Embedded Systems Design: A Unified

Hardware/Software Introduction
]

Chapter 2: Custom single-purpose
processors

Introduction

¢ Processor

— Digital circuit that performs a
computation tasks

— Controller and datapath cop| T camers hip
— General-purpose:_variety of computation P ‘ Pixelcoprocemor| D28
tasks A2D # #
— Single-purpose: one particular Iens — 3
computation task : -
. HEG codec W&ocommller Multiplier/Accum
— Custom single-purpose: non-standard .

taSk DMA controller Display

* A custom single-purpose r N
processor may be 1 ' (IR
— Fast, small, low power Memory controller | [ISA bus interface | | UART ‘ ‘LCD ml}..
— But, high NRE, longer time-to-market, % % %
less flexible
Embedded Systems Design: A Unified 3

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Outline
|
* Introduction
» Combinational logic
* Sequential logic
 Custom single-purpose processor design
» RT-level custom single-purpose processor design

Embedded Systems Design: A Unified 2
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

CMOS transistor on silicon

* Transistor
— The basic electrical component in digital systems
— Acts as an on/off switch

— Voltage at “gate” controls whether current flows from
source to drain

source

— Don’t confuse this “gate” with a logic gate gate,) | Conduets
_| if gate=1
drain
source
Silicon substrate
Embedded Systems Design: A Unified 4

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

CMOS transistor implementations

» Complementary Metal Oxide

Semiconductor
* We refer to logic levels
— Typically 0is OV, 1 is 5V
* Two basic CMOS types
— nMOS conducts if gate=1
— pMOS conducts if gate=0
— Hence “complementary”
» Basic gates
— Inverter, NAND, NOR

F = (xty)

source source
gate Conducts ~ gate 0 Conducts
_| l if gate=1 if gate=0
drain drain
nMOS pMOS
1 1 1
xdl Jp-y x4
X F=x' |
F=(xy) v-d
X
0= y— AL Tk
0= 0=
inverter NAND gate NOR gate

Basic logic gates

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Combinational logic design

Combinational circuit - a digital circuit whose output is purely a function of its present inputs.

A) Problem description

B) Truth table

yislifaisto l,orbandcare 1. zis 1 if Inputs Outputs
b orcis to 1, but not both, or if all are 1. a b ¢ Y z
0 0 0|0 0

0 0 1 0 1

0 1 0]0 1

D) Minimized output equations ? (1) é } 8

Y be 1ol 11]
a_00 01 11 10 1 1 0 1 1

o o 0 1 0 1 1 1 1 1

NN

y=a+bc

o0 o1 11 10

0o |i1i| o |i1
oo | 1 i i

z=ab+b’c+bc’

X —i> F x| F X x|y |F| x FlLxly F| x Py F

00 vy Frojolo] v 0]0]0] vy 0]0]0

1]1 0|10 01 |1 0]1]1

F=x F=xy OO0} poyxyy O poyey [0

Driver AND LTI or LTI xor Ljrjo

X F |x|F X x|y|F X x|y |F| x x|y|F

o F

o1 D Flofol1] v D 001 yD Flojoll

110 01 |1 0|10 0]1]0

F=x" F=(xy) 1j0]1 F = (x+y) 1]0]0 F=x®y 110]0

Inverter NAND 1|10 NOR 1110 XNOR 111
Embedded Systems Design: A Unified 6

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

RT-Level Combinational components

C) Output equations

y=a'bc +ab'c' + ab'c + abc' + abc

z=a'b'c +a'bc' +ab'c + abc' + abe

cos

E) Logic Gates

A B
Im-1) 11 10 Idogn -H10 AB N
B . n
. Tognxn it nbit,
et v
S(logm) - n S{log m)
y o(n-1) 0100 carry sum less equal greater °
o= 00 =1 if I=0..00 sum = A+B less =1ifA<B O=Aop B
10 if $=0..00 01 =1if1=0..01 (first n bits) equal =1 if A=B op determined
11if $=0..01 carry = (n+1)’th greater=1 if A>B by S.
o(n-1)=1ifI=1..11 bit of A+B
I(m-1)if S=1..11

With enable input e >
all O’s are 0 if e=0

With carry-in input Ci->

sum=A + B+ Ci

May have status outputs
carry, zero, etc.

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Sequential components

Sequential circuit - a digital circuit whose outputs are a function of the present inputs as well as the previous inputs

shift nbit
Shift register
I Q

n-bit
Counter

Q=

0 if clear=1,

I if load=1 and clock=1,
Q(previous) otherwise.

Q=Isb
- Content shifted
- I 'stored in msb

0 if clear=1,
Q(prev)+1 if count=1 and clock=1.

Embedded Systems Design: A Unified

9
Hardware/Software Introduction, (c) 2000 Vahid/Givargis
Sequential logic design (cont.)
E) Minimized Output Equations F) Combinational Logic
11 QIQo
2 _00 110
0 i
010 [ihdibd 11=0Q1°Qoa+QI1a’ + ;:D—~ X
1Q0°
e debe L™ %Dj
|
— 11
10 = Q0a’ + Q0’a
— 10
o]
x=QI1Q0
Q1 Q0
Embedded Systems Design: A Unified 11

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Sequential logic design

A) Problem Description

You want to construct a clock
divider. Slow down your pre-
existing clock so that you output a
1 for every four clock cycles

B) State Diagram - FSM

C) Implementation Model

X
a Combinational logic ——p
(Generate output values | 11

and next state)

Q1 Q0

State register
(Stores current state)

D) State Table (Moore-type)
Inputs Outputs
QI Q0 a |1l 10
0l 0ojJo]o 0 0

0] 0 110 1
0 1 010 1
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1
1 1 01 1 1
1 1 110 0

* Given this implementation model

— Sequential logic design quickly reduces to
combinational logic design

Embedded Systems Design: A Unified

10
Hardware/Software Introduction, (c) 2000 Vahid/Givargis
external external l l l l
control data controller datapath
inputs inputs
i L datapath l l next-state || registers le
control and —
controller inputs datapath control < y
» logic [—
P —
datapath A A
control state functional
i_ B L outputs $. ¢ register units
external external
control data
outputs outputs i i ¢ L
controller and datapath a view inside the controller and datapath
Embedded Systems Design: A Unified 12

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Example: greatest common divisor

(a) black-box

 First create algorithm , viiw . 52;::3
» Convert algorithm to g i xi v
“complex” state machine aep
. d
— Known as FSMD: finite- ;0
state machine with datapath) o
(b) desired functionality
— Can use templates to 0:int x,y;
perform such conversion) Wxﬁ;&fl(?g(o o
3 x=x1;
4 y= :i;
5: while (x!=y) {
6: if (x<y)
7 y=y-X
else
8 X=X-Yy:
}
9: do=x
}
Embedded Systems Design: A Unified 13
Hardware/Software Introduction, (c) 2000 Vahid/Givargis
Creating the datapath
* Create a register for any
declared variable A
)) =) v
* Create a functional unit for ., Datapath
. . . x_sel
each arithmetic operation —F=r
x_1d _X ¥
» Connect the ports, registers B
and functional units
— Based on reads and writes o || 7) M
. ~ Txn
— Use plultlplexors for i =
multiple sources Voo
* Create unique identifier
— for each datapath component
control input and output
Embedded Systems Design: A Unified 15

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

State diagram templates

Assignment statement Loop statement

a=b while (cond) {
next statement loop-body-
statements
)

next statement

Branch statement

if (c1)

cl stmts
else if c2

c2 stmts
else

other stmts
next statement

C:
/cl tel*e2 N\ lel*!e2
cl stmts 2 stmts others

Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis 14
M 9
Creating the controller’s FSM
wi
Controlier Same structure as FSMD
0000 1t
Replace complex
actions/conditions with
datapath configurations
X v
Datapath
0y
+ I
8xy Ty x
1011 9:
1100 17.1:
Embedded Systems Design: A Unified 16

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Splitting into a controller and datapath

i}

Controller
0000 1

Controller implementation model
iy

Combinational [T~ ¥ 0001 2:
logic Srad
x

0010 2-J:

0011 3

(b) Datapath
x_sel
ysel
x 1d
1 0:x 0y
P e — w—
1 1 4
-
Siximy] 6ixy Sxy Ty
x_neq y N
XLy [oa
i
Vo

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Completing the GCD custom single-purpose
processor design

* We finished the datapath

* We have a state table for
the next state and control
logic

— All that’s left is
combinational logic
design

* This is not an optimized
design, but we see the
basic steps

L

L

controller

next-state <
and

control |

v

logic [—

state
register

» functional

datapath

registers <

A

v

units

£

&

a view inside the controller and datapath

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Controller state table for the GCD example

Inputs
Q[@ | Q0 [xneq| xIt | goi I3
-2 Yy
0 0 0 0 * * * 0
0 0 0 1 * - 0 0
0 0 0 1 * * 1 0
0 0 1 0 * * * 0
0 0 1 1 * * * 0
[1 0 0 * * * [
0 1 0 1 0 * * 1
0 1 0 1 1 * * 0
0 1 1 0 * 0 * 1
0 1 1 0 * 1 * 0
0 1 1 1 * * * 1
1 0 0 0 * * * 1
1 0 0 1 * * * 1
1 0 1 0 * * * 0
1 0 1 1 * * * 1
1 1 0 0 * * * [
1 1 0 1 * * * 0
1 1 1 0 * * * 0
1 1 1 1 * * * 0

Outputs
1 10 [xsel | ysl | xId | yld | did
0 1 X X 0 0 0
1 0 X X 0 0 0
1 1 X X 0 0 0
0 1 X X 0 0 0
0 0 0 X 1 0 0
0 1 X 0 0 1 0
1 1 X X 0 0 0
1 0 X X 0 0 0
0 0 X X 0 0 0
1 1 X X 0 0 0
0 1 X 1 0 1 0
0 1 1 X 1 0 0
1 0 X X 0 0 0
0 1 X X 0 0 0
0 0 X X 0 0 1
0 0 X X 0 0 0
0 0 X X 0 0 0
0 0 X X 0 0 0
0 0 X X 0 0 0

Embedded Systems Design: A Unified 18
Hardware/Software Introduction, (c) 2000 Vahid/Givargis
RT-level custom single-purpose processor
design
* We often start with a state ~ _
2
machine 5 [sende i Bl Rece
] r rdy_in A single-purpose processor that rdy_out iver
. 3 converts two 4-bit inputs, arriving one
— Rather than a]gonthm & clock ;lalimclo\'crdamin;akljong Witha
L = rdy_in pulse, into one 8- ’n output on
_ Cy cle timin go ften too central —lé oy | ataoutslong withardy_out pulse. m
to functionality &~
» Example iy -0 ride iy v
. . S \N—
— Bus bridge that converts 4-bit *[Waiinsd H BechimtsSiar. H Rectinsdtnd }
bus to 8-bit bus o I

Start with FSMD

— Known as register-transfer
(RT) level

— Exercise: complete the design

FSMD

rdy_in=0
¥ 1y ryinsl

[s }

tdy_in=0
Inputs

o bit datain: b

P Or:é;‘:: bit; data_in: bit[4]:

rdy_out=0 rdy_out: bit; data_out:bit[8]
Variables

data_lo, data_hi: bit[4];

Send8Start
data_out=data_hi
& data_lo
rdy_out=1

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

20

RT-level custom single-purpose processor
design (cont’)

Bridge
(a) Controller
rdy_in=0 rdy_in=1
v rdy_in=1 v
> WaitFirst4 RecFirst4Start RecFirst4End
data_lo_ld=1
T
rdy_in=0 ¢ rdy_in=0 rdy in=1
rdy_in=1 v -

[H data_hi_ld=1 H }

SendSEnd
rdy_out=0

Send8Start
data_out_ld=1
rdy_out=1

rdy_in wdyout |
"
_| data_in(4)| .) data_out
< 53 f‘
E % 3‘ f‘ ~ E‘
N EE g

b) Datapath

Embedded Systems Design: A Unified 21
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Optimizing the original program
B]
* Analyze program attributes and look for areas of
possible improvement
— number of computations
— size of variable
— time and space complexity
— operations used

+ multiplication and division very expensive

Embedded Systems Design: A Unified 23
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Optimizing single-purpose processors
|
» Optimization is the task of making design metric
values the best possible
Optimization opportunities
— original program
— FSMD

— datapath
- FSM

Embedded Systems Design: A Unified 22
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Optimizing the original program (cont’)

original program optimized program
0:int x,y; 0:int x,y,1;
1: while (1) { 1: while (1) {
2: while (!go_i); 2: while (!go_i);
30 x=x_i; // x must be the larger number
4 i 3 if(x_i>=y i) {
Z: Whl‘;e(x(x(')Y) replace the subtraction g X:X*;f
7: ¥ X operation(s) with modulo : } Yy E
! ly v operation in order to speed 6 el
cise up program - Si{ .
8: X=X-y; 7 xX=y_i;
8 y=x_i;
9: }
} 9: while (y!=0) {
10: r=x%y;
11: X=y;
12: y=r
}
13: do=x;
}

GCD(42, 8) - 9 iterations to complete the loop GCD(42,8) - 3 iterations to complete the loop

x and y values evaluated as follows : (42, 8), (43, 8), x and y values evaluated as follows: (42, 8), (8,2),
(26,8), (18,8), (10, 8), (2.8), (2,6), (2.4), (2,2). 2.0

Embedded Systems Design: A Unified 24
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Optimizing the FSMD
I

* Areas of possible improvements
— merge states

* states with constants on transitions can be eliminated, transition
taken is already known

* states with independent operations can be merged
— separate states

* states which require complex operations (a*b*c*d) can be broken
into smaller states to reduce hardware size

— scheduling

Embedded Systems Design: A Unified

25
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Optimizing the datapath
|
 Sharing of functional units

— one-to-one mapping, as done previously, is not necessary

— if same operation occurs in different states, they can share a
single functional unit

* Multi-functional units

— ALUs support a variety of operations, it can be shared
among operations occurring in different states

Embedded Systems Design: A Unified

27
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Optimizing the FSMD (cont.)

original FSMD optimized FSMD

int X, y;

eliminate state I — transitions have constant values

merge state 2 and state 2J —no loop operation in
between them

merge state 3 and state 4 — assignment operations are
independent of one another

merge state 5 and state 6 — transitions from state 6 can 9% (do=x j=
be done in state 5

eliminate state 5J and 6J — transitions from each state
can be done from state 7 and state 8, respectively

eliminate state 1-J — transition from state 1-J can be
done directly from state 9

Embedded Systems Design: A Unified

26
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Optimizing the FSM
]
+ State encoding
— task of assigning a unique bit pattern to each state in an FSM
— size of state register and combinational logic vary
— can be treated as an ordering problem
+ State minimization

— task of merging equivalent states into a single state

* state equivalent if for all possible input combinations the two states
generate the same outputs and transitions to the next same state

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Summary

I
» Custom single-purpose processors
— Straightforward design techniques
— Can be built to execute algorithms
— Typically start with FSMD
— CAD tools can be of great assistance

Embedded Systems Design: A Unified 29
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

