
Midterm 1 Study Guide
High-Performance Embedded Computing

Chapter 1:

• Key differences between general purpose computing design and embedded computing design.
o Why is embedded design more difficult?
o What techniques have been adopted from general purpose computing and applied to embedded

computing design?
• Large design spaces for embedded systems:

o Why so large?
o Why is it beneficial?
o What are the advantages and disadvantages?

• Real time systems
o What are they?
o What challenges do they present?

• Hardware/software co-design
o What is it?
o What challenges does it present?
o What benefits does it present?

• Example applications: Radio and networking, multimedia, vehicle control and operation, and sensor
networks

o What unique design challenges exist for each?
o What unique optimization techniques exist for each?
o Vehicle control and operation: why are two separate networks necessary?
o Sensor nodes: why is onboard processing so important? What challenges exist in revealing

onboard processing?
• Functional and non-functional requirements
• Design goals
• Why are performance, power, and energy judged in terms of average, peak and work case?
• Why are design methodologies so important for embedded systems?
• Design productivity gap
• Waterfall vs. spiral design methodology
• During the design process, why are early and accurate estimates so important?
• Platform design vs. hardware/software co-design

o Challenges for each
o How are the similar/different
o Benefits for each

• Techniques used to verify design
• Why is it important to verify a design at each level of abstraction?
• General embedded system design methodologies (page 32)
• Models of computation

o Why is it important to study models of computation?
o Are all models appropriate for all systems? How do you choose an appropriate model?
o Know the basics for the models discussed in class: FSM, control flow, data flow, parallel models

(task graphs, petri nets).
• Sources of parallelism: instruction and data level, task level

o How can these be exploited?
o Which models of computation are best for expressing each type of parallelism?

• What does it mean for a system to be reliable, safety critical, and/or secure?
• What unique security challenges to embedded systems have?
• Permanent vs. transient faults
• Different sources of faults
• What is MTTF? What does it tell us?
• What can a system do after a fault? (page 50)

• Key chapter questions:
o Q1-1, Q1-3, Q1-7, Q1-9, Q1-10, Q1-12, Q1-14, Q1-16, Q1-19, Q1-20, L1-1

Chapter 2:

• How is CPU design for embedded systems different from general purpose processors?
• Metrics used to evaluate processors
• Processor taxonomy
• RISC vs. CISC
• Key architectural features of DSPs
• Static vs. dynamic parallel mechanisms
• VLIW

o What is it?
o Advantages and disadvantages: in general and with respect to superscalar processing
o Register file partitioning

 Purpose of
 Advantages and disadvantages

o What applications are VLIW good for?
• Superscalar

o What is it?
o Advantages and disadvantages: in general and with respect to superscalar processing

• Subword parallelism
• Threadlevel parallelism

o Hardware multithreading vs. simultaneous multithreading
• Dynamic voltage scaling (DVS) and dynamic voltage and frequency scaling (DVFS)

o What does it do?
o How does it work?
o Benefits?
o Better than worst case design: Razor architecture

• Register file size vs. application needs. Why is a specialized register file size beneficial?
o Spilling?

• Why are caches so important?
o How can they be specialized?
o How do cache aspects, such as size, line size and associativity affect an application’s

performance?
o Configurable caches

• Scratch pad memories
o What are they?
o Why are they good for real time systems?
o How do they work?

• Code compression
o How to generate compressed code
o Architectural layout (i.e. pre-cache vs. post-cache decompression) advantages and disadvantages
o Difficulties
o Benefits
o Compare and contrast basic methods discussed in class (e.g. dictionary, Huffman-based,

arithmetic encoding). Advantages and disadvantages of each in general and with respect to each
other

o How does block size affect compression ratio?
o Branches

 Difficulties
 Solutions

• Data compression
o Why is data compression harder than instruction compression?

• Low power bus encoding

o Basic concept and purpose
o Bus invert coding
o Working zone bus encoding

• CPU simulation classification methods (Page 126)
• Basic differences between embedded (i.e EEMBC) and desktop benchmark (i.e. SPEC) suites
• CPU simulation methods: Trace-based analysis, direct execution, microarchitecture modeling

o Compare and contrast methods
o What are each most appropriate for
o PC sampling techniques
o Instruction instrumentation
o Power simulators

• Automated CPU design
o What is it?
o What is it used for?
o Why is it difficult?
o What special tools are required?

• Different methods to customize processors (page 133)
o Benefits and purpose for each type

• What are ASIPs?
• Instruction set synthesis

o Basic concept and motivation
• Key chapter questions:

o Q2-5, Q2-10, Q2-11, Q2-12, Q2-13, Q2-14

Chapter 3:

• Know the major steps for code generation and the basic concept/idea behind each
• Instruction selection

o What does it mean for one instruction to “cover” other instructions. Give an example
o How does instruction selection optimize the program/application?

• Register allocation
o Given a piece of code, show register lifetimes, draw conflict graph, and allocate the optimal

number of registers, showing all register sharing
• Code Placement

o How does code placement affect performance? Code size?
o What portions of code are the best target for code placement and why? How can information be

gathered to determine these regions of code?
o Procedure inlining

 What is it?
 What are the benefits?

• Memory oriented optimizations
o Loop transformations

 Purpose
 Loop carried dependencies?
 List potential loop transformations (page 172), define, and do an example

• General strategies for optimizing compilers (page 176)
o List, define, and motivate

To be continued…..

