Introduction of
Architecturally Visible
Storage

in Instruction Set Extensions

Author: Partha Biswas, Nikil D. Dutt, Laura Pozzi,
Paolo lenne
Presentation by Ganghee Jang

Overview

» What is ISE & Architecturally Visible Storage?
» Motivation

» Related Work

» Design Approaches with AVS

» Results

» Not Bird’s eyes - Different View with my Eyes

What is ISE & AVS?

» ISE (Instruction Set Extension)
> Instruction Set to support Customized Functional
Unit
» AVS (Architecturally Visible Storage)
> Visible Storage from Functional Unit(Architecturally)

» From my Understanding,
> “Visible” means “Where” data is Synchronized to

- To have Ownership of Processing Data, FU can have
its own state and internal data

- Access Memory or Cache Directly
> Internal Memory

Motivation

» Let’s assume an Instruction multiplying a
Scalar and Matrix

» Mult_s_M(scalap, Matri»)

V|

Main Memory

Motivation(Cont’)

» The Benefit of AVS

» Lowers Cache Pollution
- Data bypassing Cache and Register

» Increase Scope of ISE Algorithm

> Including load/store Instructions give Extra
Chances for more Optimization of Algorithm

» Reduce Energy Consumption
> By reducing Memory Access

Related Work

me\ » Scratchpad
[» Avoid some Cache
= Pollution
Cache Scratchpa _]
[» Still share Register
;egister File File

1

AFU

Related Work(Con't)
o o HH o H o {Hew - >|Sn|;;LI/:gent

l r— » Move ALU

nearer to On-
o Chip SRAM

-~ (’“\) » Increase
wt, N A Complexity of
— ldentification
ade L Problem

SEAM

o’ ‘o F'I:elg i @ :ﬂa‘laln
o o ne 2m.
AFU I :
Basic Block AFU Rest of the processor
< I
(a) (b)

» Cut: Identified codes for ISE

» All Arguments for AFU from Register
File

AANRRE
AAARARRRRERE
A\ VA
\\ A\
:;‘;‘Z' ¢

ign A h ith AV
esigh Approac ef ‘t

o O
oo mmmEm
0 ’ Mem. File Mem.
Q ©-

fter loop |

AFU Rest of the processor

< I >
» Increased Cut, so Increased Granularity
» Need DMA for efficient Data Transfer

CFG & Basic Block

» CFG: Control Flow Graph

- To represent Program as a graph

» Basic Block: Each Node in the CFG

- Piece of code which has following Characteristics
- Entrance: only at the Beginning
> Exit: only at the End

10

Dominator

» A node /
dominates node
Jif every path
from the entry
node to j passes
through 7.

11

Where to put DMA Instructions?

» CFG of fft
Algorithm

» P: last Polluter to
cbb

» cbb: refers to the
basic block for
which an ISE is
currently being
identified

12

Where to put DMA Instructions?

D

12

» R: Nodes can be
reached from p

» D: Nodes strictly
Dominates cbb

» Candidates: {4,
5,6, 7,8, 9}

» Select the Node

with the Least
Execution Count

13

Results

‘ T HIET Comparison of Speedup | —-no ME_M: without
- 4.“,;%@ (on default 4-issue Simplescalar) allowing memory
' COw/ VEC+SCA . .
inclusion
3 -w/VEC: local
25 Il 1 . memory inside
with vector
° access
1.5 1 - —-w/VEC + SCA:
R AT local memory
B o N @ e ® inside with vector

& A L Al S access and scalar

dCCessS

14

Results(Cont’)

» One of the good Example of H/W, S/W co-
Design

» Solving a Problem in ISE Design Domain

» Speedup

- Memory Wall Problem by Internal Memory
- Bigger Granularity

15

My Observation

» Hidden Assumption
- No or very small Dependency between successive
AFU Operation
- = DMA can hurt Performance
> Granularity
- 2> All AFU Operation need bigger Granularity?

- Compiler must know all the detail about DMA
latency

- >Need Profiling and recompile
- 2ls it feasible with Reconfigurable ISE?

16

Question?

