
1

Embedded Systems Design: A Unified

Hardware/Software Introduction

Chapter 11: Design Technology

2Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Outline

• Automation: synthesis

• Verification: hardware/software co-simulation

• Reuse: intellectual property cores

• Design process models

3Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

• Design task

– Define system functionality

– Convert functionality to physical implementation while

• Satisfying constrained metrics

• Optimizing other design metrics

• Designing embedded systems is hard

– Complex functionality

• Millions of possible environment scenarios

• Competing, tightly constrained metrics

– Productivity gap

• As low as 10 lines of code or 100 transistors produced per day

Introduction

4Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Improving productivity

• Design technologies developed to improve productivity

• We focus on technologies advancing hardware/software unified

view

– Automation

• Program replaces manual design

• Synthesis

– Reuse

• Predesigned components

• Cores

• General-purpose and single-purpose processors on single IC

– Verification

• Ensuring correctness/completeness of each design step

• Hardware/software co-simulation

Reuse

Specification

Implementation

Automation

Verification

5Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Automation: synthesis

• Early design mostly hardware

• Software complexity increased with advent
of general-purpose processor

• Different techniques for software design
and hardware design

– Caused division of the two fields

• Design tools evolve for higher levels of
abstraction

– Different rate in each field

• Hardware/software design fields rejoining

– Both can start from behavioral description in
sequential program model

– 30 years longer for hardware design to reach
this step in the ladder

• Many more design dimensions

• Optimization critical

Implementation

Assembly instructions

Machine instructions Logic gates

Logic equations / FSM's

Register transfers

Sequential program code (e.g., C, VHDL)

Compilers
(1960s,1970s)

Assemblers, linkers
(1950s, 1960s)

Behavioral synthesis
(1990s)

RT synthesis

(1980s, 1990s)

Logic synthesis

(1970s, 1980s)

Microprocessor plus
program bits

VLSI, ASIC, or PLD
implementation

The codesign ladder

6Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Hardware/software parallel evolution

• Software design evolution

– Machine instructions

– Assemblers

• convert assembly programs into machine
instructions

– Compilers

• translate sequential programs into assembly

• Hardware design evolution

– Interconnected logic gates

– Logic synthesis

• converts logic equations or FSMs into gates

– Register-transfer (RT) synthesis

• converts FSMDs into FSMs, logic equations,
predesigned RT components (registers,
adders, etc.)

– Behavioral synthesis

• converts sequential programs into FSMDs
Implementation

Assembly instructions

Machine instructions Logic gates

Logic equations / FSM's

Register transfers

Sequential program code (e.g., C, VHDL)

Compilers
(1960s,1970s)

Assemblers, linkers
(1950s, 1960s)

Behavioral synthesis
(1990s)

RT synthesis

(1980s, 1990s)

Logic synthesis

(1970s, 1980s)

Microprocessor plus
program bits

VLSI, ASIC, or PLD
implementation

The codesign ladder

7Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Increasing abstraction level

• Higher abstraction level focus of hardware/software design evolution

– Description smaller/easier to capture

• E.g., Line of sequential program code can translate to 1000 gates

– Many more possible implementations available

• (a) Like flashlight, the higher above the ground, the more ground illuminated

– Sequential program designs may differ in performance/transistor count by orders of magnitude

– Logic-level designs may differ by only power of 2

• (b) Design process proceeds to lower abstraction level, narrowing in on single

implementation

(a) (b)

idea

implementation

back-of-the-envelope

sequential program

register-transfers

logic

m
o

d
el

in
g

 c
o

st
 i

n
cr

ea
se

s

o
p

p
o

rt
u

n
it

ie
s

d
ec

re
as

e

idea

implementation

8Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Synthesis

• Automatically converting system’s behavioral description to a structural

implementation

– Complex whole formed by parts

– Structural implementation must optimize design metrics

• More expensive, complex than compilers

– Cost = $100s to $10,000s

– User controls 100s of synthesis options

– Optimization critical

• Otherwise could use software

– Optimizations different for each user

– Run time = hours, days

9Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Gajski’s Y-chart

• Each axis represents type of description

– Behavioral

• Defines outputs as function of inputs

• Algorithms but no implementation

– Structural

• Implements behavior by connecting
components with known behavior

– Physical

• Gives size/locations of components and
wires on chip/board

• Synthesis converts behavior at given level
to structure at same level or lower

– E.g.,

• FSM ! gates, flip-flops (same level)

• FSM ! transistors (lower level)

• FSM X registers, FUs (higher level)

• FSM X processors, memories (higher level)

Behavior

Physical

Structural

Processors, memories

Registers, FUs, MUXs

Gates, flip-flops

Transistors

Sequential programs

Register transfers

Logic equations/FSM

Transfer functions

Cell Layout

Modules

Chips

Boards

10Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Logic synthesis

• Logic-level behavior to structural implementation

– Logic equations and/or FSM to connected gates

• Combinational logic synthesis

– Two-level minimization (Sum of products/product of sums)

• Best possible performance

– Longest path = 2 gates (AND gate + OR gate/OR gate + AND gate)

• Minimize size

– Minimum cover

– Minimum cover that is prime

– Heuristics

– Multilevel minimization

• Trade performance for size

• Pareto-optimal solution

– Heuristics

• FSM synthesis

– State minimization

– State encoding

11Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Two-level minimization

• Represent logic function as sum of

products (or product of sums)

– AND gate for each product

– OR gate for each sum

• Gives best possible performance

– At most 2 gate delay

• Goal: minimize size

– Minimum cover

• Minimum # of AND gates (sum of products)

– Minimum cover that is prime

• Minimum # of inputs to each AND gate (sum

of products)

F = abc'd' + a'b'cd + a'bcd + ab'cd

Sum of products

4 4-input AND gates and
1 4-input OR gate

! 40 transistors

a

b

c

d

F

Direct implementation

12Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Minimum cover

• Minimum # of AND gates (sum of products)

• Literal: variable or its complement

– a or a’, b or b’, etc.

• Minterm: product of literals

– Each literal appears exactly once

• abc’d’, ab’cd, a’bcd, etc.

• Implicant: product of literals

– Each literal appears no more than once

• abc’d’, a’cd, etc.

– Covers 1 or more minterms

• a’cd covers a’bcd and a’b’cd

• Cover: set of implicants that covers all minterms of function

• Minimum cover: cover with minimum # of implicants

13Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Minimum cover: K-map approach

• Karnaugh map (K-map)

– 1 represents minterm

– Circle represents implicant

• Minimum cover

– Covering all 1’s with min # of

circles

– Example: direct vs. min cover

• Less gates

– 4 vs. 5

• Less transistors

– 28 vs. 40

11

10 0 0

0 0 1 0

1 0 0 0

0 0 0

ab
cd

00

01

11

10

00 01 10

1

10 0 0

0 0 1 0

1 0 0 0

0 0 0

ab
cd

00

01

11

10

00 01 11 10

1

F=abc'd' + a'cd + ab'cd

a

b

c

d

F

2 4-input AND gate
1 3-input AND gates
1 4 input OR gate

 ! 28 transistors

K-map: sum of products K-map: minimum cover

Minimum cover

Minimum cover implementation

14Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Minimum cover that is prime

• Minimum # of inputs to AND gates

• Prime implicant
– Implicant not covered by any other

implicant

– Max-sized circle in K-map

• Minimum cover that is prime
– Covering with min # of prime implicants

– Min # of max-sized circles

– Example: prime cover vs. min cover

• Same # of gates

– 4 vs. 4

• Less transistors

– 26 vs. 28

10 0 0

0 0 1 0

1 0 0 0

0 0 0

ab
cd

00

01

11

10

00 01 11 10

1

K-map: minimum cover that is prime

Minimum cover that is prime

F=abc'd' + a'cd + b'cd

1 4-input AND gate

2 3-input AND gates

1 4 input OR gate

! 26 transistors

F

a

b

c

d

Implementation

15Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Minimum cover: heuristics

• K-maps give optimal solution every time

– Functions with > 6 inputs too complicated

– Use computer-based tabular method

• Finds all prime implicants

• Finds min cover that is prime

• Also optimal solution every time

• Problem: 2n minterms for n inputs

– 32 inputs = 4 billion minterms

– Exponential complexity

• Heuristic

– Solution technique where optimal solution not guaranteed

– Hopefully comes close

16Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Heuristics: iterative improvement

• Start with initial solution

– i.e., original logic equation

• Repeatedly make modifications toward better solution

• Common modifications

– Expand

• Replace each nonprime implicant with a prime implicant covering it

• Delete all implicants covered by new prime implicant

– Reduce

• Opposite of expand

– Reshape

• Expands one implicant while reducing another

• Maintains total # of implicants

– Irredundant

• Selects min # of implicants that cover from existing implicants

• Synthesis tools differ in modifications used and the order they are used

17Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Multilevel logic minimization

• Trade performance for size

– Increase delay for lower # of gates

– Gray area represents all possible

solutions

– Circle with X represents ideal solution

• Generally not possible

– 2-level gives best performance

• max delay = 2 gates

• Solve for smallest size

– Multilevel gives pareto-optimal

solution

• Minimum delay for a given size

• Minimum size for a given delay

size

d
el

ay m
ulti

-le
vel

m
in

im
.

2-level minim.

18Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Example

• Minimized 2-level logic function:

– F = adef + bdef + cdef + gh

– Requires 5 gates with 18 total gate inputs

• 4 ANDS and 1 OR

• After algebraic manipulation:

– F = (a + b + c)def + gh

– Requires only 4 gates with 11 total gate inputs

• 2 ANDS and 2 ORs

– Less inputs per gate

– Assume gate inputs = 2 transistors

• Reduced by 14 transistors

– 36 (18 * 2) down to 22 (11 * 2)

– Sacrifices performance for size

• Inputs a, b, and c now have 3-gate delay

• Iterative improvement heuristic commonly used

F

b

c
e

a

d

f
g

h

2-level minimized

F

b
c

e

a

d

f
g

h

multilevel minimized

19Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

FSM synthesis

• FSM to gates

• State minimization
– Reduce # of states

• Identify and merge equivalent states

– Outputs, next states same for all possible inputs

– Tabular method gives exact solution

• Table of all possible state pairs

• If n states, n2 table entries

• Thus, heuristics used with large # of states

• State encoding
– Unique bit sequence for each state

– If n states, log2(n) bits

– n! possible encodings

– Thus, heuristics common

20Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Technology mapping

• Library of gates available for implementation

– Simple

• only 2-input AND,OR gates

– Complex

• various-input AND,OR,NAND,NOR,etc. gates

• Efficiently implemented meta-gates (i.e., AND-OR-INVERT,MUX)

• Final structure consists of specified library’s components only

• If technology mapping integrated with logic synthesis

– More efficient circuit

– More complex problem

– Heuristics required

21Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Complexity impact on user

• As complexity grows, heuristics used

• Heuristics differ tremendously among synthesis tools

– Computationally expensive

• Higher quality results

• Variable optimization effort settings

• Long run times (hours, days)

• Requires huge amounts of memory

• Typically needs to run on servers, workstations

– Fast heuristics

• Lower quality results

• Shorter run times (minutes, hours)

• Smaller amount of memory required

• Could run on PC

• Super-linear-time (i.e. n3) heuristics usually used

– User can partition large systems to reduce run times/size

– 1003 > 503 + 503 (1,000,000 > 250,000)

22Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Integrating logic design and physical design

• Past

– Gate delay much greater than wire delay

– Thus, performance evaluated as # of levels

of gates only

• Today

– Gate delay shrinking as feature size

shrinking

– Wire delay increasing

• Performance evaluation needs wire length

– Transistor placement (needed for wire

length) domain of physical design

– Thus, simultaneous logic synthesis and

physical design required for efficient

circuits

Wire

Transistor

D
el

ay

Reduced feature size

23Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Register-transfer synthesis

• Converts FSMD to custom single-purpose processor
– Datapath

• Register units to store variables

– Complex data types

• Functional units

– Arithmetic operations

• Connection units

– Buses, MUXs

– FSM controller

• Controls datapath

– Key sub problems:

• Allocation

– Instantiate storage, functional, connection units

• Binding

– Mapping FSMD operations to specific units

24Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Behavioral synthesis

• High-level synthesis

• Converts single sequential program to single-purpose processor

– Does not require the program to schedule states

• Key sub problems

– Allocation

– Binding

– Scheduling

• Assign sequential program’s operations to states

• Conversion template given in Ch. 2

• Optimizations important

– Compiler

• Constant propagation, dead-code elimination, loop unrolling

– Advanced techniques for allocation, binding, scheduling

25Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

System synthesis

• Convert 1 or more processes into 1 or more processors (system)
– For complex embedded systems

• Multiple processes may provide better performance/power

• May be better described using concurrent sequential programs

• Tasks
– Transformation

• Can merge 2 exclusive processes into 1 process

• Can break 1 large process into separate processes

• Procedure inlining

• Loop unrolling

– Allocation

• Essentially design of system architecture

– Select processors to implement processes

– Also select memories and busses

26Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

System synthesis

• Tasks (cont.)

– Partitioning

• Mapping 1 or more processes to 1 or more processors

• Variables among memories

• Communications among buses

– Scheduling

• Multiple processes on a single processor

• Memory accesses

• Bus communications

– Tasks performed in variety of orders

– Iteration among tasks common

27Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

System synthesis

• Synthesis driven by constraints

– E.g.,

• Meet performance requirements at minimum cost

– Allocate as much behavior as possible to general-purpose processor

• Low-cost/flexible implementation

– Minimum # of SPPs used to meet performance

• System synthesis for GPP only (software)

– Common for decades

• Multiprocessing

• Parallel processing

• Real-time scheduling

• Hardware/software codesign

– Simultaneous consideration of GPPs/SPPs during synthesis

– Made possible by maturation of behavioral synthesis in 1990’s

28Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Temporal vs. spatial thinking

• Design thought process changed by evolution of synthesis

• Before synthesis

– Designers worked primarily in structural domain

• Connecting simpler components to build more complex systems

– Connecting logic gates to build controller

– Connecting registers, MUXs, ALUs to build datapath

– “capture and simulate” era

• Capture using CAD tools

• Simulate to verify correctness before fabricating

– Spatial thinking

• Structural diagrams

• Data sheets

29Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Temporal vs. spatial thinking

• After synthesis

– “describe-and-synthesize” era

– Designers work primarily in behavioral domain

– “describe and synthesize” era

• Describe FSMDs or sequential programs

• Synthesize into structure

– Temporal thinking

• States or sequential statements have relationship over time

• Strong understanding of hardware structure still important

– Behavioral description must synthesize to efficient structural

implementation

30Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Verification

• Ensuring design is correct and complete

– Correct

• Implements specification accurately

– Complete

• Describes appropriate output to all relevant input

• Formal verification

– Hard

– For small designs or verifying certain key properties only

• Simulation

– Most common verification method

31Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Formal verification

• Analyze design to prove or disprove certain properties

• Correctness example

– Prove ALU structural implementation equivalent to behavioral

description

• Derive Boolean equations for outputs

• Create truth table for equations

• Compare to truth table from original behavior

• Completeness example

– Formally prove elevator door can never open while elevator is moving

• Derive conditions for door being open

• Show conditions conflict with conditions for elevator moving

32Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Simulation

• Create computer model of design

– Provide sample input

– Check for acceptable output

• Correctness example

– ALU

• Provide all possible input combinations

• Check outputs for correct results

• Completeness example

– Elevator door closed when moving

• Provide all possible input sequences

• Check door always closed when elevator moving

33Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Increases confidence

• Simulating all possible input sequences impossible for most
systems
– E.g., 32-bit ALU

• 232 * 232 = 264 possible input combinations

• At 1 million combinations/sec

• " million years to simulate

• Sequential circuits even worse

• Can only simulate tiny subset of possible inputs
– Typical values

– Known boundary conditions
• E.g., 32-bit ALU

– Both operands all 0’s

– Both operands all 1’s

• Increases confidence of correctness/completeness

• Does not prove

34Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Advantages over physical implementation

• Controllability

– Control time

• Stop/start simulation at any time

– Control data values

• Inputs or internal values

• Observability

– Examine system/environment values at any time

• Debugging

– Can stop simulation at any point and:

• Observe internal values

• Modify system/environment values before restarting

– Can step through small intervals (i.e., 500 nanoseconds)

35Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Disadvantages

• Simulation setup time

– Often has complex external environments

– Could spend more time modeling environment than system

• Models likely incomplete

– Some environment behavior undocumented if complex environment

– May not model behavior correctly

• Simulation speed much slower than actual execution

– Sequentializing parallel design

• IC: gates operate in parallel

• Simulation: analyze inputs, generate outputs for each gate 1 at time

– Several programs added between simulated system and real hardware

• 1 simulated operation:

– = 10 to 100 simulator operations

– = 100 to 10,000 operating system operations

– = 1,000 to 100,000 hardware operations

36Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Simulation speed

• Relative speeds of different types of

simulation/emulation

– 1 hour actual execution of SOC

• = 1.2 years instruction-set simulation

• = 10,000,000 hours gate-level simulation

!10,000,000 gate-level HDL simulation

register-transfer-level HDL simulation

cycle-accurate simulation

instruction-set simulation

throughput model

hardware emulation

FPGA 1 day

1 hour

4 days

1

!10

!100

!1000

!10000

!100,000

!1,000,000

IC

1.4 months

1.2 years

12 years

>1 lifetime

1

millennium

37Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Overcoming long simulation time

• Reduce amount of real time simulated

– 1 msec execution instead of 1 hour

• 0.001sec * 10,000,000 = 10,000 sec = 3 hours

– Reduced confidence

• 1 msec of cruise controller operation tells us little

• Faster simulator

– Emulators

• Special hardware for simulations

– Less precise/accurate simulators

• Exchange speed for observability/controllability

38Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Reducing precision/accuracy

• Don’t need gate-level analysis for all simulations
– E.g., cruise control

• Don’t care what happens at every input/output of each logic gate

– Simulating RT components ~10x faster

– Cycle-based simulation ~100x faster

• Accurate at clock boundaries only

• No information on signal changes between boundaries

• Faster simulator often combined with reduction in real time
– If willing to simulate for 10 hours

• Use instruction-set simulator

• Real execution time simulated

– 10 hours * 1 / 10,000

– = 0.001 hour

– = 3.6 seconds

39Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Hardware/software co-simulation

• Variety of simulation approaches exist
– From very detailed

• E.g., gate-level model

– To very abstract

• E.g., instruction-level model

• Simulation tools evolved separately for hardware/software
– Recall separate design evolution

– Software (GPP)

• Typically with instruction-set simulator (ISS)

– Hardware (SPP)

• Typically with models in HDL environment

• Integration of GPP/SPP on single IC creating need for merging
simulation tools

40Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Integrating GPP/SPP simulations

• Simple/naïve way

– HDL model of microprocessor

• Runs system software

• Much slower than ISS

• Less observable/controllable than ISS

– HDL models of SPPs

– Integrate all models

• Hardware-software co-simulator

– ISS for microprocessor

– HDL model for SPPs

– Create communication between simulators

– Simulators run separately except when transferring data

– Faster

– Though, frequent communication between ISS and HDL model slows it down

41Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Minimizing communication

• Memory shared between GPP and SPPs

– Where should memory go?

– In ISS

• HDL simulator must stall for memory access

– In HDL?

• ISS must stall when fetching each instruction

• Model memory in both ISS and HDL

– Most accesses by each model unrelated to other’s accesses

• No need to communicate these between models

– Co-simulator ensures consistency of shared data

– Huge speedups (100x or more) reported with this technique

42Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Emulators

• General physical device system mapped to

– Microprocessor emulator

• Microprocessor IC with some monitoring, control circuitry

– SPP emulator

• FPGAs (10s to 100s)

– Usually supports debugging tasks

• Created to help solve simulation disadvantages

– Mapped relatively quickly

• Hours, days

– Can be placed in real environment

• No environment setup time

• No incomplete environment

– Typically faster than simulation

• Hardware implementation

43Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Disadvantages

• Still not as fast as real implementations
– E.g., emulated cruise-control may not respond fast enough to

keep control of car

• Mapping still time consuming
– E.g., mapping complex SOC to 10 FPGAs

• Just partitioning into 10 parts could take weeks

• Can be very expensive
– Top-of-the-line FPGA-based emulator: $100,000 to $1mill

– Leads to resource bottleneck
• Can maybe only afford 1 emulator

• Groups wait days, weeks for other group to finish using

44Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Reuse: intellectual property cores

• Commercial off-the-shelf (COTS) components
– Predesigned, prepackaged ICs

– Implements GPP or SPP

– Reduces design/debug time

– Have always been available

• System-on-a-chip (SOC)
– All components of system implemented on single chip

– Made possible by increasing IC capacities

– Changing the way COTS components sold

• As intellectual property (IP) rather than actual IC

– Behavioral, structural, or physical descriptions

– Processor-level components known as cores

• SOC built by integrating multiple descriptions

45Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Cores

• Soft core

– Synthesizable behavioral

description

– Typically written in HDL

(VHDL/Verilog)

• Firm core

– Structural description

– Typically provided in HDL

• Hard core

– Physical description

– Provided in variety of physical

layout file formats

Behavior

Physical

Structural

Processors, memories

Registers, FUs, MUXs

Gates, flip-flops

Transistors

Sequential programs

Register transfers

Logic equations/FSM

Transfer functions

Cell Layout

Modules

Chips

Boards

Gajski’s Y-chart

46Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Advantages/disadvantages of hard core

• Ease of use
– Developer already designed and tested core

• Can use right away

• Can expect to work correctly

• Predictability
– Size, power, performance predicted accurately

• Not easily mapped (retargeted) to different process
– E.g., core available for vendor X’s 0.25 micrometer CMOS

process
• Can’t use with vendor X’s 0.18 micrometer process

• Can’t use with vendor Y

47Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Advantages/disadvantages of soft/firm cores

• Soft cores
– Can be synthesized to nearly any technology

– Can optimize for particular use

• E.g., delete unused portion of core

– Lower power, smaller designs

– Requires more design effort

– May not work in technology not tested for

– Not as optimized as hard core for same processor

• Firm cores
– Compromise between hard and soft cores

• Some retargetability

• Limited optimization

• Better predictability/ease of use

48Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

New challenges to processor providers

• Cores have dramatically changed business model
– Pricing models

• Past

– Vendors sold product as IC to designers

– Designers must buy any additional copies

• Could not (economically) copy from original

• Today

– Vendors can sell as IP

– Designers can make as many copies as needed

• Vendor can use different pricing models

– Royalty-based model

• Similar to old IC model

• Designer pays for each additional model

– Fixed price model

• One price for IP and as many copies as needed

– Many other models used

49Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

IP protection

• Past
– Illegally copying IC very difficult

• Reverse engineering required tremendous, deliberate effort

• “Accidental” copying not possible

• Today
– Cores sold in electronic format

• Deliberate/accidental unauthorized copying easier

• Safeguards greatly increased

• Contracts to ensure no copying/distributing

• Encryption techniques

– limit actual exposure to IP

• Watermarking

– determines if particular instance of processor was copied

– whether copy authorized

50Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

New challenges to processor users

• Licensing arrangements

– Not as easy as purchasing IC

– More contracts enforcing pricing model and IP protection

• Possibly requiring legal assistance

• Extra design effort

– Especially for soft cores

• Must still be synthesized and tested

• Minor differences in synthesis tools can cause problems

• Verification requirements more difficult

– Extensive testing for synthesized soft cores and soft/firm cores mapped to particular

technology

• Ensure correct synthesis

• Timing and power vary between implementations

– Early verification critical

• Cores buried within IC

• Cannot simply replace bad core

51Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Design process model

• Describes order that design steps are processed

– Behavior description step

– Behavior to structure conversion step

– Mapping structure to physical implementation
step

• Waterfall model

– Proceed to next step only after current step
completed

• Spiral model

– Proceed through 3 steps in order but with less
detail

– Repeat 3 steps gradually increasing detail

– Keep repeating until desired system obtained

– Becoming extremely popular (hardware &
software development)

Behavioral

Structural

Physical

Waterfall design model

BehavioralStructural

Physical

Spiral design model

52Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Waterfall method

• Not very realistic
– Bugs often found in later steps that must be fixed in

earlier step

• E.g., forgot to handle certain input condition

– Prototype often needed to know complete desired
behavior

• E.g, customer adds features after product demo

– System specifications commonly change

• E.g., to remain competitive by reducing power, size

– Certain features dropped

• Unexpected iterations back through 3 steps
cause missed deadlines
– Lost revenues

– May never make it to market

Behavioral

Structural

Physical

Waterfall design model

53Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Spiral method

• First iteration of 3 steps incomplete

• Much faster, though

– End up with prototype

• Use to test basic functions

• Get idea of functions to add/remove

– Original iteration experience helps in following
iterations of 3 steps

• Must come up with ways to obtain structure and
physical implementations quickly

– E.g., FPGAs for prototype

• silicon for final product

– May have to use more tools

• Extra effort/cost

• Could require more time than waterfall method

– If correct implementation first time with waterfall

BehavioralStructural

Physical

Spiral design model

54Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

General-purpose processor design models

• Previous slides focused on SPPs

• Can apply equally to GPPs

– Waterfall model

• Structure developed by particular company

• Acquired by embedded system designer

• Designer develops software (behavior)

• Designer maps application to architecture

– Compilation

– Manual design

– Spiral-like model

• Beginning to be applied by embedded system designers

55Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Spiral-like model

• Designer develops or acquires architecture

• Develops application(s)

• Maps application to architecture

• Analyzes design metrics

• Now makes choice

– Modify mapping

– Modify application(s) to better suit architecture

– Modify architecture to better suit application(s)

• Not as difficult now

– Maturation of synthesis/compilers

– IPs can be tuned

• Continue refining to lower abstraction level until

particular implementation chosen

Architecture Application(s)

Mapping

Analysis

Y-chart

56Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Summary

• Design technology seeks to reduce gap between IC

capacity growth and designer productivity growth

• Synthesis has changed digital design

• Increased IC capacity means sw/hw components

coexist on one chip

• Design paradigm shift to core-based design

• Simulation essential but hard

• Spiral design process is popular

57Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Book Summary

• Embedded systems are common and growing

– Such systems are very different from in the past due to increased IC capacities and
automation tools

– Indicator: National Science Foundation just created a separate program on Embedded
Systems (2002).

• New view:

– Embedded computing systems are built from a collection of processors, some general-
purpose (sw), some single-purpose (hw)

– Hw/sw differ in design metrics, not in some fundamental way

– Memory and interfaces necessary to complete system

– Days of embedded system design as assembly-level programming of one microprocessor
are fading away

• Need to focus on higher-level issues

– State machines, concurrent processes, control systems

– IC technologies, design technologies

• There’s a growing, challenging and exciting world of embedded systems design out
there. There’s also much more to learn. Enjoy!

