
1

Embedded Systems Design: A Unified

Hardware/Software Introduction

Chapter 4 Standard Single Purpose

Processors: Peripherals

2Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Introduction

• Single-purpose processors

– Performs specific computation task

– Custom single-purpose processors

• Designed by us for a unique task

– Standard single-purpose processors

• “Off-the-shelf” -- pre-designed for a common task

• a.k.a., peripherals

• serial transmission

• analog/digital conversions

– Low NRE cost

– Low unit cost

3Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Timers, counters, watchdog timers

• Timer: measures time intervals - very common

– To generate timed output events

• e.g., hold traffic light green for 10 s

– To measure input events

• e.g., measure a car’s speed

• Based on counting clock pulses

• E.g., let Clk period be 10 ns

• And we count 20,000 Clk pulses

• Then 200 microseconds have passed

• 16-bit counter would count up to 65,535*10 ns = 655.35

microsec., resolution = 10 ns

• Top: indicates top count reached, wrap-around

– Can be used to extend range with use of microprocessor

16-bit up

counter
Clk

Cnt

Basic timer

Top

Reset

16

4Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Counters

• Counter: like a timer, but counts

pulses on a general input signal

rather than clock

– e.g., count cars passing over a sensor

– Can often configure device as either a

timer or counter

16-bit up

counter

Clk

16

Cnt_in

2x1

mux

Mode

Timer/counter

Top

Reset

Cnt

5Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Other timer structures

Top2

Time with prescaler

16-bit up

counter
Clk Prescaler

Mode

• Interval timer

– Indicates when desired time
interval has passed

– We set terminal count to
desired interval

• Number of clock cycles
= Desired time interval /
Clock period

• Cascaded counters

• Prescaler

– Divides clock

– Increases range, decreases
resolution

16-bit up

counter
Clk

16

Terminal count

=
Top

Reset

Timer with a terminal

count

Cnt

16-bit up

counter
Clk

16-bit up

counter

16

Cnt2

Top1

16/32-bit timer

Cnt1

16

6Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Example: Reaction Timer

indicator

light

reaction

button

time: 100 msLCD

 /* main.c */

 #define MS_INIT 63535

 void main(void){

 int count_milliseconds = 0;

 configure timer mode

 set Cnt to MS_INIT

 wait a random amount of time

 turn on indicator light

 start timer

while (user has not pushed reaction button){

 if(Top) {

 stop timer

 set Cnt to MS_INIT

 start timer

 reset Top

 count_milliseconds++;

 }

 }

 turn light off

 printf(“time: %i ms“, count_milliseconds);

}

• Measure time between turning light on
and user pushing button

– 16-bit timer, clk period is 83.33 ns (12
MHz), counter increments every 6 cycles
(once per instruction cycle - microcontroller
specific)

– Resolution = 6*83.33=0.5 microsec.

– Range = 65535*0.5 microseconds = 32.77
milliseconds

– Want program to count millisec., so initialize
counter to 65535 – 1000/0.5 = 63535

7Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Watchdog timer

scalereg

checkreg

timereg
to system reset

or

interrupt

osc clk
prescaler

overflow overflow

/* main.c */

main(){

 wait until card inserted

 call watchdog_reset_routine

 while(transaction in progress){

 if(button pressed){

 perform corresponding action

 call watchdog_reset_routine

 }

/* if watchdog_reset_routine not called every

< 2 minutes, interrupt_service_routine is

called */

}

watchdog_reset_routine(){

/* checkreg is set so we can load value into

timereg. Zero is loaded into scalereg and

11070 is loaded into timereg */

 checkreg = 1

 scalereg = 0

 timereg = 11070

}

void interrupt_service_routine(){

 eject card

 reset screen

}

• Must reset timer every

X time unit, else timer

generates a signal

• Common use: detect

failure, self-reset

• Another use: timeouts

– e.g., ATM machine

– 16-bit timer, 2

microsec. resolution

– timereg value = 2*(216-

1)–X = 131070–X

– For 2 min., X =

120,000 microsec.

8Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Serial Transmission Using UARTs

embedded

device
1

0
0 1

1 0 1
1

Sending UART

1 0 0 1 1 0 1 1

Receiving UART

1 0 0 1 1 0 1 1

start bit
data

end bit

1 0 0 1 1 0 1 1

• UART: Universal Asynchronous
Receiver Transmitter

– Takes parallel data and transmits
serially

– Receives serial data and
converts to parallel

• Parity: extra bit for simple error
checking

• Start bit (receiver continually
monitors for it), stop bit

• Baud rate

– signal changes per second

• Bits shifted out of buffer

– Speed of communication

– Configured via configuration
register

9Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Pulse width modulator

clk

pwm_o

25% duty cycle – average pwm_o is 1.25V

clk

pwm_o

50% duty cycle – average pwm_o is 2.5V.

clk

pwm_o

75% duty cycle – average pwm_o is 3.75V.

• Generates pulses with specific

high/low times

• Duty cycle: % time high

– Square wave: 50% duty cycle

• Common use: control average

voltage to electric device

– Simpler than DC-DC

converter or digital-analog

converter

– DC motor speed, dimmer

lights

• Another use: encode

commands, receiver uses timer

to decode

10Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Controlling a DC motor with a PWM

void main(void){

 /* controls period */

 PWMP = 0xff;

 /* controls duty cycle */

 PWM1 = 0x7f;

 while(1){};

 }

The PWM alone cannot drive the

DC motor, a possible way to

implement a driver is shown

below using an MJE3055T NPN

transistor.

5V

B

A

Internal Structure of PWM

clk_div

cycle_high

counter

(0 – 254)

8-bit

comparator

controls how

fast the

counter

increments counter <

cycle_high,

pwm_o = 1

counter >=

cycle_high,

pwm_o = 0

pwm_o

clk
Input Voltage

% of Maximum

Voltage Applied
RPM of DC Motor

0 0 0

2.5 50 1840

3.75 75 6900

5.0 100 9200

Relationship between applied voltage and speed of

the DC Motor

DC

MOTOR

5V

From

processor

11Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

LCD controller

E

R/W

RS

DB7–DB0

LCD

controller

communications

bus

microcontroller
8

void WriteChar(char c){

 RS = 1; /* indicate data being sent */

 DATA_BUS = c; /* send data to LCD */

 EnableLCD(45); /* toggle the LCD with appropriate delay */

}

CODES

I/D = 1 cursor moves left DL = 1 8-bit

I/D = 0 cursor moves right DL = 0 4-bit

S = 1 with display shift N = 1 2 rows

S/C =1 display shift N = 0 1 row

S/C = 0 cursor movement F = 1 5x10 dots

R/L = 1 shift to right F = 0 5x7 dots

R/L = 0 shift to left

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description

0 0 0 0 0 0 0 0 0 1 Clears all display, return cursor home

0 0 0 0 0 0 0 0 1 * Returns cursor home

0 0 0 0 0 0 0 1 I/D S
Sets cursor move direction and/or

specifies not to shift display

0 0 0 0 0 0 1 D C B
ON/OFF of all display(D), cursor

ON/OFF (C), and blink position (B)

0 0 0 0 0 1 S/C R/L * * Move cursor and shifts display

0 0 0 0 1 DL N F * *
Sets interface data length, number of

display lines, and character font

1 0 WRITE DATA Writes Data

12Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Keypad controller

N1
N2

N3
N4

M1

M2

M3

M4

key_code

keypad controller

k_pressed

key_code

4

N=4, M=4

13Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Stepper motor controller

Red A

White A’

Yellow B

Black B’

MC3479P
 1

 5

 4

 3

 2

 7

 8

 6

 16

 15

 14

 13

 12

 11

 10

 9

Vd

A’

A

GND

Bias’/Set

Clk

O|C

Vm

B

B’

GND

Phase A’

CW’/CCW

Full’/Half Step

Sequence A B A’ B’

1 + + - -

2 - + + -

3 - - + +

4 + - - +

5 + + - -

• Stepper motor: rotates fixed number
of degrees when given a “step” signal

– In contrast, DC motor just rotates when
power applied, coasts to stop

• Rotation achieved by applying
specific voltage sequence to coils

• Controller greatly simplifies this

• If step is 7.5 degrees, but do entire
sequence to rotate 7.5 degrees

– Opposite order for opposite direction

• Can use a driver chip or do in
software

14Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Stepper motor with controller (driver)

 2 A’

 3 A

10

7

B 15

B’ 14

MC3479P

Stepper Motor

Driver 8051

P1.0

P1.1

Stepper

Motor

CLK

CW’/CCW

The output pins on the stepper motor driver do not

provide enough current to drive the stepper motor.

To amplify the current, a buffer is needed. One

possible implementation of the buffers is pictured

to the left. Q1 is an MJE3055T NPN transistor

and Q2 is an MJE2955T PNP transistor. A is

connected to the 8051 microcontroller and B is

connected to the stepper motor.

Q2

1K

1K
Q1

+V

A B

void main(void){

 */turn the motor forward */

 cw=0; /* set direction */

 clk=0; /* pulse clock */

 delay();

 clk=1;

 /*turn the motor backwards */

 cw=1; /* set direction */

 clk=0; /* pulse clock */

 delay();

 clk=1;

}

/* main.c */

sbit clk=P1^1;

sbit cw=P1^0;

void delay(void){

 int i, j;

 for (i=0; i<1000; i++)

 for (j=0; j<50; j++)

 i = i + 0;

}

15Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Stepper motor without controller (driver)

Stepper

Motor

8051

GND/ +VP2.4

P2.3

P2.2

P2.1

P2.0

 A possible way to implement the buffers is located

below. The 8051 alone cannot drive the stepper motor, so

several transistors were added to increase the current going

to the stepper motor. Q1 are MJE3055T NPN transistors

and Q3 is an MJE2955T PNP transistor. A is connected to

the 8051 microcontroller and B is connected to the stepper

motor.

Q2

+V

1K
Q1

1K

+V

A

B

330

/*main.c*/

sbit notA=P2^0;

sbit isA=P2^1;

sbit notB=P2^2;

sbit isB=P2^3;

sbit dir=P2^4;

void delay(){

 int a, b;

 for(a=0; a<5000; a++)

 for(b=0; b<10000; b++)

 a=a+0;

}

void move(int dir, int steps) {

int y, z;

 /* clockwise movement */

 if(dir == 1){

 for(y=0; y<=steps; y++){

 for(z=0; z<=19; z+4){

 isA=lookup[z];

 isB=lookup[z+1];

 notA=lookup[z+2];

 notB=lookup[z+3];

 delay();

 }

 }

 }

/* counter clockwise movement */

 if(dir==0){

 for(y=0; y<=step; y++){

 for(z=19; z>=0; z - 4){

 isA=lookup[z];

 isB=lookup[z-1];

 notA=lookup[z -2];

 notB=lookup[z-3];

 delay();

 }

 }

 }

}

void main(){

 int z;

 int lookup[20] = {

 1, 1, 0, 0,

 0, 1, 1, 0,

 0, 0, 1, 1,

 1, 0, 0, 1,

 1, 1, 0, 0 };

 while(1){

 /*move forward, 15 degrees (2 steps) */

 move(1, 2);

 /* move backwards, 7.5 degrees (1step)*/

 move(0, 1);

 }

}

16Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Analog-to-digital converters

proportionality

Vmax = 7.5V

0V

1111

1110

0000

0010

0100

0110

1000

1010

1100

0001

0011

0101

0111

1001

1011

1101

0.5V

1.0V

1.5V

2.0V

2.5V

3.0V

3.5V

4.0V

4.5V

5.0V

5.5V

6.0V

6.5V

7.0V

analog to digital

4

3

2

1

t1 t2 t3 t4

0100 1000 0110 0101

time

an
al

o
g
 i

n
p
u
t

(V
)

Digital output

digital to analog

4

3

2

1

0100 1000 0110 0101

t1 t2 t3 t4
time

an
al

o
g
 o

u
tp

u
t

(V
)

Digital input

17Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

DAC/ADC conversion

• Using ratio:

• Resolution is the number of volts between successive
digital encodings

• DACs are easy: input d for digital encoding and max
voltage and output analog e using resistors and op-amp

• ADCs are hard: Given Vmax and e how does converter
know the binary value to assign to satisfy the ratio?

– No simple analog circuit

e/Vmax = d / (2n-1)
e = present analog voltage

d = digital encoding

n = number of bits

Assume Vmin - 0

18Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

ADC

• ADCs may contain DACs

• ADC guesses at encoding and then evaluates its guess

using the DAC

• So how do we guess the correct encoding?

– Sequential search? Too slow with 2n encodings

– Binary search?

• ADCs take a bit of time to get correct encoding

19Embedded Systems Design: A Unified

Hardware/Software Introduction, (c) 2000 Vahid/Givargis

Given an analog input signal whose voltage should range from 0 to 15 volts, and an 8-bit digital encoding, calculate the correct encoding for

5 volts. Then trace the successive-approximation approach to find the correct encoding.

5/15 = d/(28-1)

 d= 85

Successive-approximation method

Digital-to-analog conversion using

successive approximation

0 1 0 0 0 0 0 0

Encoding: 01010101

!(Vmax – Vmin) = 7.5 volts

Vmax = 7.5 volts.

!(7.5 + 0) = 3.75 volts

Vmin = 3.75 volts.

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0!(7.5 + 3.75) = 5.63 volts

Vmax = 5.63 volts

!(5.63 + 3.75) = 4.69 volts

Vmin = 4.69 volts.

0 1 0 1 0 0 0 0

!(5.63 + 4.69) = 5.16 volts

Vmax = 5.16 volts.

0 1 0 1 0 0 0 0

!(5.16 + 4.69) = 4.93 volts

Vmin = 4.93 volts.

0 1 0 1 0 1 0 0

!(5.16 + 4.93) = 5.05 volts

Vmax = 5.05 volts.

0 1 0 1 0 1 0 0

!(5.05 + 4.93) = 4.99 volts 0 1 0 1 0 1 0 1

