
A New Approach to Solving the Hardware-Software Partitioning
Problem in Embedded System Design

Daniel W. Engels Srinivas Devadas
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA USA 02139

(dragon,devadas)@lcs.mit .edu

Abstract

W e present a n e w approach for solving the
hardware-software parti t ioning problem in embedded
s y s t e m design. Our approach is based o n t rans form-
ing a n ins tance of the hardware-software parti t ioning
problem i n t o a n instance of a de terminis t ic schedul-
ing wi th rejection problem that m in imi zes a f u n c t i o n
of t he completion t imes of the tasks. A solution t o
this real-t ime scheduling problem yields a par t i t ion of
t h e s y s t e m func t ional i ty and provides valuable feedback
t o the s y s t e m designer. Exper imenta l results indicate
tha t t he simplicity and effective solution techniques of
o u r approach m a k e it ideally suited as a n automated
design analysis tool in embedded s y s t e m design.

1 Introduction

In recent years, small embedded systems have
evolved into complex multifunction systems imple-
mented using a mix of both hardware and software.
The allocation of the system functionality into hard-
ware and software components has a significant impact
on the the total system cost. For this reason, sev-
eral approaches have been presented to automate the
exploration of possible functional partitions, thereby
aiding in the solution of the Hardware-Software Par-
titioning Problem [l] [2] [4]. These approaches typi-
cally target either a single-processor single-ASIC Sys-
tem On a Chip (SOC) or a multiple Processing Ele-
ment (PE) distributed heterogeneous system. In this
paper, we present a simple, effective, and efficient ap-
proach to solving the hardware-software partitioning
problem. Our approach assumes the SOC target ar-
chitecture, but its simplicity and efficiency allow it to
be used for distributed heterogeneous target architec-
tures as well.

Regardless of the target architecture, there are

three main subproblems that must be solved in deter-
mining the hardware-software partition of a system:

0 Functional Clustering: Cluster the system func-

0 Allocation: Allocate the tasks to either hardware or

tionality into a set of tasks.

software (or to a subset of the given PES).
0 Scheduling: Schedule the allocated tasks to deter-

mine timing correctness of the partitioned system.
These problems are interdependent; thus, they

must be solved simultaneously to determine an op-
timal solution. The allocation and scheduling sub-
problems are known to be NP-hard [3], and there
are an exponential number of possible functional clus-
ters. Therefore, determining a guaranteed optimal so-
lution is computationally intractable for all but the
simplest systems. Consequently, automated heuristic
approaches to solving the hardware-software partition-
ing problem should be used by the designer to search
the solution space.

The most common heuristic approaches assume a
fixed functional clustering and use either stochastic
search, iterative improvement, or constructive algo-
rithms to solve the allocation subproblem. The tasks
are scheduled to evaluate the allocations. Stochas-
tic search based algorithms, such as simulated anneal-
ing and genetic algorithms, have been found to yield
optimal or near optimal solutions [2] . The random
search nature of these algorithms causes them to have
long running times, while their solutions often yield
little insight for the designer as to how the system
may be changed for the better. Iterative improvement
algorithms have been found to yield suboptimal solu-
tions [4] [ll]. The greedy nature of these algorithms
makes their final solution dependent upon the qual-
ity of the initial solution. Constructive algorithms,
unlike stochastic search and iterative improvement al-
gorithms, incrementally build a solution. Despite a
lack of global knowledge, constructive algorithms have

0-7695-0843-X/00 $10.00 0 2000 IEEE 275

Authorized licensed use limited to: University of Florida. Downloaded on March 13,2010 at 08:43:52 EST from IEEE Xplore. Restrictions apply.

been found to yield good solutions [l] with a reason-
able execution time. Although many constructive al-
gorithms perform software task scheduling while the
solution is being built, task scheduling is never the
primary problem to be solved.

In contrast to prior hardware-software partitioning
problem formulations that emphasize the allocation of
tasks, our approach, referred to as SHaPES (Software-
Hardware Partitioning for Embedded Systems), simul-
taneously solves the allocation and scheduling sub-
problems as a pure deterministic real-time schedul-
ing problem. This scheduling problem formulation as-
sumes that the tasks are given as input in the form of
a set of periodic and sporadic real-time tasks.

Our real-time deterministic scheduling problem for-
mulation schedules instances of the tasks through
the Least Common Multiple (LCM) of their periods.
The resultant deterministic schedule provides valuable
feedback to the designer, allowing system timing prob-
lems and other system design problems to be identi-
fied. Furthermore, the generality of this approach al-
lows the hardware-software partitioning problem to be
solved at any level of abstraction and at any level of
functional granularity.

The remainder of this paper is organized as fol-
lows. Section 2 describes our deterministic schedul-
ing problem formulation and how it is related to the
hardware-software partitioning problem. The algo-
rithm for solving the scheduling problem is presented
in Section 3, and results are presented in Section 4.
Section 5 presents our conclusions and directions for
future research.

2 Formulating the Scheduling Problem

We formulate the allocation and scheduling sub-
problems of the hardware-software partitioning prob-
lem as a scheduling with rejection problem that is ca-
pable of scheduling periodic and sporadic real-time
tasks. We assume the SOC target architecture con-
sisting of a single microprocessor to execute the soft-
ware functionality and a single Application Specific
Integrated Circuit (ASIC) to implement the hardware
functionality. The system functionality is given as a
set of tasks, where a task is to be implemented com-
pletely in either hardware or software.

2.1 Modeling Implementation Costs

The main system implementation costs of the SOC
target architecture are due to hardware area, power
consumption, and timing constraints. Much of the

hardware elements, such as the microprocessor and
input/output devices, have a fixed size. The memory
requirements of the software tasks and the ASIC area
requirement of the hardware tasks are the primary
variable area requirements. The power consumption is
primarily a function of the clock frequency (the micro-
processor and the ASIC share the same clock) and the
power supply voltage. Slower clock frequencies reduce
the switching activity and allow for lower power volt-
ages (and reduced power consumption) but a t the cost
of increasing the time required to execute the tasks.
The timing requirements for the system functional-
ity address system performance and feasibility issues.
Timing constraints on the functionality of the system
are violated at some cost, and timing constraint vi-
olations must not make the system infeasible (such
violations have an infinite cost associated with them).

A scheduling problem is able to model some, but
not all, of the implementation costs. Size limita-
tions, such as software memory constraints and system
power constraints, cannot be modeled by a scheduling
problem. Instead, these constraints must be checked
after a schedule has been generated. Thus, a pure
scheduling problem formulation must be used in an
iterative methodology when hard size and power con-
straints exist.

While a scheduling problem is not able to model
hard size and power constraints, it is capable of mod-
eling hard timing constraints. To model these con-
straints, the timing requirements are specified using
four task parameters: processing time p j , release time
r j , deadline d j , and weight wj. The processing time
p j indicates how long the task will take to complete
if it executes without interruption on the micropro-
cessor. The release time rj indicates the first time
at which the task may begin execution. The dead-
line dj indicates the time by which the task should be
finished, and the weight wj indicates the importance
of the task. Violating the release time of a task in
some schedule incurs an infinite cost, while violating
the deadline of a task incurs a cost that is a function
f(wj, Cj) of the completion time Cj of the task in the
schedule and the weight wj of the task.

Under this model, scheduling a task corresponds to
implementing the task in software. Furthermore, the
task incurs no cost if it is implemented in software and
completes by its deadline. It follows that not schedul-
ing a task, or rejecting the task, corresponds to imple-
menting the task in hardware. Since we assume that
the hardware is ‘fast enough,’ timing constraints are
always met by rejecting the tasks. To prevent all tasks
from being implemented in hardware, rejecting a task

276

Authorized licensed use limited to: University of Florida. Downloaded on March 13,2010 at 08:43:52 EST from IEEE Xplore. Restrictions apply.

incurs some rejection cost e j . Thus, the hardware re-
quirements are modeled using a single parameter: the
rejection cost ej .

2.2 The Scheduling Problem Formulation

Given the five task parameters, a scheduling with
rejection problem formulation can be stated for the
hardware-software partitioning problem.

Given a set of n tasks 7 = { 1 , 2 , . . . , n } , each
with a processing time p j , a release time r j , a
deadline d j , a weight wj , and a rejection cost
e j , schedule a subset S C 7 of the tasks on a
single microprocessor such that the objective
function f(wj, Cj) = (CjEs wjTj+CjEs e j)
is minimized, where S = 7 - S and Tj =
max(0, Cj - d j } .

A solution to this scheduling problem allocates the
scheduled tasks S to software and the rejected tasks S
to hardware. Furthermore, the deterministic schedule
may be examined to identify areas of the design that
can be improved.

This problem formulation may be extended by the
addition of precedence constraints between tasks. A
precedence constraint between task i and task j , i 4 j ,
requires task i and all of its predecessors to complete
execution (or be rejected) before task j and all of its
successors begin execution in the schedule. Precedence
constraints arise from data dependencies and control
dependencies between tasks.

Communication delays between tasks are modeled
with the use of separation constraints. A separation
constraint k is associated only with a precedence con-
straint i 4 j, and it requires that task i and all of its
predecessors complete execution (or be rejected) at
least k time units before task j and all of its succes-
sors begin execution in the schedule. Communication
delays arise between tasks implemented in different
partitions.

3 Solving the Scheduling Problem

Given a set of tasks, the scheduling with rejection
problem is solved to create a solution to the parti-
tioning problem. Efficient algorithms exist to solve
scheduling problems closely related to our problem
formulation. In this section, we review the most ef-
fective algorithm for the weighted tardiness objective
function and describe how it is extended to handle
rejection and separation constraints.

3.1 The Apparent Tardiness Cost

Scheduling a set of jobs so as to minimize their total
weighted tardiness is a problem that has been act,ively
investigated for more than thirty years. The contin-
uing interest in this problem stems from its accurate
modeling of the manufacturing problem where a set of
jobs must be completed by their respective deadlines,
and each job incurs some penalty if it is tardy. The
practical versions of this problem are "ID-hard [3].
Hence, a considerable number of heuristic algorithms
have been proposed to solve scheduling problems in-
volving the tardiness objective function. Most of these
algorithms are based upon a greedy constructive algo-
rithm differing only in their dispatch rules.

The simplest dispatch rules, such as Earliest Due
Date (EDD) first and Shortest Processing Time (SPT)
first, have been found to yield near optimal solutions
only under certain conditions. To overcome the de-
ficiencies in these simple dispatch rules, more com-
plex dispatching rules have been developed. The most
successful of these heuristics is the Apparent Tardi-
ness Cost (ATC) rule introduced by Rachamadugu
and Morton [5].

The ATC rule is based on the structure of an op-
timal schedule when no precedence constraints exist
between tasks. In these schedules, the tasks are se-
quenced in non-increasing priority order where the pri-
ority of task i is equal t o

max(0, (di - t -pi)}
Pi Pj

where p j is the processing time of the task j scheduled
immediately after task i .

Instead of trading off the slack of task i against
the processing time of task j , the ATC rule uses a
standard reference. A piecewise linear reference may
be obtained by replacing the unknown p j in job i's
priority by a factor k p , where p is the mean processing
time of the unscheduled tasks and k is a look-ahead
parameter related to the number of competing tardy
or near-tardy tasks. However, an inverse of allowance
is actually closer to the 'apparent cost' of tardiness
implied by the break-even priority of tardy tasks with
processing times exceeding their slack. With this in
mind, the ATC dispatching rule is defined as

max(0, (d j - t - p j) }
Pj kP

Intuitively, the exponential look-ahead works by en-
suring timely completion of short tasks (with a steep

277

Authorized licensed use limited to: University of Florida. Downloaded on March 13,2010 at 08:43:52 EST from IEEE Xplore. Restrictions apply.

increase of priority close to its deadline), and by ex-
tending the look-ahead far enough to prevent long
tardy tasks from overshadowing clusters of shorter
tasks. The look-ahead parameter can be adjusted
based on the expected number of competing tasks to
reduce weighted tardiness costs during high processor
load. Experiments have found that a reasonable range
of values for k is 1.5 5 k 5 4.5 with k = 2 yielding
good results over a wide range of load conditions [lo].

Empirical experiments have found that the ATC
rule yields close to optimal schedules for single ma-
chine schedules [5] and outperforms all other dispatch
rules for multiple machine schedules [lo]. Addition-
ally, the ATC dispatch rule has been found to be ro-
bust in the presence of errors in the estimated process-
ing times of the tasks [9]. The robustness of the ATC
dispatch rule in the presence of errors in processing
time estimates is essential for its use in solving our
scheduling with rejection problem formulation.

3.2 Inserted Idleness

Simply using the ATC dispatching rule yields a non-
preemptive schedule without any inserted idle time.
However, in the presence of release times, or, similarly,
separation constraints, allowing inserted idle time can
yield better schedules with minimal additional com-
putational expense. Morton and Ramnath [6] showed
that for all problem instances and for any regular ob-
jective function, including the (weighted) tardiness ob-
jective function, there exists an optimal schedule such
that no job is scheduled next on a given machine un-
less its release time is at most the current time plus
the processing time of the shortest job that was re-
leased by the current time. Based on this fact, they
proposed a modification of the ATC rule for the sin-
gle machine problem. The priorities of the jobs are
multiplied by a penalty proportional to the inserted
idleness caused by scheduling that job next. In this
way, the set of candidate jobs to be scheduled next is
extended to include jobs that will arrive in the near
future.

The priorities of the yet to be released jobs are re-
duced proportional to the idleness that would be in-
curred by scheduling them next. The proportionality
multiplier Q may be a constant, or it may be vari-
able to allow it to increase linearly with the machine
utilization as suggested by Morton and Ramnath [6].
The ATC rule that allows inserted idle time is then
defined as

max(0, (rj - t) } ATCj(t)’ = ATCj(t)
Pmin

where pmin is the processing time of the shortest job
that is ready at time t . This new ATC rule degrades
the original ATC priority by a term proportional to
the induced idleness as a fraction of the minimum of
the processing times of the waiting jobs. If the re-
duced priority of a yet to be released task is greater
than all other task priorities, then the machine is kept
idle until this job is released. We use this dispatching
rule with a constant proportionality multiplier to al-
low for inserted idleness in the algorithm described in
the following section.

3.3 The Scheduling Algorithm

Our greedy constructive algorithm to generate a so-
lution to our scheduling with rejection problem is sim-
ply stated as follows. At each time t that the processor
becomes free, compute ATCj(t)’ for all tasks j that
are ready to execute at time t or become ready to ex-
ecute during the interval t + pmin, where pmin is the
minimum processing time of the tasks that are ready
to execute at time t . Let i be the task with the largest
computed ,4TC. Let zi = wiTi be the weighted tardi-
ness of task i if it is scheduled as soon as possible a t or
after time t . If zi 2 ei, then reject task i and repeat
the task selection process at time t ; otherwise, sched-
ule task i as soon as possible a t or after time t . Let
the completion time of task i be the new current time
t . Repeat until all jobs have been either scheduled or
rejected. This algorithm runs in time C3(n2).

4 Experimental Results

SHaPES has been implemented as a prototype in
Java and applied to several examples from the litera-
ture. These examples schedule a given task graph on a
subset of given Processing Elements (PES). Although
SHaPES assumes a target architecture consisting of
a single processor and a single ASIC, it can be ap-
plied to these systems in a straightforward manner.
Choose an initial PE and call it the ‘processor.’ Run
SHaPES with this target processor. The solution to
this problem yields a scheduled set of tasks that are to
be implemented on the chosen P E and a rejected set of
tasks. The release times and deadlines of the rejected
tasks can be recalculated based on their dependencies
with the scheduled tasks. The rejected tasks then form
the input to a second iteration of the scheduling with
rejection problem formulation. A second P E is chosen
to act as the processor, and the scheduling problem is
solved with only the rejected tasks as input. This pro-
cess is repeated until either no feasible schedule can be

278

Authorized licensed use limited to: University of Florida. Downloaded on March 13,2010 at 08:43:52 EST from IEEE Xplore. Restrictions apply.

Table 1: Prakash and Parker’s examples.

Table 2: HOU’S examples.

found, or all tasks have been scheduled on some PE.
Our results were obtained on a 300 MHz Pentium I1

system with 128 MB of main memory running the
Windows NT 4.0 operating system and Java JDK 1.2.
We compare our results with those of MOGAC [2] ,
Oh and Ha [7], SOS [8], and Yen and Wolf [ll]. MO-
GAC was implemented in C++, and its results were
obtained on a 200 MHz Pentium Pro system with
96 MB of main memory running the Linux operating
system. Oh and Ha [7] implemented their algorithm
in C++, and their results were obtained on an Ultra-
sparc I with a 200 MHz processor and 256 MB of main
memory. SOS’s results were obtained on a Solbourne
SeriesSe/SOO (similar to a SPARC 4/490) with 128 MB
of main memory. Yen and Wolf [Ill implemented their
algorithm in C++, and their results were obtained on
a Sun Sparcstation SS20.

Table 1 compares the performance of SHaPES to
that of SOS, MOGAC, and Oh and Ha when they are
applied to Prakash and Parker’s task graphs [8]. The
performance number shown by each task graph is the
worst-case finish time, or makespan, of the task graph.
For example, “Prakash & Parker 1 (4),” refers to
Prakash and Parker’s first task graph with a makespan
of 4 time units. The cost of a solution is determined
by the price of the PES used in the solution, plus 1 for
each communication link required.

Table 2 compares the performance of SHaPES to
that of Yen’s system, MOGAC, and Oh and Ha’s ap-

proach when each is run on the clustered and unclus-
tered versions of HOU’S task graphs [4]. Hou ran Yen’s
system on the clustered and unclustered versions of
his graphs. We use the same clusters as Hou, MO-
GAC, and Oh and Ha when comparing our results
with theirs.

Table 3 compares the performance of SHaPES to
that of Yen’s system, MOGAC, and Oh and Ha’s ap-
proach when each is applied to Yen’s large random
task graphs [ll].

Table 4 compares the performance of SHaPES to
that of MOGAC and Oh and Ha’s approach when
each is applied to MOGAC’s very large random task
graphs [a]. MOGAC’s random 1 contains eight inde-
pendent task graphs, each containing approximately
sixty-three tasks. There are eight P E types and five
link types. MOGAC’s random 2 contains ten inde-
pendent task graphs, each containing approximately
ninety-nine tasks. There are twenty P E types and ten
link types.

For all of the examples, SHaPES was able to de-
termine the optimal solution. It was able to do this
despite the fact that it was designed assuming the
SOC target architecture, not the multiple P E target
architectures of the examples. The simplicity of the
SHaPES approach is apparent in the extremely short
running times required to solve the examples. The
running time of 2.486 seconds required to find the op-
timal solution to MOGAC’s Random 2 example illus-

279

Authorized licensed use limited to: University of Florida. Downloaded on March 13,2010 at 08:43:52 EST from IEEE Xplore. Restrictions apply.

Yen MOGAC Oh & Ha Example No. of
P U PU

 asks cos t t i Z y s) cost ti:= (s) Cost ti:= (s)

Yen Random 1 50 281 10,252 75 6.4 51 2.1
Yen Random 2 60 637 21,979 81 7.8 81 3.6

SHaPES
CPU .

cos t t imc (s)

51 0.699
81 0.826 j

trates the applicability of SHaPES to large examples.
It also illustrates the applicability of SHaPES as a fast
analysis tool for the designer.

MOGAC Oh & Ha Example No. of
C P U P U

MOGAC Random 1 510 39 2,454 39 17.6
MOGAC Random 2 990 35 12,210 13 299.8

Tasks Cost t lme (s) Cost t 8 L (e)

5 Conclusions

SHaPES
PU .

Cost ti:= (s)

39 1.302
13 2.486

We have presented a new approach to solving the
hardware-software partitioning problem in embedded
system design. Formulating both the allocation and
scheduling subproblems of the hardware-software par-
titioning problem as a scheduling with rejection prob-
lem forms the cornerstone of SHaPES. SHaPES is
amenable to multi-rate, real-time systems and systems
targetting complex hardware architectures.

The SHaPES approach to solving the hardware-
software partitioning problem is a simple, fast, and
effective approach to performing automated analysis
of a system design and quick exploration of the solu-
tion space.

References

[l] B. P. Dave, G. Lakshminarayana, and N. K. Jha.
COSYN: Hardware-software co-synthesis of embed-
ded systems. In Proceedings of the 34th Design Au-
tomation Conference, pages 703-708, June 1997.

[2] R. P. Dick and N. K. Jha. MOGAC: A multiobjective
genetic algorithm for hardware-software co-synthesis
of distributed embedded systems. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 17(10):920-935, October 1998.

[3] M. Garey and D. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness.
W.H. Freeman, 1979.

J . Hou and W. Wolf. Process partitioning for
distributed embedded systems. In Proceedings
of the Fourth International Workshop on Hard-
ware/Software Codesign, pages 70-76, March 1996.
T. E. Morton and R. M. V. Rachamadugu. My-
opic heuristics for the single machine weighted tar-
diness problem. Technical Report CMU-RI-TR-83-
09, Robotics Institute, Carnegie Mellon University,
November 1982.
T. E. Morton and P. Ramnath. Guided forward
tabu/beam search for scheduling very large dynamic
job shops, i. Technical Report 1992-47, Graduate
School of Industrial Administration, Carnegie Mellon
University, 1992.

H. Oh and S. Ha. A hardware-software cosynthe-
sis technique based on heterogeneous multiproces-
sor scheduling. In Proceedings of the Seventh Inter-
national Workshop on Hardware/Software Codesign,
pages 183-187, May 1999.
S. Prakash and A. C. Parker. SOS: Synthesis of
application-specific heterogeneous multiprocessor sys-
tems. Journal of Parallel and Distributed Computing,

A. P. Vepsalainen. State dependent priority rules
for scheduling. Technical Report CMU-RI-TR-84-19,
The Robotics Institute, Carnegie-Mellon University,
1984.
A. P. Vepsalainen and T. E. Morton. Priority rules for
job shops with weighted tardiness costs. Management
Science, 33(8):1035-1047, August 1987.
T.-Y. Yen. Hardware-Software Co-Synthesis of Dis-
tributed Embedded Systems. PhD thesis, Princeton
University, June 1996.

161338-351, 1992.

280

Authorized licensed use limited to: University of Florida. Downloaded on March 13,2010 at 08:43:52 EST from IEEE Xplore. Restrictions apply.

