Embedded Systems Design: A Unified

Hardware/Software Introduction
]

Chapter 4 Standard Single Purpose
Processors: Peripherals

Timers, counters, watchdog timers
]

» Timer: measures time intervals - very common
— To generate timed output events
* e.g., hold traffic light green for 10 s
— To measure input events Basic timer
* e.g., measure a car’s speed Clk 16-bitup | 16 Cnt

I counter

i

» Based on counting clock pulses
« E.g., let Clk period be 10 ns Reset T
* And we count 20,000 Clk pulses
* Then 200 microseconds have passed
« 16-bit counter would count up to 65,535%10 ns = 655.35
microsec., resolution = 10 ns
» Top: indicates top count reached, wrap-around
— Can be used to extend range with use of microprocessor

Top

Embedded Systems Design: A Unified 3
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Introduction

I
* Single-purpose processors

— Performs specific computation task

— Custom single-purpose processors
* Designed by us for a unique task

— Standard single-purpose processors
» “Off-the-shelf” -- pre-designed for a common task
 ak.a., peripherals
* serial transmission
+ analog/digital conversions

— Low NRE cost
— Low unit cost

Embedded Systems Design: A Unified 2
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Counters

e Counter: like a timer, but counts

Timer/counter

pulses on a general input signal o
2x1 16-bit up 16 Cnt
rather than clock M o |l ouner |0
. —— | >
- e.g., count cars passing over a sensor Cnt_in Top

— Can often configure device as either a TReset
. Mod
timer or counter

Embedded Systems Design: A Unified 4
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Other timer structures

* Interval timer

16/32-bit timer

— Indicates when desired time Clk 10"’(;3:;:’ 16 Catl
interval has passed Timer with a terminal - ——y
— We set terminal count to o [TeETm Top!
desired interval counter | 16 SN
—¥ > et | o cne
* Number of clock cycles M counter [0y
_ . . . y P
= Desired time interval /
. Reset Top2
Clock period
o Cascaded Counters Top Time with prescaler
° Prescaler Clk | Prescaler 16-bit up
.. Terminal count —P — counter
— Divides clock >
— Increases range, decreases
resolution
Embedded Systems Design: A Unified 5

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Watchdog time

r

* Must reset timer every
X time unit, else timer
generates a signal

osc clk

prescaler

scalereg

e Common use: detect

overflow

overflow to system reset

or
interrupt

failure, self-reset

/* main.c */

e Another use: timeouts
— e.g., ATM machine | ™0t

wait until card inserted
— 16-bit timer, 2

call watchdog_reset_routine
microsec. resolution | while(transaction in progress){
if(button pressed){
perform corresponding action
call watchdog_reset_routine

}

— timereg value = 2*(2'°-
1)-X=131070-X
— For2 min., X =
. /* if watchdog_reset_routine not called every
1207000 MmICTOSeC. <2 minutes, interrupt_service_routine is
called */

}

watchdog_reset_routine() {

/* checkreg is set so we can load value into
timereg. Zero is loaded into scalereg and
11070 is loaded into timereg */

checkreg = 1
scalereg = 0
timereg = 11070

void interrupt_service_routine(){
eject card
reset screen

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Example: Reaction Timer

indicator reaction
light — O @ < button
LCD — >

* Measure time between turning light on
and user pushing button
— 16-bit timer, clk period is 83.33 ns (12
MHz), counter increments every 6 cycles
(once per instruction cycle - microcontroller
specific)
— Resolution = 6*83.33=0.5 microsec.

— Range = 65535*0.5 microseconds = 32.77
milliseconds

— Want program to count millisec., so initialize
counter to 65535 — 1000/0.5 = 63535

/* main.c */

#define MS_INIT 63535
void main(void){
int count_milliseconds = 0;

configure timer mode
set Cnt to MS_INIT

wait a random amount of time
turn on indicator light
start timer

while (user has not pushed reaction button){
if(Top) {
stop timer
set Cnt to MS_INIT
start timer
reset Top
count_milliseconds++;
i
)
turn light off
printf(“time: %i ms*, count_milliseconds);

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Serial Transmission Using UARTSs

UART: Universal Asynchronous
Receiver Transmitter

— Takes parallel data and transmits
serially

— Receives serial data and
converts to parallel

Parlty: extra bit for simple error Sending UART
checking start bit

Start bit (receiver continually &/

(lolol11lol[1]

embedded
0 device

(loloNT1lol1[1]

Receiving UART
end bit

data ¢

monitors for it), stop bit
Baud rate —\ I_\
— signal changes per second |
* Bits shifted out of buffer
— Speed of communication T o
— Configured via configuration

register

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Pulse width modulator

* Generates pulses with specific
high/low times
* Duty cycle: % time high clk
— Square wave: 50% duty cycle
+ Common use: control average
voltage to electric device
— Simpler than DC-DC

pwm_o [

e rir

25% duty cycle — average pwm_o is 1.25V

converter or digital-analog ek e B e B B B
converter 50% duty cycle — average pwm_o is 2.5V.
— DC motor speed, dimmer
lights pwm_o _ | 1
* Another use: encode clk L rrererer

commands, receiver uses timer
to decode

75% duty cycle — average pwm_o is 3.75V.

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

LCD controller

E - void WriteChar(char ¢){
communications
R/W bus P "
RS RS=1; /* indicate data being sent */
DATA_BUS =c; /* send data to LCD */
DB7-DB0O EnableLCD(45); /* toggle the LCD with appropriate delay */
8 }
microcontroller LCD
controller
CODES RS |RW |DB;, DB, [DBs DB, |DB; | DB, | DB, |DB, | Description
1/D = 1 cursor moves left DL = 1 8-bit
1D =0 cursor moves right DL 0 4-bit oo | oo fo fo fo fo |o |1 |Clearsaldiplay reum cursorhome
S =1 with display shift N=12rows 0 0 0 |0 0 0 0 0 1 * Returns cursor home
S/C =1 display shift N=0Trow 0 0 o |o 0 0 0 1 w s Sets cursor move direction and/or
S/C =0 cursor movement F=15x10 dots specifies not to shift display
R/L = 1 shift to right F=05x7 dots. 'ON/OFF of all display(D), cursor
€ 0 0 0|0 0 0 ! D1 C B | GNOFF (C), and blink position (B)
R/L = 0 shift to left
0 0 0 |o 0 1 SIC |RL |* * Move cursor and shifts display
. . Sets interface data length, number of
O] 0 0o 1 bL N display lines, and character font
1 0 'WRITE DATA Writes Data

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Controlling a DC motor with a PWM

% of Maximum
counter Input Voltage Voltage Applied | RPM of PC Motor
(0-254)
controls how 0 0 0
fast the
1t -
?:;l::]ims 8-bit counter < 25 50 1840
comparator i
i cycle_high, 3.75 75 6900
pwm o= 1
counter >=
; 5.0 100 9200
cycle_high cycle_high,
pwm_0=0 Relationship between applied voltage and speed of
the DC Motor
Internal Structure of PWM
void main(void) { The PWM alone cannot drive the
DC motor, a possible way to 5V
/* controls period */ implement a driver is shown
PWMP = Oxff; below using an MJE3055T NPN
/* controls duty cycle */ transistor.
PWML = 0x7f; 5V From bC
processor MOTOR
while (1) {};
} A —
B

Embedded Systems Design: A Unified 10
Hardware/Software Introduction, (c) 2000 Vahid/Givargis
N1
N2
IN\Ii [k pressed
L L L L
[Y i 0 e Ml
) I S "
o4 o4 o4 o4
crarart1re i .
1 L L 1
l—o o4 l—o o4 l—o o4 1—0 o4
L L L L
l—O o4 l—O o9 l—O o4 1—0 o4
keypad controller
N=4, M=4
Embedded Systems Design: A Unified 12

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Stepper motor controller Stepper motor with controller (driver)

» Stepper motor: rotates fixed number Seq“f““ ApBpAE f* main.e */ void main(void){
of degrees when given a “step” signal p o S sbitllPl *urn the motor forward *
. . i cw=0; /* set direction */
— In contrast, DC motor just rotates when 3 L B Driver 8051 void delay(void)| elk=D; /# pulse clock */
power applied, coasts to stop : — 10 Far e teio LG i delay
. . . - 7 P11 or (1=0; i<1000; i+ '
» Rotation achieved by applying for (J=05<50:+) oturn the motor backwards *
: : —_ 3 vm ; ’ =1; /* set direction */
specific voltage sequence to coils D R et NS ' dlle0: 7+ palse clock */
. . . A —s [—Y delay();
» Controller greatly simplifies this w = o, lk=l;
. . —s JE o R
» Ifstepis 7.5 degrees, but do entire s o W P v V.)
[S IS w— 101 cwrcew
sequence to rotate 7.5 degrees oc T 2 £ rarnuarsiy .
: o diract] Stepper prosd mcgh et o e e et
- Opp0s1te order for opposite direction Motor !}0 amplify 'ﬁe current, a buffer is ne'i'éed. One w
. . . Red A possible implementation of the buffers is pictured Q
* Can use a driver chip or do in White A’ t0 the et Q1 is an MIESOSST NPN transstor ’
Yellow B and Q2 is an MJE2955T PNP transistor. A |> Q2
software Black B’ comected o e sepper e ®
Embedded Systems Design: A Unified 13 Embedded Systems Design: A Unified 14

Hardware/Software Introduction, (c) 2000 Vahid/Givargis Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Stepper motor without controller (driver) Analog-to-digital converters

8051 /*main.c*/
sbit notA=P2"0;

/* counter clockwise movement */
if(dir==0) {

P24 — GND/+V

sbit isA=P2°1;

sbit notB=P2"2;

o st isB=P2"3;
P21 sbit dir=P2"4;
P20 void delay(){
inta, b;
for(a=0; a<5000; a+-+)

b

Stepper
Motor

void move(int dir, int steps) {

A possible way to implement the buffers is located inty,z
below. The 8051 alone cannot drive the stepper motor, so /* clockwise movement */
several transistors were added to increase the current going if{dir = 1){

for(y=0; y<=steps; y++){
for(z=0; z<=19; +4){
isA=lookup[z];
isB=lookup[z+1];
notA=lookup[z+2];
notB=lookup[z+3];
delay():

to the stepper motor. Q1 are MJE3055T NPN transistors

and Q3 is an MJE2955T PNP transistor. A is connected to
the 8051 microcontroller and B is connected to the stepper
motor.

for(y=0; y<=step; y++){

for(z=19; z>=0; - 4){
isA=lookup[z];
isB=lookup([z-1];
notA=lookup[z -2];
notB=lookup([z-3];
delay();

i

}
i

void main(){
int z;
int lookup[20] = {
1, 1, 0,0,
1, 1,0
0,0, 1,1
0,0, 1
1L,1,0,0};
while(1){
/*move forward, 15 degrees (2 steps) */
move(l, 2);
/* move backwards, 7.5 degrees (1step)*/
move(0, 1);
i
}

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Vo =75V 1111
70V 1 1110
65V 1 1101
6.0V __ L 1100
55V 1 tonn
50V —1— 1010
45V —L 1001
40V —L 1000
35V o111
3.0V —1—0110
2.5V ——o0101
2.0V —1— 0100
L5V —+— 0011
1OV ——— 0010
05V —1 o001

0V —1+— 0000
proportionality

analog input (V)

t S 3 {jme

v v Yy

0100 1000 0110 0101
Digital output

analog to digital

analog output (V)

-

7] | I
u/ e B g time
0100 1000 0110 0101
Digital input

digital to analog

Embedded Systems Design: A Unified
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

DAC/ADC conversion

e —
. . e = present analog voltage
¢ USlng ratio: e/Vmax =d/(2"-1) d=digital encoding
n = number of bits

Assume V,; -0

* Resolution is the number of volts between successive
digital encodings

* DAC:s are easy: input d for digital encoding and max
voltage and output analog e using resistors and op-amp

* ADCs are hard: Given V,,,. and e how does converter

know the binary value to assign to satisfy the ratio?
— No simple analog circuit

Embedded Systems Design: A Unified 17
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Digital-to-analog conversion using

successive approximation
]

Given an analog input signal whose voltage should range from 0 to 15 volts, and an 8-bit digital encoding, calculate the correct encoding for

5 volts. Then trace the successive-approximation approach to find the correct encoding.

5/15 = d/(28-1)
d=85 Encoding: 01010101

S ive-approximati hod

YAV~ Vi) =75 volts [0 JOJoOJO0JO0JoJoJo] Y4(5.63 +4.69) = 5.16 volts [o]TJoJrJoJoJoTJo]
Vi = 7.5 volts. Vi = 5.16 volts.
V4(7.5+0) = 3.75 volts \ 0] 1 [0 | 0] 0 | 0] 0] 0 \ 14(5.16 +4.69) = 4.93 volts ‘ 0 | 1] 0 | 1] 0 | 1 [0] 0 \
Vi = 375 volts. Vi = 493 volts.
Yi(15+3.75) =563 volts [0 [T JoJoJoJoJoJo] Y4(5.16 +4.93) = 5.05 volts [oJtJoJiJoJ1JoJo]
Ve = 5.63 volts Vi = 5.05 volts.
Y(5.63+3.75)=4.69volts [0 JTJOJTJO0JoJoJo0] Y4(5.05 +4.93) = 4.99 volts [oJtJoJrJoJ1Jo]1]
Vi = 4.69 vols.

Embedded Systems Design: A Unified 19

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

ADC

|
» ADCs may contain DACs
» ADC guesses at encoding and then evaluates its guess
using the DAC

* So how do we guess the correct encoding?
— Sequential search? Too slow with 2" encodings
— Binary search?
» ADC:s take a bit of time to get correct encoding

Embedded Systems Design: A Unified 18
Hardware/Software Introduction, (c) 2000 Vahid/Givargis

