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Abstract—Instruction set extensions (ISEs) can be used effec-
tively to accelerate the performance of embedded processors. The
critical and difficult task of ISE selection is often performed
manually by designers. A few automatic methods for ISE gen-
eration have shown good capabilities but are still limited in the
handling of memory accesses, and so they fail to directly address
the memory wall problem. We present here the first ISE iden-
tification technique that can automatically identify state-holding
application-specific functional units (AFUs) comprehensively, thus
being able to eliminate a large portion of memory traffic from
cache and the main memory. Our cycle-accurate results obtained
by the SimpleScalar simulator show that the identified AFUs
with architecturally visible storage gain significantly more than
previous techniques and achieve an average speedup of 2.8× over
pure software execution with a little area overhead. Moreover, the
number of required memory-access instructions is reduced by two
thirds on average, suggesting corresponding benefits on energy
consumption.

Index Terms—Application-specific processors, architecturally
visible storage, instruction set extensions (ISEs).

I. INTRODUCTION

THE DESIGN of embedded processors poses a great chal-
lenge due to a stringent demand for high performance,

low-energy consumption, and low cost—a blend which is
not often found in general purpose processors. On the other
hand, since embedded processors are dedicated to a single
application—or to a small set of them—unique possibilities
arise for designers, who can exploit their knowledge of the
application in order to achieve the aforementioned blend.

Generally, a cost-effective way to simultaneously speed up
execution and reduce energy consumption is to delegate time-
consuming tasks of the application to dedicated hardware,
leaving less critical parts to traditional software execution. This
can be achieved by adding application-specific functional units
(AFUs) to the processor and instruction set extensions (ISEs)
to the instruction set for executing the critical portions of the
application on the AFUs.
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Since time-to-market is an important feature for the success
of embedded processors and manual selection of ISEs can be a
very daunting task, automatic identification of ISEs for a given
application is of extreme importance. Indeed, a few automated
techniques that sometimes match the performance of an ex-
pert designer have been presented. However, limitations still
exist, and in some cases, the proposed techniques are still far
from achieving the desired results. In particular, an important
limitation is the inability of dealing with memory operations
and allowing internal storage inside AFUs. In fact, apart from
some simple exceptions treated in [4], the existing techniques
are not able to include operations that access memory—while
it is well known that memory traffic reduction is always of vital
importance for performance as well as energy efficiency.

In this paper, we present an innovative algorithm for auto-
matic identification of ISEs with architecturally visible storage:
We envision AFUs with small internal memory and propose
a way to automatically detect and accelerate even those parts
of the application that involve memory accesses. To show the
effectiveness of our approach, we augment the SimpleScalar
[26] processor with ISEs identified by our proposed algorithm
on different applications and study the resulting improvements
in performance and energy. Our cycle-accurate results show
that adding architecturally visible storage to an AFU results in
an increase in average application speedup over pure software
execution from 1.4× to 2.8×. Furthermore, the number of
accesses to cache and main memory is also reduced by 66%,
which also hints a concomitant energy reduction. We also
demonstrate an average energy reduction of 53% in a 32-KB
data cache due to redirection of costly memory accesses into a
tagless AFU-resident memory.

II. ARCHITECTURALLY VISIBLE STORAGE

In the course of executing an application, data are copied
across different storage units starting from main memory before
finally residing in a register file [Fig. 1(a)]. A functional unit
(or AFU in this case) reads the data from the register file for
processing and then writes the result back into the register file.
A scratchpad [as shown in Fig. 1(b)] with a much simpler
design than a cache brings the data closer to the AFU. The
closer the data resides with respect to a computational unit, the
faster the processing time. This approach also reduces cache
pollution by allowing the AFU to bypass the cache and read the
data directly from the scratchpad. Consequently, this results in
not only speedup but also energy reduction because majority of
the cache accesses are redirected to a simpler energy-efficient
scratchpad.
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Fig. 1. (a) Data are copied from main memory and through cache and register file, before reaching the AFU. (b) Scratchpad helps reduce copies and pollution.
(c) The local memory inside the AFU goes beyond previous achievements by bypassing even the register file and reducing copies and pollution to the minimum.

Fig. 2. AES main kernel.

We take this philosophy of bringing the data close to the site
of computation to its limit—i.e., bring the data to be processed
directly inside the AFU. By introducing a small internal
memory inside the AFU, all the storage units are bypassed and
we can get the dual benefit of speedup and energy reduction
[Fig. 1(c)]. This internal memory is architecturally part of the
AFU structure; therefore, we also call it a local architecturally
visible storage.

III. MOTIVATING EXAMPLES

The Advanced Encryption Standard (AES) benchmark is a
Rijndael block cipher with a block/key size of 16 B. The stages
involved in the AES encryption/decryption of a 16-B input are
the following: 1) shift rows (S) as per a fixed scheme; 2) byte
substitution (B) where each byte of the block is replaced by
its substitute stored in a fixed 256-element array called Sbox[];
3) mix columns (M) where each column stored in a 4-B block
is multiplied with a constant matrix under some special rules
involving multiply and XOR operations; and 4) add round key
(A), which also involves XOR operations.

The sequence of operations involved in the AES encryption
is: A − (S − B − M − A)9 − S − B − A, indicating that the
sequence S-B-M-A is executed in nine rounds presenting itself

as a hot spot for optimizations. The basic stages of a round
as implemented in the benchmark are captured in Fig. 2. The
input 16-B block (conceptualized as a 4 × 4 matrix with 1-B
entries) is realized as four blocks of unsigned integer (4 B
each), which is shown as IN[] array in the figure. Except for the
B-stage, all other stages comprise scalar operations that do not
access memory. Unfortunately, contemporary techniques for
ISE selection choose only the sections having scalar operations.
However, an experienced architect on careful analysis of the
B-stage would conclude that the memory operations simply
reads from a small fixed table (Sbox[] of size 256) and, thus,
it makes sense to map the table into the hardware. With a
little overhead in area, this introduction of a hardware table
having short and deterministic latency would generate a large
performance gain. It is important to note that these instances are
common in cryptographic benchmarks. The main goal of this
paper is to steer the ISE design space exploration for generating
results close to those achieved manually by an architect.

Many applications access small portions of memory multiple
times in a frequently executed part of code. While previ-
ous techniques have attempted to move such memory ac-
cesses closer to the computational core (e.g., using scratchpad
memories to reduce cache pollution), it is clear that we can
gain significant benefit from moving such memory accesses
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Fig. 3. fft kernel (Courtesy of EEMBC).

directly into the computation core—i.e., directly into the AFUs
[Fig. 1(c)]. For example, consider a portion of the fft kernel
from the Embedded Microprocessor Benchmark Consortium
(EEMBC) suite [27] shown in Fig. 3. The innermost loop is
run 2n/2k—i.e., 2n−k times. Therefore, for each k, there are
2k−1 · 2n−k or 2n−1 accesses to memory. For n = 8, k goes
from 1 to 8, leading to 8 · 127 = 1024 memory accesses for
each array variable in the critical region. Since there are six
memory reads and four memory writes corresponding to array
variables RealBitRevData[] and ImagBitRevData[], there are
6144 memory reads and 4096 memory writes in the fft kernel
for n = 8.

Existing automatic ISE techniques would identify instruc-
tions composed of data-flow and nonmemory-access opera-
tions, such as the butterfly, leaving the memory accesses to
the processor core. However, if the fft kernel executes in an
AFU with a small local memory with a storage space for 256
elements, all 10 240 accesses to main memory can be redirected
to the fast and energy-efficient AFU-resident local memory.

In general, the advantages of an AFU-resident memory are
manifold: it lowers cache pollution, it increases the scope of
ISE algorithms, it increases the resulting performance, and it
reduces energy consumption. A previous work [4] exploited
the presence of memory elements in ISEs, in only two spe-
cial forms: 1) hardware tables and 2) architecturally visible
state registers. We present a formal framework for automati-
cally exploiting any kind of AFU-resident memory during ISE
generation.

IV. RELATED WORK

Most related research efforts in automatic ISE, such as
[1]–[3], [5], [7], [8], [13]–[15], do not allow memory instruc-
tions to be selected in the acceleration section and thus do
not consider either memory ports in AFUs or AFU-resident
memory. Thus, they miss the speedup opportunities enabled for
the first time in this paper. One recent work indeed considered
memory inside AFUs [4] but only in very special cases, namely,
in the cases of read-only memory and loop-carried scalars.

Similar to this approach, a contemporary work [17] also incor-
porates read-only memory to increase the scope of ISEs. On
the other hand, in this paper, we present a general formulation
that considers any kind of vector or scalar access without
restriction. Our solution, in fact, encompasses the special cases
treated in [4].

One interesting approach [18], [19] that addresses the mem-
ory wall problem closely matches our approach. This approach
increases the memory throughput of a computation by making
the architecture communication-aware. This is achieved by
either enhancing the memory subsystem with an application-
specific hardware [18] or placing an arithmetic logic unit next
to the static random-access memory (SRAM) [19] to speed up
computations. However, our goal is to speed up application
through complex ISEs that can now also include memory
operations. Allowing memory operations inside ISEs increases
the complexity of the ISE identification problem.

Program-In Chip-Out Nonprogrammable Accelerator [20]
bears some similarity with this paper as its architectural model
permits the storage of reused memory values in accelerators.
However, it does not present a method for identifying the
portions of application code to be mapped on the accelerator;
that is left to a manual choice, while we present an auto-
mated approach. Another work in reconfigurable computing [9]
considered automatically selected coprocessors with direct
memory access. On the other hand, our technique identifies
whole arrays or scalars to be loaded into an AFU and further-
more permits the processor to access the AFU memory directly
(rather than the main memory) during inner loop execution.
This is an innovative proposal, which was not considered in
prior work; our experimental results prove its effectiveness.

Register Promotion [21] is a compiler technique that aims
at reducing memory traffic by promoting memory accesses to
register accesses. However, previous efforts have not used it
in the context of ISEs, where memory accesses can instead be
eliminated by AFU residency—i.e., both data flow computation
and memory accesses are identified together and delegated
to special computation units, bypassing even the register file.
Finally, the contributions presented here bear some resem-
blance with a recent work on scratchpads [11] and with one
using application-specific memories instead of caches [12]. We
go beyond such approaches by bringing portions of storage
closer to the core—directly inside the AFU that is going to use
them [as shown in Fig. 1(c)]. In this paper, we not only discuss
our memory-aware ISE generation approach in detail but also
expand on our previous work [16] to present 1) an analysis
to justify the scheme employed for maintaining consistency
between the main memory and the internal memory inside the
AFUs and 2) additional experimental results to demonstrate
the energy benefits of including architecturally visible state in
AFUs. Furthermore, our experimental results also show that
incorporating local memories inside AFUs has a fairly low
area overhead.

V. MEMORY-AWARE ISE IDENTIFICATION

We first introduce a general formulation of the ISE identifi-
cation problem [2], and then we list the differences required to
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Fig. 4. In a previous work, (a) a cut could not include any memory access nodes (ld/st), and (b) the corresponding AFU did not hold a state; the AFU fetched
all operands from the register file. Now, (c) a cut can include memory-access operations to a vector, and (d) the corresponding AFU has a copy of the vector in its
internal memory; all memory operations in this basic block access the AFU internal memory instead of main memory.

identify memory holding ISEs. We call G(V,E) the directed
acyclic graphs representing the data flow of a critical basic
block (cbb); nodes V represent primitive operations, and edges
E represent data dependencies. A cut C is a subgraph of
G : C ⊆ G. A function M(C) measures the merit of a cut
C and represents an estimation of the speedup achievable by
implementing C as a special instruction.

We call IN(C) and OUT(C) the number of inputs and out-
puts, respectively, of cut C, while values Nin and Nout indicate
the number of register-file read and write ports, respectively,
which can be used by the special instruction. In addition,
due to microarchitectural constraints, operations of a certain
type might not be allowed in a special instruction. We call F
(with F ⊆ V ) the set of forbidden nodes that should never be
part of C.

The identification problem is formally stated as follows.
Problem 1: Given a graph G and the microarchitectural

features Nin, Nout, and F , find the cut C that maximizes M(C)
under the following constraints:

1) IN(C) ≤ Nin;
2) OUT(C) ≤ Nout;
3) F ∩ C = ∅;
4) C is convex.

The first two constraints guarantee I/O feasibility, the third
one disallows inclusion of forbidden nodes, and the last con-
straint ensures that all inputs are present at the time of issue.
When considering state-holding ISEs (rather than purely com-
binational ones as in [2]), two features must be adapted, namely
1) the content of F and 2) the definition of M(C). Ideally, all
memory access nodes can now be excluded from set F , i.e., they
can be included in a cut (in practice, we apply a compiler pass to
exclude from F all accesses to vectors and loop-carried scalars;
pointer accesses are still not treated at present). The merit
function M(C) must take into account the cost of transferring
data between the AFU memory and the main memory.

A. Architectural Organization

If all memory accesses are forbidden in C, as in previous
work, the envisioned situation is that of Fig. 4(a): A cut can
only contain data flow operations. Fig. 4(b) describes the ar-
chitectural side: The load/store unit of the processor affects the
transfers between register file and main memory, and the AFU
fetches its operands from the register file—like any functional
unit. However, when memory accesses to some vector are
allowed in a cut, as shown in Fig. 4(c), a state-holding AFU is
taken into consideration. A state-holding AFU can also include
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scalar accesses; these can be treated as a special case of vectors.
Fig. 4(d) shows the AFU corresponding to the cut chosen: A
copy of the vector is resident in the internal memory and all
memory accesses to that vector in the basic block—whether
included in the cut or not—access the local AFU memory rather
than the main memory. Architecturally, in the most general
case, the vector in question needs to be transferred from the
main memory to the AFU local memory by direct memory
access (DMA) before loop execution (i.e., before executing
the cbb). As a result, all memory accesses to the vector are
now transformed into internal accesses to the local memory
instead. At the end of the loop (i.e., after executing the cbb),
the vector is copied back to main memory—only if needed. The
applicability of this approach is clearly limited by the number
and size of the vectors accessed within the cbb. However, note
the much decreased register file pressure (only one register
read) and reduced main memory access (only two accesses) in
the example of Fig. 4(d).

B. Merit Function and Problem Solution

In the following, cbb refers to the basic block for which an
ISE is currently being identified.

The merit function M(C) per unit execution of cbb is
expressed as follows:

M(C) = λsw(C) − λhw(C) − λoverhead(C) (1)

where λsw(C) and λhw(C) are the estimated software
latency (when executed natively in software) and hardware
latency (when executed on an AFU) of cut C, respectively, and
λoverhead estimates the transfer cost. Consider a DMA latency
of λDMA and suppose that the DMA write and read operations
required will be placed in a write basic block (wbb) and a read
basic block (rbb), whose execution counts are Nwbb and Nrbb,
respectively (ideally much smaller than the execution count of
cbb Ncbb, where the ISE is identified).

The transfer cost can be expressed as

λoverhead =
Nwbb + Nrbb

Ncbb
· λDMA.

Note that all the aforementioned considerations are valid not
only for vectors but also for inclusion of scalar accesses.
However, in the case of scalar accesses, the transfer will be
much cheaper as it does not involve DMA setup and transfer
overhead. In the rest of this paper, we will use the term
“memory transfer” for both vectors and scalars.

For a given cbb, the steps for generating ISEs that include
architecturally visible storage are given as follows. 1) Find
vectors and scalars accessed in cbb; for this, we can use some
well-known static memory disambiguation techniques [23].
2) Search for the most profitable code positions for inserting
memory transfers between the AFU and the main memory—
this is a fundamental problem, and the solution is discussed in
the next section. 3) Run ISE identification. We use the ISE iden-

tification algorithm presented in [2], which is an improvement
over [1] and can optimally solve problem 1 for basic blocks of
approximately 1000 nodes. In the algorithm, we use the updated
merit function M(C) expressed in (1) to evaluate the merit of
a selected cut. The pruning criterion in [2] had to be relaxed in
order to handle memory awareness correctly.

C. Scheduling Data Transfers

To ensure profitability of memory inclusion in an AFU,
memory transfer operations between main memory and the
AFU must be performed in basic blocks with the least possible
execution count. However, they must be performed in basic
blocks that ensure semantic correctness of the program. Now,
we will discuss how to optimize the insertion of a DMA write
operation (transfers from main memory to AFU); insertion of
DMA read (transfers from AFU to main memory) requires a
very similar and dual procedure.

Intuitively, for correctness, a DMA write should be inserted
in a basic block wbb 1) that is situated after any basic block that
modifies the vector to be included in the AFU and 2) always
reaches cbb in the control flow. Therefore, after identifying
accessed vectors and scalars v in cbb, for every v, we execute
the following steps to determine the basic block wbb—a node
in the control flow graph (CFG) —where a DMA write should
be placed.

1) Determine the set P (polluters) of nodes where v is
written, excluding cbb, such that cbb is reachable from
each node in P .

2) For each node p ∈ P , determine the set of nodes reach-
able by it including p, which is indicated as Rp. Such a
set can be obtained in linear time by traversing the CFG.

3) Determine the set Dcbb of basic blocks that strictly domi-
nate cbb. A node n1 strictly dominates a node n2 if every
path from the procedure entry node to n2 passes through
n1 and n1 	= n2. This set can be computed in polynomial
time by traversing the CFG [24].

4) Compute the intersection of all sets: Swbb = Dcbb ∩
Rp1 ∩ Rp2 ∩ . . . , with p1, p2, . . . ∈ P . This represents
the set of nodes where it is correct to place a DMA write
operation.

5) Choose the node in Swbb with the least execution
count—this is wbb. If Swbb = φ, the DMA write is not
required.

Fig. 5 illustrates the algorithm as applied to the fft example.
Fig. 5(a) depicts the CFG of the application, where the entry
node is 0, cbb was identified as node 10, and the set of
polluter nodes P consists of node 3 only. Fig. 5(b) shows the
set R3, which contains nodes 2–16. Fig. 5(c) depicts the set
Dcbb, which consists of nodes {0, 1, 2, 4, 5, 6, 7, 8, 9}. Swbb =
{2, 4, 5, 6, 7, 8, 9} represents the set of nodes where it is correct
to insert a DMA write operation. The node where it is correct
and most beneficial to insert the DMA write is the one with the
least execution count, which in this case is node 4 (execution
counts, which are not shown here, are gathered with profiling).
Therefore, node 4 is finally chosen as wbb, and a DMA write is
placed there.
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Fig. 5. For the fft example. (a) Control flow graph. (b) Set R3: the set of nodes
that can be reached by polluter node 3. (c) Set D10: the set of nodes that strictly
dominate node 10.

VI. OTHER SOLUTIONS: FURTHER ANALYSIS

In our analysis for vectors inside the AFU, we adopt a con-
servative approach by assuming that corresponding to a given
array, each store operation creates a dependence for subsequent
memory operations. When some memory accesses go to the
AFU memory and others go to the main memory, special care
is taken so that the contents of the internal AFU memory and
that of the external main memory are consistent.

A. Maintaining Storage Consistency

As shown in Fig. 6, there are, in particular, three ways of
maintaining this consistency.

1) Consistent AFU memory [Fig. 6(a)]: This corresponds to
the case discussed so far in the previous section. Here,
the consistency between the AFU memory and the main
memory is achieved by assuring a consistent state within
the AFU. This is done by transforming each store st in
software into a special store st_loc from a register to the
local memory (instead of the main memory). Likewise,
each load ld in software is changed into a special load
ld_loc into a register from the local memory (but not
the main memory). These special load and store instruc-
tions are meant to be added as new instructions to the
instruction set. In order to maintain a consistent state
while entering the basic block, a DMA write into the local
memory may be executed to copy all the array elements
into the AFU memory. Similarly, a DMA read from the
local memory into the main memory may be executed
in order to maintain a consistent state while exiting the
basic block. As explained before, such DMA operations
of copying the whole array between the local memory and
the main memory take place in the basic block having
the least execution count. Other loads [ld] and stores [st]
inside the AFU operate on a consistent AFU memory.

2) Consistent main memory [Fig. 6(b)]: The second way of
maintaining storage consistency is to allow AFU access
to the main memory. Because the AFU directly accesses

data in the main memory, the loads ld and stores st that are
in software get the consistent state of the main memory.
In this case, there is no local storage inside the AFU.

3) Consistent main memory and AFU memory [Fig. 6(c)]:
Another way of maintaining consistency is by always
storing the data in both the main memory and the local
memory. If there is a nonzero number of loads inside
the AFU, an initial consistent state can be maintained by
writing the whole array into the AFU before the loop.

B. Analysis

The effective speedup brought about by the memory part of
the cut can be obtained by subtracting the overhead of data
transfer from the speedup contribution of the memory part.
Let the speedup contribution from the memory part of C be
Smem(C) and the overhead due to data transfer (by DMA) be
λoverhead(C). Thus, the effective speedup due to migration of
memory operations into the AFU can be expressed as follows:

Smem(C) − λoverhead(C).

For the sake of analyzing the effective speedup possible in the
three different configurations for maintaining storage consis-
tency, we represent the load/store operations inside a cut C as
enclosed within square braces. Let ld and st refer to load and
store operations in software, and let [ld] and [st] refer to those
inside the cut, respectively. Let the vector under consideration
be A, and unless otherwise stated, all the memory references
are with respect to A. In the following, we determine Smem and
λoverhead for the aforementioned three configurations possible
for maintaining storage consistency.

1) Consistent AFU memory: Smem(C) has two components,
namely 1) speedup due to moving the local memory
inside the AFU, getting rid of the costly memory ac-
cesses and 2) speedup due to special memory operations
(ld_loc and st_loc), which eliminate access to the main
memory. Thus,

Smem(C) =
((

λld · N[ld] + λst · N[st]

) − λmem
hw

)

+
(
(λld − λld_loc) · Nld + (λst − λst_loc) · Nst

)
.

In the preceding expression, λmem
hw refers to the criti-

cal path contributions due to memory operations inside
the cut (i.e., [ld] and [st]). Since the local memory is
integrated within the AFU, λmem

hw = 0. Let loads and
stores refer to all the loads and stores within the basic
block, respectively. Therefore, Nloads = Nld + N[ld], and
Nstores = Nst + N[st]. Simplifying the preceding expres-
sion, we get

Smem(C) = (λld · Nloads + λst · Nstores)

− (λld_loc · Nld + λst_loc · Nst).

As presented before, the overhead of data transfer is

λoverhead(C) =
Nwbb + Nrbb

Ncbb
· λDMA.
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Fig. 6. Three configurations for maintaining consistency: (a) Consistent AFU memory. (b) Consistent main memory. (c) Consistent main memory and
AFU memory.

2) Consistent main memory: If the main memory is accessed
from the AFU in the same way as it is from software,
both Smem(C) and λoverhead(C) are zero. Therefore, the
effective speedup due to the memory part in this case is
also zero.

3) Consistent main memory and AFU memory: Here, only
the load operations can contribute to speedup by being
inside the cut because all the store operations (whether
inside or outside the cut) write into both the local memory
and the main memory. Thus,

Smem(C) =
(
λld · N[ld] − λmem

hw

) − λst_loc · Nstores.

Since λmem
hw = 0,

Smem(C) =
(
λld · N[ld]

) − (λst_loc · Nstores).

Clearly, the speedup contribution due to the local memory
inside the cut is reduced by the stores that also write
into the local memory along with the main memory. The
DMA overhead is only because of the DMA writes before
entering the cbb. Thus,

λoverhead(C) =
Nwbb

Ncbb
· λDMA.

Having discussed the effective speedup contributions in the
three possible scenarios for maintaining storage consistency, we
should adopt a scheme that results in the greatest speedup. The

second case does not yield any speedup; therefore, we compare
only the first and the third cases.

Since Nloads > N[ld], and Nstores > Nst, Smem(C) in the
first case is evidently greater. Because the overhead due to
DMA transfer in most cases is hidden by other instructions, the
first case yields the highest effective speedup in the memory
part of the cut. Therefore, we adopted the first scheme of
maintaining AFU-memory consistency for introducing archi-
tecturally visible state inside the AFU.

VII. EXPERIMENT

We implemented our memory-aware ISE generation al-
gorithm on the MACHSUIF [25] framework. We used six
benchmarks to demonstrate the effectiveness of our approach:
adaptive differential pulse code modulation decoder (ADPCM
decoder, adpcm-d), ADPCM encoder (adpcm-e), fast Fourier
transform (fft), finite-impulse response filter (fir), Data Encryp-
tion Standard (des), and Advanced Encryption Standard (aes),
which are taken from Mediabench, EEMBC, and cryptography
standards. We chose the cycle-accurate SimpleScalar simulator
[26] for the ARM instruction set and modified it as follows: For
vectors, we introduced a DMA connection between the local
memory inside an AFU and the main memory by adding four
new instructions to the instruction set, namely: 1) set source
address (ssa); 2) set command register for transferring data to
the AFU memory (scmda); 3) set destination address (sda); and
4) set command register for transferring data to main mem-
ory (scmdm); two instructions are for setting the source and
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Fig. 7. Comparison of speedup for I/O constraints of 4/2 obtained on a four-issue (default) and a single-issue SimpleScalar with the ARM instruction set.

Fig. 8. Percentage reduction in the number of instructions executed and the number of memory accesses.

destination addresses, and two are for setting the command reg-
isters to transfer data from main memory to the AFU memory
and vice versa. For handling scalars, two additional instructions
were added to set and get local registers inside the AFU. Of
course, we also added the application-specific ISEs identified
by our ISE generation algorithm.

The hardware latency for each instruction was obtained by
synthesizing the constituent arithmetic and logic operators on
the Artisan UMC 0.18-µm CMOS process using the Synopsys
Design Compiler. The access latency of the internal mem-
ory (modeled as an SRAM) was estimated using the Artisan
UMC 0.18-µm CMOS process SRAM Generator. The default
SimpleScalar architecture has four integer ALUs, one integer
multiplier/divider, four floating-point adders, one floating-point
multiplier/divider, and a three-level memory hierarchy for both
instruction and data. The sizes of L1 and L2 data caches are
2 and 32 kB, respectively. The main memory has a latency of
18 cycles for the first byte and 2 cycles for subsequent bytes.
The same latency is also used when transferring data between
main memory and AFU by DMA.

A. Performance Gain

Our baseline case is pure software execution of all instruc-
tions. We set the I/O constraints to four inputs and two outputs

and generated a single cut to be added as an ISE to the
SimpleScalar architecture. First, we generated the cut without
allowing memory inclusion (“no MEM”). Then, we allowed
local memory inside with vector accesses (“w/VEC”) and
subsequently with scalar accesses also (“w/VEC+SCA”). For
these three cases, we show in Fig. 7 a comparison of speedup
on several applications obtained on the default SimpleScalar
architecture (four-width out-of-order issue) as well as on the
single-issue SimpleScalar architecture.

Observe that: 1) the speedup is raised tangibly when state-
holding AFUs are considered (1.4× on average for the case
with no memory to 2.8× for the “w/VEC+SCA” case, on the
default architecture) and 2) the trend of speedups obtained on
the two different configurations of the SimpleScalar architec-
ture is the same. The label des∗ indicates the results for des
with three ISEs rather than with a single one (des is the only
benchmark where a single cut was not enough to cover the
whole kernel). The suffixes “_8p” and “_2p” are used for des
and aes to indicate that the speedups correspond to the internal
AFU memory having eight ports and two ports, respectively.

The corresponding speedups on adding local memory
and then state registers inside the AFU on the single-issue
SimpleScalar are 2.65× and 2.9×. Fig. 8 shows the reduction in
the number of instructions executed and in the number of mem-
ory accesses. Interestingly, there is an average 9% reduction
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TABLE I
SUMMARY OF LOCAL MEMORIES SELECTED FOR THE

DIFFERENT BENCHMARKS

in memory operations even before incorporating memory inside
the AFU. This is because the ISEs generally reduce register
need (multiple instructions are collapsed into one) and there-
fore reduce spilling. With the incorporation of memory inside
the AFU, the average reduction in memory instructions is a
remarkable two thirds, hinting a very tangible energy reduction.
Note that by handling vectors and scalars in a unified manner,
our results clearly subsume the merits of including read-only
memory and state registers as presented in [4]. The benchmarks
adpcm-d, adpcm-e, and fir very clearly show the advantage of
including scalars by exhibiting a marked increase in speedup
due to the increased scope of ISE.

Table I shows that the sizes of the vectors incorporated in the
AFU for the given benchmarks are fairly limited. The maximum
number of read ports in the AFU internal memory is determined
by the number of parallel loads from the memory that take place
inside the AFU. The last column of Table I shows the number of
read ports required for the chosen application in the worst case.
As evident from Fig. 9, the area overhead of the local memories
introduced for the chosen benchmarks is minimal—on average,
only about 5% of the area occupied by a 32-kB direct-mapped
cache. Using the Artisan UMC 0.18-µm SRAM Generator, we
evaluated the area overhead, which correctly accounts for the
number of ports in the AFU memory. The AFU memory uses
Artisan single-port or dual-port SRAM. When more than two
ports are needed, the memory reads are sequentialized using an
approach similar to register file port sequentialization, as de-
scribed in a previous work [6]. The corresponding reduction in
performance due to such sequentializations is clearly depicted
in Fig. 7 (des_8p to des_2p and aes_8p to aes_2p).

Note here that if more memory ports are available, one can
easily avoid sequentialization of memory reads. In the case
of multiple read ports, we can use a design scheme similar
to that used in the Alpha 21624 processor [22] for increasing
the read ports of its integer register file. The basic idea is to
make more read ports available by using several replicas of
a memory, with all write ports in parallel (allowing all the
memory replicas to have the same content at all times). With
this scheme, the performance of des and aes would increase
from 2.2× (des_2p) to 2.6× (des_8p) and from 2.9× (aes_2p)
to 3.8× (aes_8p), respectively, for the default SimpleScalar
(four-issue) configuration. However, this advantage comes at a
considerable cost because the area overhead for des and aes
grows from 12.7% to 51% (of the cache area) and from 3.5% to
14% (of the cache area), respectively.

B. Energy Reduction

Our technique is also effective in reducing energy consump-
tion because of three primary reasons: 1) A significant number
of data-cache accesses are redirected to small tagless AFU-
resident memory. 2) The number of fetches is reduced as a
result of compaction of a large number of instructions into
an ISE. 3) There is lesser number of instructions executed
after encapsulating a set of instructions as ISE. The latter two
reasons are sufficient for expecting energy reduction in any ISE
generation approach. However, the first reason pertains only to
the inclusion of memory within an AFU. Therefore, we will
analyze the energy reduction, taking only the first feature into
account. We consider a 32-kB direct-mapped data cache (with
2048 lines of 16 B each) as used in typical implementations of
ARM for energy efficiency.

After mapping the state-holding ISEs to AFUs, let the num-
ber of accesses to the AFU local memory be NA and the number
of loads/stores directed to the cache be NC . Thus, the number
of accesses to the cache when there are no AFUs or for an
AFU that does not contain local memory is (NA + NC). If we
represent the energy per access for the AFU memory and cache
as EA and EC , respectively, the energy saving due to the AFU
memory can be expressed as

(NA + NC) · EC − (NA · EA + NC · EC)
(NA + NC) · EC

.

We characterized both the cache and the AFU-resident
memory using Artisan UMC 0.18-µm technology and found
the ratio (EC − EA)/EC to be 0.795 for the average size
(1 kB) of the local memory in the chosen applications.
Hence, the preceding expression simplifies into (0.795 · NA)/
(NA + NC). We present NA, NC , and percentage energy sav-
ing due to redirection of the data-cache accesses to the AFU
memory in Table II.

Because the energy estimations are done under a number of
conservative assumptions, we can safely say that the average
energy reduction in the cache due to AFU-resident memory
is at least 53%. Since the cache is a significant contributor
of system energy, using local memory in AFUs would re-
sult in a perceptible overall system energy reduction. Note
that our energy estimations do not include leakage energy
consumption.

C. Expanded ISEs Identified for fft and AES

Fig. 10 shows the kernel of fft, with the omission of address
arithmetic. Our memory-aware ISE identification algorithm
found it profitable to include a small internal memory with a
size of 1 kB (containing RealBitRevData and ImagBitRevData)
inside the AFU. This AFU memory is filled using a DMA write
before entering the fft kernel. With the local storage inside the
AFU, a single cut now covers the entire fft kernel, which re-
sults in almost doubling the speedup obtained without memory
in the AFU.
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Fig. 9. Area overhead of the local memories introduced (presented as a percentage of area occupied by a 32-kB direct-mapped cache).

TABLE II
PERCENTAGE ENERGY SAVINGS ESTIMATED FOR A 32-kB CACHE WITH THE INTRODUCTION OF LOCAL MEMORY

IN THE AFU FOR A FOUR-ISSUE AND ONE-ISSUE SIMPLESCALAR

Fig. 10. Data flow graph of fft. The whole kernel is chosen when archi-
tecturally visible storage is allowed; only the cut in a dotted line is chosen
otherwise.

In Fig. 11, we show the cut chosen for AES when memory
operations are allowed in ISE generation. Because of going
beyond memory barriers, a single cut encompasses a portion

more than the portion chosen, with two cuts lacking memory
inside the AFU. This graphically illustrates an increase in the
scope of ISE because of including an architecturally visible
state inside the AFU.

VIII. CONCLUSION

Embedded processors can be accelerated by augmenting
their core with application-specific ISEs. Traditionally, memory
access operations were either not included in automatically
generated ISEs or were limited to special classes of memory
operations; thus, ISEs were so far limited by the “memory wall”
problem. This is the first comprehensive effort to overcome
the memory wall problem for ISEs. Specifically, the main
contributions presented in this paper are given as follows. 1) We
show an architectural modification to include architecturally
visible storage inside AFUs, clearly encompassing the special
cases addressed by the previous work. 2) We introduce an
algorithm to profitably identify code positions for inserting
data transfers between the main memory and the local storage
in ISEs. We demonstrate the effectiveness of our automated
approach by incorporating the generated ISEs in the cycle-
accurate SimpleScalar simulator.
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Fig. 11. Cut chosen in aes. The shown DFG portion is completely chosen when architecturally visible storage is allowed; otherwise, only the cut within a dotted
line is chosen.

Our results show that the average speedup on a number
of benchmarks increases from 1.4× to 2.8× by including
architecturally visible storage in ISEs. Furthermore, an ac-
companied reduction of costly memory accesses by two thirds
clearly highlights a concomitant reduction in energy. We
showed an average energy reduction of 53% in a 32-kB
data cache due to redirection of costly memory accesses into
a tagless AFU-resident memory. We also showed that the
area overhead of introducing these local memories is very
moderate.
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