
Author: Partha Biswas, Nikil D. Dutt, Laura Pozzi,
Paolo Ienne

Presentation by Ganghee Jang

1

 What is ISE & Architecturally Visible Storage?

 Motivation

 Related Work

 Design Approaches with AVS

 Results

 Not Bird’s eyes – Different View with my Eyes

2

 ISE (Instruction Set Extension)
◦ Instruction Set to support Customized Functional

Unit

 AVS (Architecturally Visible Storage)
◦ Visible Storage from Functional Unit(Architecturally)

 From my Understanding,
◦ “Visible” means “Where” data is Synchronized to

◦ To have Ownership of Processing Data, FU can have
its own state and internal data

◦ Access Memory or Cache Directly

◦ Internal Memory

3

 Let’s assume an Instruction multiplying a
Scalar and Matrix

 Mult_s_M(scalar, Matrix)

4

 The Benefit of AVS

 Lowers Cache Pollution
◦ Data bypassing Cache and Register

 Increase Scope of ISE Algorithm
◦ Including load/store Instructions give Extra

Chances for more Optimization of Algorithm

 Reduce Energy Consumption
◦ By reducing Memory Access

5

 Scratchpad

 Avoid some Cache
Pollution

 Still share Register
File

6

 Intelligent
SRAM

 Move ALU
nearer to On-
Chip SRAM

 Increase
Complexity of
Identification
Problem

7

 Cut: Identified codes for ISE

 All Arguments for AFU from Register
File

8

 Increased Cut, so Increased Granularity

 Need DMA for efficient Data Transfer

9

 CFG: Control Flow Graph
◦ To represent Program as a graph

 Basic Block: Each Node in the CFG
◦ Piece of code which has following Characteristics

◦ Entrance: only at the Beginning

◦ Exit: only at the End

10

 A node i
dominates node
j if every path
from the entry
node to j passes
through i.

A

B

D

E

F

C

11

 CFG of fft
Algorithm

 P: last Polluter to
cbb

 cbb: refers to the
basic block for
which an ISE is
currently being
identified

12

 R: Nodes can be
reached from p

 D: Nodes strictly
Dominates cbb

 Candidates: {4,
5, 6, 7, 8, 9}

 Select the Node
with the Least
Execution Count

R

D

Candidates: R∩D

13

-no MEM: without
allowing memory
inclusion

-w/VEC: local
memory inside
with vector
access

-w/VEC + SCA:
local memory
inside with vector
access and scalar
access

14

 One of the good Example of H/W, S/W co-
Design

 Solving a Problem in ISE Design Domain

 Speedup
◦ Memory Wall Problem by Internal Memory

◦ Bigger Granularity

15

 Hidden Assumption
◦ No or very small Dependency between successive

AFU Operation

 DMA can hurt Performance

◦ Granularity

 All AFU Operation need bigger Granularity?

◦ Compiler must know all the detail about DMA
latency

 Need Profiling and recompile

 Is it feasible with Reconfigurable ISE?

16

17

