Exploring FPGA Network on Chip Implementations
Across Various Application and Network Loads

Graham Schelle and Dirk Grunwald
Deptartment of Computer Science
University of Colorado at Boulder

Boulder, CO

Abstract—

The network on chip will become a future general purpose
interconnect for FPGAs much like today’s standard OPB or
PLB bus architectures. However, performance characteristics and
reconfigurable logic resource utilization of different network on
chip architectures vary greatly relative to bus architectures. Cur-
rent mainstream FPGA parts only support very small network
on chip topologies, due to the high resource utilization of virtual
channel based implementations. This observation is reflected in
related research where only modest 2x2 or 2x3 networks are
demonstrated on FPGAs.

Naively it would be assumed that these complex network
on chip architectures would perform better than simplified
implementations. We show this assumption to be incorrect under
light network loading conditions across 3 separate application
domains. Using statistical based network loading, a synthetic
benchmarking application, a cryptographic accelerator, and a
802.11 transmitter are each demonstrated across network on chip
architectures. From these experiments, it can be seen that net-
work on chips with complex routing and switching functionality
are still useful under high network loading conditions. Addition-
ally, it is also shown for our network on chip implementations,
a simple solution that uses 4-5x less logic resources can provide
better network performance under certain conditions.

I. INTRODUCTION

For FPGA designers, there is always a tendency to look
at standard processor communication paradigms and adopt
them in standard on chip FPGA communication protocols.
This is apparent from Xilinx FPGAs adopting IBM’s PLB bus
architecture to be compatible with their embedded PowerPCs.
But FPGA designers typically keep the arbitration and re-
source utilization low for these bus architectures, more so than
processor designers. This simplified implementation is due to
equivalent transistor densities on FPGAs lagging ASICs by an
order of magnitude [1]. The bus architectures utilize so little
logic resources, that they can follow ASIC implementations
fairly close without taking up any sizable amount of onchip
resources.

But now moving towards network on chip (NoC) architec-
tures, the actual “wire” now consists of distributed switches,
buffering, and arbitration. FPGA designers therefore cannot
treat the network on chip “wire” as they similarly treat the bus
shared wire described above when it comes to reconfigurable
logic utilization. FPGA transistor densities cannot support
large network on chip dimensions like it could with large
counts of processing elements connected to a bus.

978-1-4244-1961-6/08/$25.00 ©2008 IEEE. 4
1

As we will discuss further in section II, there are many
implementations of virtual channel NoCs for FPGAs. How-
ever, these implementations are also very small, only fitting
2x2 or 2x3 dimension NoCs on current FPGAs. While FPGA
transistor densities will steadily increase, network on chips
should stay as small as possible while meeting application
specific performance constraints.

In this paper, we show that complex network on chip
implementations are not always necessary to get the best
network performance. In our case, a complex network on chip
is a virtual channel implementation with a 5x5 crossbar at
each switching node. A simple network on chip utilizes no
virtual channels, has single word buffers per channel and a
simplified switch. Also, “best” performance is measured on 3
domain specific applications with application specific metrics
of performance. Specifically we look at three applications:

« A synthetic benchmarking application. In this application,
all nodes on the networks send packets to uniformly
distributed destinations across the NoC.

o A cryptographic accelerator. Using a processor and an
accelerator communicating over the NoC, the processor
requests text to be encrypted for use in a DES brute force
attack.

o An 802.11 transmitter. This dataflow application streams
and processes data packets through the network to a DAC
(digital to analog converter).

From these three applications, we load the network on
chip with increasing traffic to show that in each domain, the
performance graphs vary greatly depending on the NoC im-
plementation and the network loading by applications running
in parallel.

This paper is organized as follows: Section II discusses
how today’s bus architectures are utilized and how network
on chips scale in size. Two representative network on chip
implementations are presented in section III that will be used
in this research’s experiments. Measured runtime results are
described in IV, followed by conclusions.

IT. ONCHIP INTERCONNECTS: SIZE AND UTILIZATION

In the introduction, we made claims about the reconfigurable
logic utilization of network on chips placed on FPGAs. In this
section, we quantify those claims looking at various network
on chip projects targeting FPGAs.

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

TABLE 1
NUMBER OF FPGA FLIP FLOPS (FFS) AND LUTS USED BY A NOC FOR A
VIRTEX-5 ARCHITECTURE. SPECIFICALLY, THE XILINX FPGA
XCS5VLX50T IS BEING EXAMINED.

Virtual Channel Implementation (NoCem)

Topology Datawidth FFs/LUTs FFs/LUTs used (%)
2x2 16b 2,322 /3,632 8% 1 12%

3x3 16b 6,021 /9,237 22% [32%
4x4 16b 12,625 /19,691 43% | 68%
2x2 32b 3,864 /5,534 13% / 19%
3x3 32b 10,778 / 15,593 37% | 54%
4x4 32b 20,551 /30,102 1% 1 104%

Simple NoC Implementation

Topology Datawidth FFs/LUTs FFs/LUTs used (%)
2x2 16b 476 / 714 2% | 2%

3x3 16b 1,246 / 1,961 4% 1 7%

4x4 16b 2,369 /3,742 8% 1 13%

2x2 32b 732 /1,034 3% | 4%

3x3 32b 1,918 /2,777 7% 1 10%

4x4 32b 3,649 /5,278 13% [18%

Additionally, we examine some representative applications
that run on Xilinx’s OPB or PLB buses. This examination is
done to show just how often onchip interconnects are used in
current applications. This initial survey will be necessary to
draw broader conclusions about how heavily network on chips
will be utilized by FPGA designs.

A. Network on Chip Reconfigurable Logic Utilization

Using a very popular FPGA in the research community (a
Virtex-II Pro xc2vp30), the LiPaR [2] research project was
able to emulate a 3x3 NoC architecture with 8b datapaths
using 27% of the FPGA resources. This NoC is not a virtual
channel implementation, but does make for a light-weight
router architecture which was the intention of the project.
The open source NoC emulation project, NoCem [3] is the
NoC architecture we based our work from as it is freely
available. Table I shows the utilization of this emulator on
top of a Xilinx Virtex-5 FPGA. Additionally within the table
is the sizing of a extremely lightweight network on chip that
we developed for this research. This implementation will be
further discussed in section III. This comparison is presented
here to show the extreme size difference between network on
chip implementations. For now all that is needed to know for
the comparison is that the “Simple NoC Implementation” does
not use virtual channels or high throughput switches within the
network, trading higher bandwidth for a size reduction.

The Virtex-5 architecture is the latest FPGA produced by
Xilinx, yet still can only hold modest sized virtual channel
network on chips. Specifically within that emulation environ-
ment, a 3x3 NoC architecture with 16b datapaths used 22%
of the FPGA resources (32b datapath used 54%), making the
NoC itself a large consumer of logic resources. In several
other NoC frameworks [4], [5], a 2x2 or 2x3 sized NoC were
examined. These projects do show that a single FPGA can
only hold a very small NoC architecture across several NoC
implementations.

42

TABLE 11
BUS UTILIZATION OF SEVERAL OPENLY AVAILABLE XILINX EDK
PROJECTS.

Virtual Channel Implementation (NoCem)

Design Board Bus Bus Utilization (%)
Audio Filter XUP (Virtex2Pro) OPB 1.93%
uClinux XUP (Virtex2Pro) OPB 3.42%
(bootup)

uClinux XUP (Virtex2Pro) OPB 0.20%
(standby)

Web Server XUP (Virtex2Pro) PLB 15.30%
DMA Transfer Xilinx ML505 OPB 8.32%

FFT Accelera- | Xilinx ML505 OPB 2.57%

tor

B. Current Onchip Interconnect Utilization

As a precursor to building these various network on chip
implementations, we first examined how today’s applications
use FPGA on chip interconnects. Specifically, we looked at
how OPB and PLB bus architectures were utilized across a
variety of applications. Table II lists out the applications we
examined and the utilization of the onchip interconnect.

To do these experiments, we took off the shelf example
projects provided by Xilinx or other openly available research
project source files. Inserting chipscope cores onto the bus, the
bus could be monitored for transaction requests and replies
going across the interconnect. The utilization of the bus
was measured over 1 million clock cycles of execution. The
monitoring started at an application specific point in time (e.g.
for the DMA Transfer application, the monitoring started once
the DMA controller was initialized). These numbers may not
capture bursty behavior of the applications, but give good
insight into how little onchip interconnects are used.

The majority of the applications presented utilize the bus
very sporadically. As these are processor designs, there is
typically use of a cache which limits the number of necessary
instruction and data transactions. Not all the applications use
a bursting mechanism either on the bus, creating less traffic on
the bus, as each transaction requires an arbitration step. Inter-
estingly, whenever a UART is involved that accepts interactive
input, there is a constant stream of polling operations on the
UART (most noticeable in the uClinux applications).

And while these applications measured only reflect pro-
cessor designs, memory intensive applications (e.g. the DMA
transfer and web server) resemble data flow applications from
the view of the interconnect. The memory reads and writes
are being bursted on the interconnect, not being hindered by
the standard processor to logic interfaces. The PLB has much
better burst support and the web server design uses the bus
at a high utilization rate. The web server design utilization
counter was triggered on a Ethernet frame reception, leading
to a high utilization time period.

Interestingly from this precursory work, the bus is used very
little in most cases (under 10% for all but one experiment),
with most of the heavy traffic coming from polling operations
when a processor is being used. While most FPGA gen-
eral purpose interconnects (i.e. buses) are used for processor

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

VC_channel

VC controllers vC
allocation

VCs

e

Channel
ingress

Switch
allocation

Fig. 1. Block diagram of a NoCem virtual channel implementation.

control-flow applications, network on chips will be used for
both processor and reconfigurable logic-only designs. We
explore both a cryptographic accelerator (processor + HW)
and an 802.11 transmitter (HW only) in order to capture both
forms of FPGA designs.

III. NETWORK ON CHIP CONFIGURATIONS AND
EXPERIMENT METHODOLOGY

This section briefly describes the network on chip imple-
mentations we examine and the experimental methodology
for running applications over these NoCs. The general ter-
minology of network of chips is well-known, and Dally et
al. [6] provides the basics of a network on chip vocabulary.
The basic blocks, routing, and construction of a network on
chip is described here in terms of how the implementations
are realized on FPGAs.

Typical NoC designs are constructed to be a virtual channel,
flit based networks whether an ASIC or FPGA architecture
is targeted. Various other configuration parameters can exist
for buffer lengths, datawidth, and topologies. Deterministic
routing is the basic path creation for packets through the
network, leading to provable deadlock-free routing, a highly
desirable characteristic. Also, the flit size (i.e. the unit of
flow control) typically equals the phit size (i.e. the physical
transmission unit across any link) within these networks.

A. Network on Chip Components

Any network on chip is constructed of network links and
switches in an arbitrary topology. We briefly look at the
traditional implementations of these components, focusing
on how their design can be challenging to place efficiently
on FPGAs. The components considered in this work utilize
various switching, buffering, arbitration, and physical link
characteristics.

Physical Channel. Most network on chip implementations
seen today use virtual channels within each physical link as
shown in figure 1. Using virtual channels gives each physical
link in the network multiple lanes so that packets can bypass
one another at the network switches. This plurality of lanes
in each link can lead to higher throughput of the network and
facilitate deadlock free routing. While this higher bandwidth

43

is ideal in any networking scenario, the resource utilization
of a virtual channel implementation can be unattractive. As
can be seen in the figure, state must be kept for each virtual
channel and then arbitration must occur for the virtual channels
communicating to the switch. NoC implementations differ on
how many virtual channels can reach the ingress and egress
switches at any given clock cycle, but this figure shows one
representative implementation.

Node arbitration. Fair arbitration within the switch itself
requires much more work if virtual channels are involved.
There must be arbitration for both outgoing virtual channel
allocation and for switch allocation. Both arbitration schemes
must be able to communicate with ALL incoming virtual
channels and with ALL outgoing virtual channels in order
to make arbitration decisions. One of the first and best vir-
tual channel allocation scheme involved flit-reservations in
a sliding window implementation of virtual channel buffer
allocations [7]. This complex arbitration scheme has not yet
been implemented on FPGAs due to the fact that such large
decision making storage and control would presumably not fit
on current FPGA architectures.

Node Switch. The switch in a virtual channel implemen-
tation can be constructed in a variety of ways in order to
gain the maximum throughput within the switch. The switch
used in our virtual channel implementation is an all-to-all mux
that allows multiple paths of communication simultaneously.
Five transfers could occur at once theoretically, but this would
require each incoming channel to have something to send AND
with destinations to unique outgoing channels. Within FPGAs,
this becomes a large wire routing challenge.

B. The Simple NoC Implementation

With those 3 components that create a basic network on
chip, each component can be simplified in order to create
the simplest network on chip implementation. The actual
simplifications are described here.

Shrinking the Physical Channel. We simply throw away
the notion that FPGA based network on chips should use
virtual channels. By doing so, a simple one-word FIFO can
be employed to act as the physical channel link between
any two switches. All the allocation logic and state machines
associated with pushing flits through the virtual channel lanes
are no longer necessary. As long as deterministic routing
is used to move packets through the network, the network
is still deadlock-free. Keeping the network deadlock free is
accomplished by using XY routing, where packets traverse
in the X direction first, then once in the correct column, the
packet traverses in the Y direction.

Shrinking the Node Arbitration With no virtual channels,
there is no need for virtual channel allocation, a large control
structure within each node. Without the virtual channel allo-
cation step, there is also less sideband state and signaling that
must occur within packets.

Shrinking the Node Switch. We simplify the switch by
only allowing 1 switching decision to be made at any given
time. This is the smallest switch we could conceivably create

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

TABLE III
NETWORK ON CHIP IMPLEMENTATION COMPARISON.

Virtual Channel Simple
Dimensions 8x8 mesh 8x8 mesh
Buffer space per channel 8 1
Virtual channels 2 N/A
Transfers per switch per cycle 5 1
Max packet size 8 words 8 words
Datawidth 32b 32b

at a high level. This simplification will of course cause the total
throughput of the network on chip to be lower, but this would
only occur only when several applications are competing for
NoC resources.

C. Network on Chip Implementation Summary

Table III summarizes the differences between our virtual
channel and simple network on chip implementations. The
datawidth is kept the same for both implementations at 32b.
We keep the maximum packet size at 8 words per packet. This
limitation keeps some fairness in the network in the virtual
channel implementation (i.e. not allowing any given packet to
control a large amount of buffer space within the network).

We chose to keep the datawidths and buffer slots constant
throughout the experimental applications. We hold the number
of virtual channels per physical channel constant at rwo lanes
per channel. We found that higher count virtual channels
increased performance at diminishing rates as compared to
the reconfigurable logic utilization. Furthermore, the benefit of
deadlock free routing can be accomplished utilizing two lanes,
where additional lanes would only increase channel buffer
space. While arguably altering datawidths and buffer slots
would change the results, we found that comparing a single
virtual channel implementation to a single simple network on
chip implementation leads to interesting results.

D. Experiment Methodology

The next three sections describe the actual applications
(a synthetic benchmarking application, a cryptographic ac-
celerator, and a 802.11 transmitter). Briefly, we describe the
environment in which each experiment is ran, and how results
are collected.

Each application is written to run on both the simple
and virtual channel NoC implementations. Functionality is
identical for the applications regardless of which NoC they
run on top of. One instance of the application is run on 4
locations on an 8x8 NoC; each successive placement being
more affected by network traffic (i.e. placements in the middle
of the chip see heavy network traffic, while placements on
the corners of the mesh will not). We do not show these
placements to save space for analysis and results, but the
placements were made in an application specific way in order
to get meaningful averages across all possible placements.

During these runs, the network is loaded by NoC traffic
generators to create a desired loading on the network. This
loading is made to represent other applications running in

44

180

160 4— -
—@— Simple

140 i

—e— Virtual Channel

Average Packet Latency (cycles)

0 5 10 15
Network Load (%)

Fig. 2. The benchmarking application’s average packet latency across 2 NoC
implementations. Note that the Y-axis is measured in packet latency, where
lower latency equates to better performance for this application.

parallel to the application under test. The traffic generator com-
municates only to other tiles not involved in the application
under test. For example, our 802.11 transmitter requires 4 tiles
on the NoC. The traffic generators will ignore these tiles and
only send packets to the other traffic generators. The traffic
generators consume packets as soon as they are present at the
NoC access point interfaces.

The traffic generators create traffic using a exponential
distribution of packet arrival times to the network on chip
interface. This distribution models a Poisson process leading
to the desired average loading of the network on chip from
1-15%. One the network on chip is loaded heavier than 15%,
the network on chip was observed to be completely saturated
and results reached a steady state.

The various placements of the single application on the
NoC return application specific metrics of performance. These
metrics will be described in the results section (section IV).
These various placements are each averaged together in order
to observe how the application behaves across various place-
ment strategies.

E. Development Tools, Methodology, and Experimental Envi-
ronment

All source code and development was done within the
Xilinx toolflow. Specifically Xilinx ISE 9.1 and EDK 9.1
tools were used to create the FPGA designs. Modelsim 6.2b
was used to debug, verify, and simulate the 8x8 network on
chips. Each application was verified in hardware on either
a Xilinx University Program Virtex2Pro board or a Xilinx
ML505 board.

IV. RESULTS

A. The Synthetic Benchmarking Application

This application continuously sends 8 word packets among
participating tiles on the network on chip. The destination
addresses are randomly generated and uniformly distributed

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

64-bit plaintext

/\/_’_\
Initial Permutation
K1
@;LJ_[Permuted Choice 2

56-bit key

S EE—
Permuted Choice 1

Left Circular Shift }

|

K.
[Round 2 J‘_Z[Permuted Choice ZH Left Circular Shift
I I
1 1
h 4 K h 4
[Round 16 £ Permuted Choice 2]‘_[Left Circular Shift]

32-bit Swap

Inverse Initial

Permutation
-
64-bit ciphertext

Fig. 3. The DES algorithm.

and the application itself consumes the entire 64 nodes on
both NoC implementations. The metric of performance of
this application is average packet latency, where of course a
lower latency equates to better system performance. Figure 2
on the previous page shows the results of running this 64-
node benchmarking application on both network on chip
implementations.

As can be seen, at low levels of network loading (i.e. the rate
at which the tiles send packets), the simple implementation of
the network on chip has a lower packet latency than the virtual
channel implementation. At 4% loading, the two implementa-
tions cross and the simple implementation quickly struggles to
keep up with the virtual channel implementation. The virtual
channel implementation moves packets consistently through
the network as each traverse in the path reserves a flow
for following packet words. This behavior is similar to most
other virtual channel benchmarking applications published in
various research [8]. The simple implementation at the highest
network loading levels is still able to deliver packets, but as
there is little in-network buffering, packets spend a good deal
of time waiting to gain access to the interconnect.

This number of 4% should also be compared back to
Table II where many of the applications did not use the
onchip interconnect frequently. Again, it is difficult to compare
bus to network on chip utilization numbers, but this does
show that some applications may not benefit from a virtual
channel implementation. The next two sections show how real
applications utilize network on chip architectures.

B. The Cryptographic Accelerator Application

Cracking cryptographic algorithms are well understood
when using simple brute force methods. Typically, this is done
giving the algorithm plain text P, and retrieving the cypher
text C7. Then, the cryptographic algorithm is cycled with P
and every possible key K;...K(,, until the same cypher text
is generated. From that information, the original key is found
the attack has been successful. Clearly though, like any usable

45

265000

—@—Simple

mi —e— Virtual Channel
250000 \
245000 \

240000 -

260000

255000

Keys Generated per Second

235000

230000

0 5 10 15

Network Load (%)

Fig. 4. The cryptographic accelerator’s performance across the 2 NoC
implementations.

cryptographic algorithm, it is provably hard to do this task in
a timely manner.

The DES standard specifically uses 16 rounds of permuting
a key and plain text resulting in a cipher text. Figure 3 shows
the algorithm at a high level. In this example application
domain, a simple SW/HW DES brute force cracker is created
that uses a single processor and a HW accelerator to encrypt
plain text with ALL possible keys. Architecturally, this is ac-
complished with a Microblaze processor that communicates to
a dedicated DES encryption engine that is located on the NoC.
The Microblaze simply manages the keys and surrounding
software, while the DES encryption algorithm can quickly
(10 clock cycle average) encrypt plain text. The performance
metric with this application is how many keys can be generated
per second.

This task uses the network on chip sporadically, feeding the
accelerator keys as quickly as possible, but spending most of
its time either checking (in SW) or generating keys (in HW)
as part of the algorithm. Fig 4 shows that only after a heavy
loading of the network on chip, do the two implementations
produce the same amount of keys per second. Interestingly,
it can be observed that the virtual channel implementation
has a much more graceful degradation in performance, while
the simple implementation again has a rapid slope in its
performance curve.

C. The 802.11 Transmitter Application

We took an existing 802.11 transmitter partitioned over a
network on chip [9] and made slight modifications so that it
could work on top of both network on chip implementations.
Four processing tiles are required for this application. The first
processing tile, a source node, generates samples for trans-
mission. The second tile modulates the signal using a BPSK
modulation scheme. The third tile then takes the modulated
samples and using a DFT (discrete Fourier transform), sends
the signals to the fourth processing tile, a sink node on the
NoC that is attached to a digital to analog converter.

This pipeline of signal processing will stress the network on

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

60

5°m

40 —@— Simple

—g— Virtual Channel

Megasamples / Second
n
o

Network Load (%)

Fig. 5. The 802.11 transmitter application’s behavior across the 2 NoC
implementations.

chip, as it truly is a dataflow application that will attempt to
push as many packets through the network as possible. In the
face of contention on the network on chip with competing
applications, this 802.11 transmitter will create bottlenecks
on the network, testing arbitration schemes and switching
bandwidth.

Figure 5 shows the results of the 802.11 transmitter on
the two NoC implementations. This application loads the
network at approximately a 50% rate, limited by the DFT
block implementation and handshaking costs at the network
interfaces. This high level of loading is typically not achievable
by FPGA designs utilizing a processor-bus interface, but is
clearly possible with network on chip architectures.

This application is also interesting in that the network on
chip has little influence on the virtual channel implementation,
while also showing a substantial degradation in performance
on the simple implementation. While the synthetic bench-
marking application and the cryptographic accelerator did not
benefit much from a virtual channel implementation, clearly
here the opposite is true. The network is so saturated with
this application’s packets, that the actual computation delay
(within the modulation and the DFT blocks) is great enough
to mask away any delay caused by samples reserving paths
through the network.

Overall, a virtual channel implementation guarantees a high
throughput (2-2.5x more than simple implementation) for a
802.11 transmitter across all network loads.

D. Results summary

Looking at the three applications ran, there is not one
best network on chip implementation for all applications. For
streaming data through the network, virtual channels are a
must, allowing larger packets to travel through the network in
a flowing manner. In control flow systems (i.e. processors —>
memory, processor —> computation accelerators), applications
are fairly resilient to low network loads. Specifically, this can
be seen in the cryptographic accelerator, where most of the

46

work is done in computation, not moving data on chip. In
data hungry applications, where computation is cheap and
communication expensive, more logic resources should be
spent on the NoC, leading to results similar to the 802.11
transmitter experiment.

One metric of success that we did not examine was logic
resource utilization of these 8x8 NoCs. The virtual channel
implementation is on average 400-500% larger than the simple
implementation as shown back in Table I. This factor has
influenced current research projects and can not be ignored
in industry.

V. CONCLUSIONS

In this paper, we presented two representative general
purpose NoC implementations (virtual channel and simple
physical channel) to demonstrate how real applications would
perform under a range of network loads. We showed that
a complex NoC architecture does not always lead to bet-
ter application performance across a benchmarking and a
cryptographic accelerator application. We also showed that
data-flow applications benefit greatly from virtual channel
implementations demonstrated by the 802.11 transmitter.

FPGAs and reconfigurable computing allow users to con-
figure and combine pre-existing IP to create complex designs.
From this work, it is clear that the chosen configuration of
a network on chip greatly determines whether a design will
meet area and performance constraints. Hopefully as general
purpose NoC interconnects become available as standard IP,
the underlying NoC architecture will be flexible enough to
support the wide variety of application and network loads that
will exist on these reconfigurable platforms.

REFERENCES

[1] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 26, no. 2, pp. 203-215, Feb. 2007.

[2] B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri, “LiPaR: A light-
weight parallel router for FPGA-based networks-on-chip,” in GLSVSLI
'05: Proceedings of the 15th ACM Great Lakes symposium on VLSI.
New York, NY, USA: ACM Press, 2005, pp. 452-457.

[3] G. Schelle and D. Grunwald, “Onchip interconnect exploration for
multicore processors utilizing FPGAs,” in 2nd Workshop on Architecture
Research using FPGA Platforms, 2006.

[4] N. Genko, D. Atienza, G. D. Micheli, J. M. Mendias, R. Hermida, and
F. Catthoor, “A complete network-on-chip emulation framework,” Design,
Automation and Test in Europe, vol. 01, pp. 246-251, 2005.

[5] J. B. Pérez-Ramas, D. Atienza, M. Peén, I. Magan, J. M. Mendias,
and R. Hermida, “Versatile FPGA-based functional validation framework
for networks-on-chip interconnections designs.” in PARCO: International
Conference on Parallel Computing, 2005, pp. 769-776.

[6] W. J. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Proceedings of the Design Automation Conference,
Las Vegas, NV, June 2001, pp. 684—689.

[7] L.-S. Peh and W. J. Dally, “Flit-reservation flow control,” HPCA, vol. 00,
p- 73, 2000.

[8] D. Wiklund, S. Sathe, and D. Liu, “Benchmarking of on-chip intercon-
nection networks,” in Proc of the International Conference on Microelec-
tronics (ICM), 2004.

[9]1 G. Schelle, J. Fifield, and D. Grunwald, “A software defined radio
application utilizing modern FPGAs and NoC interconnects,” Field
Programmable Logic and Applications, 2007. FPL 2007. International
Conference on, pp. 177-182, Aug. 2007.

Authorized licensed use limited to: University of Florida. Downloaded on March 3, 2009 at 17:02 from IEEE Xplore. Restrictions apply.

