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 What is ISE & Architecturally Visible Storage?

 Motivation

 Related Work

 Design Approaches with AVS

 Results

 Not Bird’s eyes – Different View with my Eyes
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 ISE (Instruction Set Extension)
◦ Instruction Set to support Customized Functional 

Unit

 AVS (Architecturally Visible Storage)
◦ Visible Storage from Functional Unit(Architecturally)

 From my Understanding,
◦ “Visible” means “Where” data is Synchronized to

◦ To have Ownership of Processing Data, FU can have 
its own state and internal data

◦ Access Memory or Cache Directly

◦ Internal Memory
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 Let’s assume an Instruction multiplying a 
Scalar and Matrix

 Mult_s_M(scalar, Matrix)

4



 The Benefit of AVS

 Lowers Cache Pollution
◦ Data bypassing Cache and Register

 Increase Scope of ISE Algorithm
◦ Including load/store Instructions give Extra 

Chances for more Optimization of Algorithm

 Reduce Energy Consumption
◦ By reducing Memory Access
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 Scratchpad

 Avoid some Cache 
Pollution

 Still share Register 
File

6



 Intelligent 
SRAM

 Move ALU 
nearer to On-
Chip SRAM

 Increase 
Complexity of 
Identification 
Problem
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 Cut: Identified codes for ISE

 All Arguments for AFU from Register 
File
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 Increased Cut, so Increased Granularity

 Need DMA for efficient Data Transfer
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 CFG: Control Flow Graph
◦ To represent Program as a graph

 Basic Block: Each Node in the CFG
◦ Piece of code which has following Characteristics

◦ Entrance: only at the Beginning

◦ Exit: only at the End
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 A node i
dominates node 
j if every path 
from the entry 
node to j passes 
through i.
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 CFG of fft
Algorithm

 P: last Polluter to 
cbb

 cbb: refers to the 
basic block for 
which an ISE is 
currently being 
identified
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 R: Nodes can be 
reached from p

 D: Nodes strictly 
Dominates cbb

 Candidates: {4, 
5, 6, 7, 8, 9}

 Select the Node 
with the Least 
Execution Count

R

D

Candidates: R∩D
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-no MEM: without 
allowing memory 
inclusion

-w/VEC: local 
memory inside 
with vector 
access

-w/VEC + SCA: 
local memory 
inside with vector 
access and scalar 
access
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 One of the good Example of H/W, S/W co-
Design

 Solving a Problem in ISE Design Domain

 Speedup
◦ Memory Wall Problem by Internal Memory

◦ Bigger Granularity
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 Hidden Assumption
◦ No or very small Dependency between successive 

AFU Operation 

  DMA can hurt Performance

◦ Granularity 

  All AFU Operation need bigger Granularity?

◦ Compiler must know all the detail about DMA 
latency

 Need Profiling and recompile

 Is it feasible with Reconfigurable ISE?
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