-
GAs is also shown to reduce total area by 20% using the proposed
algorithm.

1. INTRODUCTION

Field-programmable gate arrays (FPGAs) have recently been widely
used in digital systems, especially for low- to medium-sized appli-
cations. However, it is well known and verified that the area effi-
ciency of FPGAs is about 35 times worse than that of the standard-
cell implementation [1]. Furthermore, their power consumption
is about 14 times higher. Recognizing that most applications im-
plemented on FPGAs use multipliers and memory units, contem-
porary FPGAs provide these specialized functional blocks. Since
density gains of specialized blocks could be up to two orders of
magnitude compared to the FPGA implementation, the area effi-
ciency gap could be significantly reduced if such blocks are well
utilized. Furthermore, power consumption reduces as a lot of pro-
grammable components are removed and circuits can be optimized.
There are several works dedicated to specialized blocks. Architec-
tural aspects have been studied in [2, 3, 4], to name a few. Mapping
tools supporting various specialized blocks have also been reported
[5, 6]. Although these papers showed promising results for special-
ized blocks, they did not consider the interaction between different
specialized blocks. As a result, effects of specialized blocks con-
sidering a large set of applications cannot be inferred.

Although widely ignored in the literature, a selected set of
FPGA sizes in a family affects the overall cost resulting from ex-
tra unused area. Thus, determining an appropriate set of FPGAs
that contain the right mix of resources is an important problem.

We call this problem ”FPGA family composition” in this paper.
It becomes even more important and more difficult for contempo-
rary FPGAs containing specialized blocks, especially with the fact
that FPGAs are entering more domains, hence requiring FPGA ar-
chitects to study more dedicated hardware types to be embedded
in FPGAs. FPGA family composition under the influence of spe-
cialized blocks is also considered in this paper. To the best of our
knowledge, this is the first time that the FPGA family composition
problem is formally studied.

Previous work on choosing an appropriate FPGA size has mostly
focused on first choosing a specific domain, and then selecting the
number of resources such as cross-bars, floating point units, etc.,
on the FPGA fabric. Simulated annealing (SA) and interger linear
programming (ILP) techniques were used for architecture explo-
ration [7, 8]. These approaches have two limitations : (1) SA and
ILP would take a very long time and depending on the mixture
of resources, SA might not even converge to a good solution. (2)
the set of ”representative” applications to be implemented by the
FPGA should be determined in advance. Thus, although the result-
ing architecture is well tuned for these representatives, it would not
necessarily provide good estimates on how the architecture would
perform if a new application from the same application domain is
mapped to the architecture [7]. Note that even though timing and
congestion can be estimated using floorplaning during architecture
exploration [8], the estimations are not accurate due to the lack of
detailed routing information. Furthermore, power consumption is
not considered because several important factors are not known [8].
This paper introduces a high-level architecture exploration which
considers all designs in the domain. The main objective is to min-
imize the total area by appropriately composing an FPGA fam-
ily. Even though timing and power consumption cannot be directly
captured in the process, they are generally reduced with the FPGA
area as a result of shorter connections. The technique can be used
in conjunction with the existing approaches to ensure that the re-
sulting architecture suitable for the selected representatives is also
reasonable for other designs.

The rest of the paper is organized as follows. First, mapping
from designs to FPGA functional blocks is discussed in Section 2.
Interaction among these blocks is also formalized in this section.
The FPGA family composition problem is formally stated in Sec-
tion 3. The problem is solved in two steps: finding the candidates
to be included in the family and choosing a good set from the can-
didates. The first step is elaborated in Section 4, while the second
step is discussed in Section 5. Experimental results are reported in
Section 6. Finally, the paper is concluded in Section 7.
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2. BASIC APPLICATION MODULES AND FPGA
BUILDING BLOCKS

Basic application modules are defined as a set of well-defined mod-
ules from which a designer can compose a particular design. For
example, a set of modules in a digital filter may include multipli-
ers, adders and FFs. In this work, the basic application modules
are assumed to be LUTs, multipliers and RAM blocks, although
our technique can be used to study any set of specialized blocks.
Considering all applications, the number of modules used for each
type can be plotted as a histogram. We analyzed many designs col-
lected from [1, 3, 5] and the histogram of each module was plotted
and fitted with a normal distribution.1 In the rest of the paper, we
use LUT , MEM and MUL to represent random variables (RVs)
of modules LUT, block RAM and multiplier, respectively. Each of
the RVs has a normal distribution.

FPGA building blocks are a set of distinct functional blocks
provided in FPGAs. Different FPGA families may have different
sets of building blocks. FPGA building blocks may differ from an
application’s basic modules. However, every module must be im-
plementable by at least one of FPGAs’ building blocks. The map-
ping between application basic modules and the building blocks
may not be one-to-one: two modules could be mapped to the same
type of block, and one module could be implemented by several
blocks. RVs of basic modules have to be mapped to RVs of FPGA
resources so that the requirement of each resource type can be com-
puted and FPGA resources can be allocated to satisfy the demand
of users.

2.1. Mapping application module distributions to FPGA block
distributions

Assuming that the distributions of design modules are given (the
distributions may be dependent), they must be translated to distri-
butions of FPGA blocks. Let A, B and C be design modules and
W, X, Y and Z be resources available in an FPGA. The RVs cor-
responding to modules and resources are denoted by their name
with subscript rv. Design modules implementable by a resource
type X can be described by either 1) X = S{naA, nbB, ncC}
which means that one functional block of type X can implement
na, nb, nc of module A, B, C, respectively, at the same time, or 2)
X = E{naA, nbB, ncC} which means one block of type X can
implement just one type of modules A, B, and C at a time with the
quantity specified.

For a given FPGA, we can describe its resources using above
descriptions. Although one module type can be mapped to several
combinations of resources, mapping design module distributions to
those of FPGAs’ building blocks to minimize the required area can
be performed using resource areas. As our objective is to minimize
the FPGA area, once such map is obtained for each module type, it
will be used throughout the paper.

1Although the histogram of all circuits ever implemented in FPGAs may
not be a normal distribution, a large set of their representative circuits used
in FPGA architecture design is a normal distribution by the central limit
theorem. The area of each resource type is at least an order of magnitude
lower than an FPGA area. Thus, assuming continuous distribution is rea-
sonable as the quantization error is limited.
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Fig. 2. Effects of a finite-
member FPGA family.

2.2. Interactions between different types of resources

Some resource types are partially compatible, resulting in one be-
ing able to implement the other. Examples of resource usage inter-
actions are shown in Figure 1 for two types of resources. Part (a)
shows an example in which an FPGA has two types of resources:
CLB4 and CLB8, each with 4 and 8 LUTs respectively. An FPGA
having u resources of type CLB4 and v units of CLB8 can be
shown as Point (u, v). A design requiring u − 2 and v + 1 re-
sources can still fit on the FPGA because two CLB4 blocks can
be combined to implement a CLB8. Thus, the interaction between
these two resources is a line passing through (u, v) with the slope
of -0.5 as shown in Figure 1(a). Any design that falls under the line
can fit on the FPGA.

Now, assume that the resources are CLB and 4kRAM as shown
in part (b) of the figure. If we move from (u, v) toward the y-axis,
we use some 4kRAMs to implement CLBs. If we move toward the
x-axis, some CLBs are used to implement 4kRAMs. However, the
efficiency of using CLBs to implement 4kRAMs is different from
that of using 4kRAMs to implement CLBs. Thus, the two lines
have different slopes as shown in the figure. If the resources are
18x18MULs and RAMs which cannot implement each other, de-
signs have to use no more than u and v of RAMs and 18x18MULs
respectively to be able to fit in the FPGA and the interaction is
shown in Figure 1c).

The resources exhibit a relation in Figure 1(a) if the two re-
sources can implement each other with the same silicon area ef-
ficiency, or Figure 1(b) for different efficiencies. If they cannot
implement each other, we have Figure 1(c). In general, the interac-
tion of one resource with others can be described by a hyperplane,
one for each resource type, as follows.

xi +
∑
j �=i

aij · xj = bi (1)

, where aij ∈ (0,∞] is the efficiency of using xi to implement
xj and bi depends on a particular FPGA under consideration. For
example, if the resource of type i and j are 4-LUT and 9x9 mul-
tiplier, respectively, one 9x9 multiplier can be implemented using
81 LUTs. Thus, aij = 1/81. If aij = 0, the resource of type j
cannot be implemented using type i.

The maximum number of hyperplanes is n, where n is the
number of resource types on an FPGA. However, it is possible that
two resource types will have the same hyperplane, such as that in
Figure 1(a). Thus, the minimum number of hyperplanes is one. In
conclusion, interactions among n resource types can be described
by m n-variable linear equations, where m ≤ n.
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3. FPGA FAMILY COMPOSITION

Assume that an FPGA has n types of functional blocks (resources).
An FPGA can be represented as an n-tuple vector, �x, in which xi is
the number of blocks of type i available in the FPGA. Let pdf(�x)
be the distribution of all mapped designs and A(�x) be the minimum
area of an FPGA that can fit a design requiring �x, in this case xi

represents the number of resource of type i that the design needs.
The total area of all FPGAs to implement all designs in pdf(�x) is

TotalArea = N ·
∫

A(�x) · pdf(�x)d�x (2)

where N is the number of designs, which is supposedly a large
number. The probability density of the distribution toward the up-
per end is small because few applications exist that require huge
resource requirements. Thus, it may not be practical to provide
FPGAs for designs in that range. As a result, there is a specific
amount of design coverage, say PMAX that our FPGA architec-
ture should be able to implement.

As pdf(�x) is assumed given, thus the total area is determined
by A(�x). The effect of A(�x) on the total area can be seen as fol-
lows. For simplicity, let’s consider an FPGA with one type of re-
sources. Consider Figure 2 which implements all designs using an
FPGA family containing 4 FPGAs, shown as circles on the X-axis.
The area overhead is shown as shaded regions. It can be easily
seen that as the number of FPGAs in the family increases, the area
overhead reduces and vanishes if there are infinitely many FPGAs
in a family. FPGA family composition problem can be stated as
follows.
Problem statement
For a given distribution of all designs, find a set of FPGAs con-
taining at most M FPGAs that requires the minimum total area for
covering PMAX of all designs.
Solving the problem is equivalent to choosing M points (FPGAs)
in an n-dimensional space that collectively minimize the area over-
head. Thus, due to its high complexity, the problem is solved in
two steps: 1) Finding candidate FPGAs detailed in Section 4. The
FPGA architecture solution space is multi-dimensional and hard to
optimize. To reduce the number of architectural candidates, the
solution space is projected to a one dimensional solution space by
mapping the multi-dimensional space to a number indicating appli-
cation coverage percentage. For each selected coverage percent-
age, a minimum area FPGA is determined. 2) Choosing at most
M FPGAs from the candidates that minimize the total area. (See
Section 5)

The above steps may not result in an optimal solution. Al-
though the second step guarantees an optimum solution, its solu-
tion can be affected by the selected candidates. The overall solution
may not be optimum because 1) there are a limited number of se-
lected coverage points, and 2) the minimum area FPGA for a given
coverage may not be unique, due to the given probability distribu-
tion and / or the introduction of errors in the numerical algorithm
used.

4. A MINIMUM AREA FPGA COVERING A GIVEN
PERCENTAGE OF DESIGNS

For a given set of hyperplanes obtained from Section 2.1, the total
probability of all designs being covered by the FPGA can be com-

puted by multiple integrals. However, such an approach would be
complicated and inefficient. Thus, in this section, the transforma-
tion of the problem space to be efficiently solved will be discussed
first and the optimization algorithm that can be applied in the trans-
formed space will be presented next.

4.1. Transforming the hyperplanes

The percentage coverage by a specific size FPGA can be com-
puted by multiple integrations with limits from hyperplanes. If hy-
perplanes are transformed to be axis-aligned ones, the percentage
coverage becomes a cumulative distribution function (CDF), which
can be computed efficiently. Although the CDF of a multivariate
normal distribution has no closed form, an efficient computation
for it is known [9].

The transformed hyperplanes will become axis-aligned if the
normal vectors of the original hyperplanes are used in the linear
transformation. This transformation will change the probability
distribution. The transformed RVs may be correlated even if the
original RVs are uncorrelated. The transformed distribution is a
normal distribution if and only if the resulting covariance matrix
is positive definite. This can be guaranteed if the linear transfor-
mation is linearly independent. However, if there are hyperplanes
similar to case b) of Figure 1, it may happen that the covariance
matrix is not positive definite and the obtained probability is not
normal anymore.

4.2. Finding the minimum area FPGA

After the transformation, the probability that an FPGA with a spe-
cific amount of resources, �y, covers designs can be computed using
a CDF. Furthermore, the area of the FPGA which is the summation
of areas of all resources in the original problem, ie., �y ·�1, becomes
�x · �C, where �x and �C are �y and �1 after the transformation. Thus,
the minimum area FPGA that covers a% of all designs can be for-
mulated as

minimize f(�x) = �x · �C (3)

s.t. CDF (�x) = a

B−1�x � 0

where B is the linear transformation used in Section 4.1 and �
means ≥ for every component. Since there is no closed form for the
CDF of a multivariate normal distribution, it has to be computed
numerically [9]. Thus problem (3) is in an oracle form. Thus, the
optimization problem is difficult to solve because an initial feasible
solution is difficult to obtain. The problem can be extended to (4).
Later on we will show that the solution to (4) is the same as that of
(3).

minimize f(�x) = �x · �C (4)

s.t. 1− CDF (�x) ≤ 1− a

B−1�x � 0

Let x2 = C(x1, ρ) defined by P{X1 ≥ x1, X2 ≥ x2} =
γ, where (X1, X2) has a bivariate normal distribution with mean
(0,0), variances σ2X1 , σ

2
X2 and correlation ρ. It is shown that C(x1, ρ)

is strictly concave over x1 for γ ∈ (0, 1) and any value of ρ [10].
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Furthermore, C(x1, ρ + ε) > C(x1, ρ), for ε > 0 [10]. How-
ever, CDF (x1, x2) = P{X1 ≤ x1, X2 ≤ x2}. By linear trans-
formation, a contour of CDF (x1, x2) = β is strictly convex over
x1. As a result, 1 − CDF (�x) ≤ 1 − a is also convex for 2-
dimensional case as shown in Figure 3. Any marginal distribution
of a multivariate normal distribution is also a normal distribution.
Thus, we can infer that the feasible set is also convex in a higher
dimension.

In the original problem, �y � 0 is convex and thus its trans-
formed counterpart is also convex. Because intersection of convex
sets yield a convex set, the constrain of (4) is convex. A local opti-
mum point x∗ must satisfy

∇f(x∗)′(x − x∗) ≥ 0, ∀x ∈ X. (5)

If f is convex over a feasible set X, x∗ is also a global minimum.
In our problem, (4), the objective function is linear, thus convex,
and the feasible set is strictly convex, a local optimum x∗ is the
global optimum.

The algorithm we will present belongs to the feasible direc-
tion method which proceeds in an iterative manner. Let xk be the
current feasible solution, at iteration k.

xk+1 = xk + αkdk. (6)

dk is a feasible and descent (regarding objective function) direc-
tion, ie., ∇f(xk+1)′dk < 0 and αk is a step size. If xk+1 = xk, it
means that dk = 0; ∇f(x)′dk > 0, ∀x ∈ X|‖x−xk‖ < ε. There-
fore, xk is the optimum solution. Traditionally, xk+1 is obtained
by solving a subproblem. However, since we have the feasible set
only in oracle form, we have to find xk+1 numerically by search-
ing around xk. Using the fact that our objective function is linear,
a simple, yet effective search can be performed. Consider Figure 4.
A hyper-ball of radius ε in n− 1 dimensions centered at xk can be
drawn, where n is the dimension of the solution space. xk+1 is de-
termined in 2 steps : 1) Randomly select a point on the ball. There
are two points, shows as white circles, on the hyper-ball in Figure 4
and 2) Find a point x′ along the contour 1 − CDF (�x) ≤ 1 − a
by performing a binary search along the steepest descent direction,
∇f = C.

These two steps will be repeated until x′ · �C < xk · �C and B−1 ·
x′ � 0 and that x′ is used as xk+1. Note that the chosen xk+1 may
not yield the most cost reduction. However, the optimum solution
is guaranteed to be found as the feasible set is convex, but may take
more steps. It is possible that x∗ is in an obscure location such
that the feasible points oscillate between xk and xk+1. To ensure
convergence, ε must be small and gradually decrease in size.

If the feasible region is contained by the perpendicular plane in
the − �C direction, it implies that we are at the optimal solution be-
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Fig. 5. The increase in coverage by adding one more FPGA (8,9,6)
into a family is shown with bold solid lines. (The boundary of the
previous coverage is shown using dashed lines.)

cause C′ ·(x−xk) > 0, ∀x ∈ X (C′ is the transpose of C). There-
fore, the optimality checking can be combined with xk+1 finding.
In particular, if there is no feasible point during xk+1 finding, xk is
the optimal solution. However, to check for optimality, ε must be
small. In contrast, using a large ball (i.e., using a large ε) in find-
ing xk+1 may reduce the number of steps to get to the optimum
solution. Thus, we choose to use two separate balls.

An initial solution can be any point within the feasible region.
The choice will not affect optimality, but may affect run time. Note
that not all the points in the solution space correspond to a valid
FPGA due to discretization but in practice discretization had neg-
ligible effects in our implementation.

5. FINDING A GOOD FPGA FAMILY

The selected minimum area FPGAs for various percent coverage
points may not be well-formed. As a result, adding a minimum
FPGA that covers 80% of the applications to a family covering
60% of the applications does not necessarily mean that the family
will cover 80% of the applications. Consider Figure 5. Imagine
that only point (3,2,8), which covers 60%, is included in the family.
Adding point (8,9,6) that covers 80% to the family will result in a
total coverage of more than 80% because (3,2,8) covers some space
which is not covered by (8,9,6).

The selection can be performed in a branch-and-bound man-
ner. When one more FPGA is added into the family, the increase in
coverage must be computed. Consider Figure 5 again. Assuming
that (3,2,8),(9,0,7),(9,1,0),(6,10,1) and (5,10,2), all in black dots,
are included, and (8,9,6) is going to be included. The volume of the
increased coverage is enclosed by bold lines and dash lines, which
are parts of the boundary of the coverage of the partial solution. As
this volume is not a hyper-box, the plane sweep technique is used to
partition it down to several hyper-boxes so that the probability they
represent can be computed as CDFs. In general cases, included
points may reside in the volume. Thus, the plane sweep technique
is also used to break down these inner volumes so that their prob-
ability content can be computed, using CDF, and subtracted from
the outer volume. For brevity, the algorithm is omitted. It is impor-
tant to note that a minimum FPGA that covers PMAX applications
must be included in a family.

6. EXPERIMENTS

The design basic modules used in our experiments were LUT, RAM
and 9x9MUL (they were also used as RV names for the correspond-
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Table 1. Parameters of normal distributions of design modules.
LUT RAM 9x9MUL

mean 5.824× 103 1.743× 104 4.460× 101

sigma 2.055× 104 2.042× 104 8.862× 102

ing modules) which are in units of number of LUTs, memory bits
and multipliers, respectively. Many designs were collected from
[3, 5, 1] and histograms of basic modules were plotted and fitted
with normal distributions. The parameters of obtaining distribu-
tions are shown in Table 1. We assume that these distributions are
independent. However, our proposed technique does not pose any
restrictions on the dependency of distributions.

In the experiments, two types of FPGAs are considered: one
Virtex-like FPGA containing only CLBs and block RAMs, and an-
other with additional 18x18 bit multipliers. A CLB has 4 4-input
LUTs and a block RAM is of size 4k bits. The RVs of FPGA
resources are named CLB, 4kRAM and 18x18MUL for CLBs,
block RAMs and multipliers, respectively. In the FPGA without
the 18x18MUL, we have CLB = E{4 ∗ LUT, MUL/20.5} and
4kRAM = E{4096∗MEM}. Thus, mapping from design basic
module distributions to those of FPGA resources can be shown in
Table 2. In contrast, for the FPGA with 18x18MUL, basic modules
can be directly mapped to their corresponding blocks.

The logic part of a Virtex CLB implemented in 0.13μm tech-
nology takes 3660μm2 [11]. Projected to 65nm, it takes 0.000915
mm2. Based on the Virtex routing architecture description, routing
resource per CLB is about 0.0011mm2. The CLB area is the sum-
mation of the logic and routing area. Block RAM of 4k bits takes
0.0208mm2 at 65nm, projected from [4]. An 16x16 bit Booth
multiplier takes 0.837mm2 in 0.6μm technology [12]. We be-
lieve that using an industrial, more aggressive design flow, 18x18
multiplier2 should fit in the same area. Projected to 65nm, the
embedded multiplier should take 0.0098mm2.

Modules usually implemented in one resource type can also
be mapped to other types. Although slower, particular logic func-
tions can be implemented in multipliers. In the case that there are
multipliers already on critical paths, MUXs not on critical paths
can be implemented using multipliers without performance degra-
dation [5]. On average, the number of LUTs reduces by 70, with
the increase of 15 9x9 multipliers. A 4-input LUT is essentially
a 16x1 memory. Thus, LUTs can be packed into larger memory
blocks [6, 13]. One 9x9 multiplier can be implemented using 81
LUTs (with associated logic)3. Note that a multiplier can be imple-
mented using memory but it requires exorbitant amount of memory
[14]. Thus, implementing a multiplier using memory blocks is not
considered in our experiments. Using this information, a linear
transformation of FPGAs with 18x18 multipliers can be set up as
shown in Table 3. For FPGAs without multipliers, the same trans-
formation is used, but with the last column and row removed.

The algorithm detailed in Section 4.2 was applied to find a min-
imum area FPGA for each selected coverage point. The resulting
resource area of the minimum area FPGAs with and without 18x18
multipliers are shown in Table 4. Data in each row corresponds to

2Although benchmark circuits contain only 9x9 multiplier, recent com-
mercial FPGAs provide dedicated 18x18 multipliers. Thus, an 18x18 mul-
tiplier will be used to implement one 9x9 multiplier

3Although there are several compact multiplier implementations, they
are irregular and not suitable for implementation on LUTs. The carry save
multiplier construction is the most common implementation.

Table 2. Mapping from design module distributions to FPGA
resource distributions.

without CLB = 0.25*LUT + 20.25*MUL
MUL18x18 4kRAM = MEM/4096
with CLB = 0.25*LUT
MUL18x18 4kRAM = MEM/4096

MUL18x18 = MUL

Table 3. The linear transformation used in the experiments.
CLB 4kRAM 18x18MUL

CLB 1 32/4096 1/20.25
4kRAM 15/4 1 0
18x18MUL 70/60 0 1

one percent coverage point. It can be observed that minimum area
numbers increase with the percent coverage for both architectures.
Furthermore, the minimum area increases faster for higher cover-
age percentages. The most important observation is about the area
difference (column 9) between the two architectures (columns 4
and 8). We can see that FPGAs with 18x18 MUL require less area
to cover the same percentage compared to FPGAs without multi-
pliers. In addition, the difference tends to increase with percent
coverage.

As a basis for a comparison, a baseline family selection was
performed as follows. The designs collected were divided into 4
categories: 1) those use only CLB, 2) those use CLB and RAM, 3)
those use CLB and MUL and 4) those use all 3 resources. Within
each category, 3 designs were selected in such a way that other
designs are dominated by the selected designs in term of resource
usage. In some categories, only 2 designs were enough. But to
reduce the area overhead (recall Figure 2), one more design is se-
lected from the design at the median of the category. The module
usages of the selected designs were mapped to resource usages of
FPGAs with and wihout MUL using data from Table 2. At this
point, there are 12 FPGAs for each architecture. For each FPGA,
its coverage over the distribution shown in Table 1 was computed.
Some FPGAs far away from the center of the distribution are large
but have the comparable coverage as other small FPGAs. For ex-
ample, one selected FPGA of size 22.7 mm2 covers 61%, while
another FPGA of size 0.27 mm2 covers 62%. Thus, those FPGAs
were eliminated from the family. As a result, the baseline family
for each architecture contains 10 FPGAs. The baseline family of
FPGAs with and without MUL covering 98% has an expected area
of 6.266 and 6.475 mm2, respectively.

Table 4. A minimum area FPGA for selected percent coverage
points.

W/O 18x18 MUL With 18x18 MUL
% CLB 4kRAM tol

area
CLB 4kRAM MUL tol

area
area
dif.

cover area area (mm2) area area area (mm2) (mm2)

0.35 0.237 0.063 0.300 0.014 0.222 0.018 0.254 0.046
0.40 0.902 0.009 0.911 0.289 0.051 0.428 0.767 0.144
0.45 1.528 0.135 1.663 0.872 0.121 0.391 1.384 0.279
0.50 2.162 0.082 2.244 1.476 0.235 0.257 1.969 0.275
0.55 2.786 0.020 2.807 1.990 0.020 0.534 2.545 0.262
0.60 3.427 0.032 3.459 2.660 0.009 0.138 2.807 0.652
0.65 4.072 0.177 4.248 3.163 0.287 0.537 3.987 0.262
0.70 4.771 0.004 4.775 3.898 0.099 0.112 4.109 0.666
0.75 5.514 0.119 5.634 4.562 0.412 0.190 5.164 0.470
0.80 6.350 0.082 6.433 5.344 0.178 0.182 5.704 0.729
0.85 7.328 0.245 7.573 6.216 0.373 0.208 6.797 0.776
0.90 8.547 0.150 8.696 7.432 0.154 0.183 7.770 0.927
0.95 10.358 0.020 10.378 9.085 0.073 0.129 9.287 1.091
0.98 12.384 0.074 12.458 10.936 0.204 0.501 11.641 0.817
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Table 5. Effects of the number of FPGAs in a family.
# in a without 18x18 MUL in a family with 18x18 MUL in a family over
family expected over over expected over over w/o

M family area (mm2) 1 FPGA conventional family area (mm2) 1 FPGA conventional MUL
2 00000100000001 6.805 0.454 -0.051 00000001000001 6.101 0.476 0.026 0.103
4 10000100001001 4.479 0.640 0.308 10000100010001 3.943 0.661 0.371 0.120
6 10001001010101 3.891 0.688 0.399 10010001010101 3.335 0.713 0.468 0.143
8 10010101010111 3.668 0.706 0.434 10000100111111 2.889 0.752 0.539 0.213

10 11010101011111 3.545 0.715 0.453 11010011011111 2.770 0.762 0.558 0.219
12 11101101111111 3.471 0.721 0.464 11111101101111 2.752 0.764 0.561 0.207
14 11111111111111 3.418 0.726 0.472 11111101101111 2.752 0.764 0.561 0.195

Using minimum area FPGAs listed in Table 4 , the algorithm,
highlighted in Section 5, was used to solve the FPGA family com-
position problem, stated in Section 2, for family sizes, M , between
2 to 14. The result is shown in Table 5. The table is divided into 2
similar sections, for FPGAs with and without 18x18MULs. Each
row contains data for a specific value of M , shown in the first col-
umn. The second column lists FPGAs without MUL from Table
4 selected for the family. The leftmost and rightmost bits repre-
sent FPGAs covering 35% and 98%, respectively. If the minimum
area FPGA covering a particular percent coverage is included, the
corresponding bit is marked 1 and 0 otherwise. The third column
shows expected areas ( eq. (2)/N ). Area improvements, computed
by (ref − new)/ref , of the families over having only the FPGA
covering 98% are shown in the fourth column. The fifth column
shows area improvements over the baseline selection. Column 6-9
have similar meanings to Column 2-5. To highlight the effect of
having 18x18MUL in FPGAs, area improvements for families of
the same size from the two architectures are shown in the last col-
umn. In general, we can see that there are more 1s around FPGAs
with higher percent coverage. This is because the area increases
faster for the higher coverage (See Table 4). Thus, to minimize area
overhead, more FPGAs were selected from the higher percent cov-
erage (See Figure 2). Interestingly, for FPGAs with 18x18MUL,
the same family is obtained for both M = 12 and M = 14 be-
cause the volume in the transformed space covered by the mini-
mum area FPGAs for 65% and 80% coverage can be collectively
covered by FPGAs with smaller areas. For both architectures, the
expected area decreases as M increases. Hence, the area improve-
ment over one FPGA and conventional selection are also increased.
The effectiveness of the proposed technique can be observed from
the area improvements over the baseline (Column 5 and 9) even
when M is smaller than that of the baseline family, whose M is
10. The benefit of having MUL in FPGAs is confirmed by the area
improvement (column 10) and it increases with M from 10% at
M = 2 to about 20% when M ≥ 8.

7. CONCLUSION

An FPGA family composition problem was formulated in this pa-
per. Due to the difficulty of the problem, it was solved in two steps.
Minimum area FPGAs of selected percentage coverage points were
chosen from the multi-dimensional solution space. For each per-
centage coverage point, a minimization problem was set up and
shown to be convex, although in an oracle form. Thus, we pre-
sented an algorithm to solve it optimally within numerical errors.
Among the resulting FPGAs, a family of limited FPGAs was formed
by a simple branch-and-bound technique. However, as the solution

space is multi-dimensional, minimum area FPGAs are not totally
ordered. Thus, an algorithm using a plane sweep technique was
created to compute the probability increase for including one more
FPGA into the family. The result showed that the technique can
produce families with the same number of members as the base-
line families, but with area improvement of 0.453 and 0.558, for an
architecture with and without multipliers, respectively. Although
the experiment was carried out on a distribution projected from a
small set of designs, the methodology proposed can be used for the
more accurate distribution and the same benefit should be obtained.
The process of mapping design distributions to those of FPGA re-
sources was also discussed. Interactions among resources were
described by hyperplanes making the FPGA family composition
efficiently solvable after the transformation. However, the interac-
tions may be nonlinear and should be address in future work.
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