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Abstract 

W e  present  a n e w  approach for solving the  
hardware-software parti t ioning problem in embedded 
s y s t e m  design. Our approach is based o n  t rans form-  
ing  a n  ins tance  of the  hardware-software parti t ioning 
problem i n t o  a n  instance of a de terminis t ic  schedul- 
ing  wi th  rejection problem that  m in imi zes  a f u n c t i o n  
of t he  completion t imes  of the  tasks.  A solution t o  
this real-t ime scheduling problem yields a par t i t ion  of 
t h e  s y s t e m  func t ional i ty  and  provides valuable feedback 
t o  the  s y s t e m  designer. Exper imenta l  results indicate 
tha t  t he  simplicity and  effective solution techniques of 
o u r  approach m a k e  it ideally suited as a n  automated  
design analysis tool in embedded s y s t e m  design. 

1 Introduction 

In recent years, small embedded systems have 
evolved into complex multifunction systems imple- 
mented using a mix of both hardware and software. 
The allocation of the system functionality into hard- 
ware and software components has a significant impact 
on the the total system cost. For this reason, sev- 
eral approaches have been presented to automate the 
exploration of possible functional partitions, thereby 
aiding in the solution of the Hardware-Software Par- 
titioning Problem [l] [2]  [4]. These approaches typi- 
cally target either a single-processor single-ASIC Sys- 
tem On a Chip (SOC) or a multiple Processing Ele- 
ment (PE) distributed heterogeneous system. In this 
paper, we present a simple, effective, and efficient ap- 
proach to solving the hardware-software partitioning 
problem. Our approach assumes the SOC target ar- 
chitecture, but its simplicity and efficiency allow it to 
be used for distributed heterogeneous target architec- 
tures as well. 

Regardless of the target architecture, there are 

three main subproblems that must be solved in deter- 
mining the hardware-software partition of a system: 

0 Functional Clustering: Cluster the system func- 

0 Allocation: Allocate the tasks to either hardware or 

tionality into a set of tasks. 

software (or to a subset of the given PES). 
0 Scheduling: Schedule the allocated tasks to deter- 

mine timing correctness of the partitioned system. 
These problems are interdependent; thus, they 

must be solved simultaneously to determine an op- 
timal solution. The allocation and scheduling sub- 
problems are known to be NP-hard  [3], and there 
are an exponential number of possible functional clus- 
ters. Therefore, determining a guaranteed optimal so- 
lution is computationally intractable for all but the 
simplest systems. Consequently, automated heuristic 
approaches to solving the hardware-software partition- 
ing problem should be used by the designer to search 
the solution space. 

The most common heuristic approaches assume a 
fixed functional clustering and use either stochastic 
search, iterative improvement, or constructive algo- 
rithms to solve the allocation subproblem. The tasks 
are scheduled to evaluate the allocations. Stochas- 
tic search based algorithms, such as simulated anneal- 
ing and genetic algorithms, have been found to yield 
optimal or near optimal solutions [ 2 ] .  The random 
search nature of these algorithms causes them to have 
long running times, while their solutions often yield 
little insight for the designer as to how the system 
may be changed for the better. Iterative improvement 
algorithms have been found to yield suboptimal solu- 
tions [4] [ll]. The greedy nature of these algorithms 
makes their final solution dependent upon the qual- 
ity of the initial solution. Constructive algorithms, 
unlike stochastic search and iterative improvement al- 
gorithms, incrementally build a solution. Despite a 
lack of global knowledge, constructive algorithms have 
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been found to yield good solutions [l] with a reason- 
able execution time. Although many constructive al- 
gorithms perform software task scheduling while the 
solution is being built, task scheduling is never the 
primary problem to be solved. 

In contrast to prior hardware-software partitioning 
problem formulations that emphasize the allocation of 
tasks, our approach, referred to as SHaPES (Software- 
Hardware Partitioning for Embedded Systems), simul- 
taneously solves the allocation and scheduling sub- 
problems as a pure deterministic real-time schedul- 
ing problem. This scheduling problem formulation as- 
sumes that the tasks are given as input in the form of 
a set of periodic and sporadic real-time tasks. 

Our real-time deterministic scheduling problem for- 
mulation schedules instances of the tasks through 
the Least Common Multiple (LCM) of their periods. 
The resultant deterministic schedule provides valuable 
feedback to the designer, allowing system timing prob- 
lems and other system design problems to  be identi- 
fied. Furthermore, the generality of this approach al- 
lows the hardware-software partitioning problem to be 
solved at any level of abstraction and at any level of 
functional granularity. 

The remainder of this paper is organized as fol- 
lows. Section 2 describes our deterministic schedul- 
ing problem formulation and how it is related to the 
hardware-software partitioning problem. The algo- 
rithm for solving the scheduling problem is presented 
in Section 3, and results are presented in Section 4. 
Section 5 presents our conclusions and directions for 
future research. 

2 Formulating the Scheduling Problem 

We formulate the allocation and scheduling sub- 
problems of the hardware-software partitioning prob- 
lem as a scheduling with rejection problem that is ca- 
pable of scheduling periodic and sporadic real-time 
tasks. We assume the SOC target architecture con- 
sisting of a single microprocessor to execute the soft- 
ware functionality and a single Application Specific 
Integrated Circuit (ASIC) to  implement the hardware 
functionality. The system functionality is given as a 
set of tasks, where a task is to be implemented com- 
pletely in either hardware or software. 

2.1 Modeling Implementation Costs 

The main system implementation costs of the SOC 
target architecture are due to hardware area, power 
consumption, and timing constraints. Much of the 

hardware elements, such as the microprocessor and 
input/output devices, have a fixed size. The memory 
requirements of the software tasks and the ASIC area 
requirement of the hardware tasks are the primary 
variable area requirements. The power consumption is 
primarily a function of the clock frequency (the micro- 
processor and the ASIC share the same clock) and the 
power supply voltage. Slower clock frequencies reduce 
the switching activity and allow for lower power volt- 
ages (and reduced power consumption) but a t  the cost 
of increasing the time required to  execute the tasks. 
The timing requirements for the system functional- 
ity address system performance and feasibility issues. 
Timing constraints on the functionality of the system 
are violated at some cost, and timing constraint vi- 
olations must not make the system infeasible (such 
violations have an infinite cost associated with them). 

A scheduling problem is able to model some, but 
not all, of the implementation costs. Size limita- 
tions, such as software memory constraints and system 
power constraints, cannot be modeled by a scheduling 
problem. Instead, these constraints must be checked 
after a schedule has been generated. Thus, a pure 
scheduling problem formulation must be used in an 
iterative methodology when hard size and power con- 
straints exist. 

While a scheduling problem is not able to  model 
hard size and power constraints, it is capable of mod- 
eling hard timing constraints. To model these con- 
straints, the timing requirements are specified using 
four task parameters: processing time p j ,  release time 
r j ,  deadline d j ,  and weight wj. The processing time 
p j  indicates how long the task will take to complete 
if it executes without interruption on the micropro- 
cessor. The release time rj indicates the first time 
at which the task may begin execution. The dead- 
line dj indicates the time by which the task should be 
finished, and the weight wj indicates the importance 
of the task. Violating the release time of a task in 
some schedule incurs an infinite cost, while violating 
the deadline of a task incurs a cost that is a function 
f(wj, Cj)  of the completion time Cj of the task in the 
schedule and the weight wj of the task. 

Under this model, scheduling a task corresponds to  
implementing the task in software. Furthermore, the 
task incurs no cost if it is implemented in software and 
completes by its deadline. It follows that not schedul- 
ing a task, or rejecting the task, corresponds to imple- 
menting the task in hardware. Since we assume that 
the hardware is ‘fast enough,’ timing constraints are 
always met by rejecting the tasks. To prevent all tasks 
from being implemented in hardware, rejecting a task 
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incurs some rejection cost e j .  Thus, the hardware re- 
quirements are modeled using a single parameter: the 
rejection cost ej  . 

2.2 The Scheduling Problem Formulation 

Given the five task parameters, a scheduling with 
rejection problem formulation can be stated for the 
hardware-software partitioning problem. 

Given a set of n tasks 7 = { 1 , 2 ,  . . . , n } ,  each 
with a processing time p j ,  a release time r j ,  a 
deadline d j  , a weight wj , and a rejection cost 
e j ,  schedule a subset S C 7 of the tasks on a 
single microprocessor such that the objective 
function f(wj, Cj )  = (CjEs wjTj+CjEs e j )  
is minimized, where S = 7 - S and Tj = 
max(0, Cj - d j } .  

A solution to this scheduling problem allocates the 
scheduled tasks S to software and the rejected tasks S 
to hardware. Furthermore, the deterministic schedule 
may be examined to identify areas of the design that 
can be improved. 

This problem formulation may be extended by the 
addition of precedence constraints between tasks. A 
precedence constraint between task i and task j ,  i 4 j ,  
requires task i and all of its predecessors to complete 
execution (or be rejected) before task j and all of its 
successors begin execution in the schedule. Precedence 
constraints arise from data dependencies and control 
dependencies between tasks. 

Communication delays between tasks are modeled 
with the use of separation constraints. A separation 
constraint k is associated only with a precedence con- 
straint i 4 j, and it requires that task i and all of its 
predecessors complete execution (or be rejected) at 
least k time units before task j and all of its succes- 
sors begin execution in the schedule. Communication 
delays arise between tasks implemented in different 
partitions. 

3 Solving the Scheduling Problem 

Given a set of tasks, the scheduling with rejection 
problem is solved to create a solution to the parti- 
tioning problem. Efficient algorithms exist to solve 
scheduling problems closely related to our problem 
formulation. In this section, we review the most ef- 
fective algorithm for the weighted tardiness objective 
function and describe how it is extended to handle 
rejection and separation constraints. 

3.1 The Apparent Tardiness Cost 

Scheduling a set of jobs so as to  minimize their total 
weighted tardiness is a problem that has been act,ively 
investigated for more than thirty years. The contin- 
uing interest in this problem stems from its accurate 
modeling of the manufacturing problem where a set of 
jobs must be completed by their respective deadlines, 
and each job incurs some penalty if it is tardy. The 
practical versions of this problem are "ID-hard [3]. 
Hence, a considerable number of heuristic algorithms 
have been proposed to solve scheduling problems in- 
volving the tardiness objective function. Most of these 
algorithms are based upon a greedy constructive algo- 
rithm differing only in their dispatch rules. 

The simplest dispatch rules, such as Earliest Due 
Date (EDD) first and Shortest Processing Time (SPT) 
first, have been found to yield near optimal solutions 
only under certain conditions. To overcome the de- 
ficiencies in these simple dispatch rules, more com- 
plex dispatching rules have been developed. The most 
successful of these heuristics is the Apparent Tardi- 
ness Cost (ATC) rule introduced by Rachamadugu 
and Morton [5]. 

The ATC rule is based on the structure of an op- 
timal schedule when no precedence constraints exist 
between tasks. In these schedules, the tasks are se- 
quenced in non-increasing priority order where the pri- 
ority of task i is equal t o  

max(0, (di - t -pi)} 
Pi Pj 

where p j  is the processing time of the task j scheduled 
immediately after task i .  

Instead of trading off the slack of task i against 
the processing time of task j ,  the ATC rule uses a 
standard reference. A piecewise linear reference may 
be obtained by replacing the unknown p j  in job i's 
priority by a factor k p ,  where p is the mean processing 
time of the unscheduled tasks and k is a look-ahead 
parameter related to the number of competing tardy 
or near-tardy tasks. However, an inverse of allowance 
is actually closer to the 'apparent cost' of tardiness 
implied by the break-even priority of tardy tasks with 
processing times exceeding their slack. With this in 
mind, the ATC dispatching rule is defined as 

max(0, (d j  - t - p j ) }  
Pj kP 

Intuitively, the exponential look-ahead works by en- 
suring timely completion of short tasks (with a steep 
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increase of priority close to  its deadline), and by ex- 
tending the look-ahead far enough to prevent long 
tardy tasks from overshadowing clusters of shorter 
tasks. The look-ahead parameter can be adjusted 
based on the expected number of competing tasks to 
reduce weighted tardiness costs during high processor 
load. Experiments have found that a reasonable range 
of values for k is 1.5 5 k 5 4.5 with k = 2 yielding 
good results over a wide range of load conditions [lo]. 

Empirical experiments have found that the ATC 
rule yields close to optimal schedules for single ma- 
chine schedules [5] and outperforms all other dispatch 
rules for multiple machine schedules [lo]. Addition- 
ally, the ATC dispatch rule has been found to be ro- 
bust in the presence of errors in the estimated process- 
ing times of the tasks [9]. The robustness of the ATC 
dispatch rule in the presence of errors in processing 
time estimates is essential for its use in solving our 
scheduling with rejection problem formulation. 

3.2 Inserted Idleness 

Simply using the ATC dispatching rule yields a non- 
preemptive schedule without any inserted idle time. 
However, in the presence of release times, or, similarly, 
separation constraints, allowing inserted idle time can 
yield better schedules with minimal additional com- 
putational expense. Morton and Ramnath [6] showed 
that for all problem instances and for any regular ob- 
jective function, including the (weighted) tardiness ob- 
jective function, there exists an optimal schedule such 
that no job is scheduled next on a given machine un- 
less its release time is at most the current time plus 
the processing time of the shortest job that was re- 
leased by the current time. Based on this fact, they 
proposed a modification of the ATC rule for the sin- 
gle machine problem. The priorities of the jobs are 
multiplied by a penalty proportional to the inserted 
idleness caused by scheduling that job next. In this 
way, the set of candidate jobs to be scheduled next is 
extended to include jobs that will arrive in the near 
future. 

The priorities of the yet to be released jobs are re- 
duced proportional to  the idleness that would be in- 
curred by scheduling them next. The proportionality 
multiplier Q may be a constant, or it may be vari- 
able to allow it to increase linearly with the machine 
utilization as suggested by Morton and Ramnath [6]. 
The ATC rule that  allows inserted idle time is then 
defined as 

max(0, (rj  - t ) }  ATCj(t)’ = ATCj(t)  
Pmin 

where pmin is the processing time of the shortest job 
that is ready at time t .  This new ATC rule degrades 
the original ATC priority by a term proportional to  
the induced idleness as a fraction of the minimum of 
the processing times of the waiting jobs. If the re- 
duced priority of a yet to be released task is greater 
than all other task priorities, then the machine is kept 
idle until this job is released. We use this dispatching 
rule with a constant proportionality multiplier to al- 
low for inserted idleness in the algorithm described in 
the following section. 

3.3 The Scheduling Algorithm 

Our greedy constructive algorithm to  generate a so- 
lution to  our scheduling with rejection problem is sim- 
ply stated as follows. At each time t that the processor 
becomes free, compute ATCj(t)’ for all tasks j that 
are ready to execute at time t or become ready to ex- 
ecute during the interval t + pmin, where pmin is the 
minimum processing time of the tasks that are ready 
to  execute at time t .  Let i be the task with the largest 
computed ,4TC. Let zi = wiTi be the weighted tardi- 
ness of task i if it is scheduled as soon as possible a t  or 
after time t .  If zi 2 ei, then reject task i and repeat 
the task selection process at time t ;  otherwise, sched- 
ule task i as soon as possible a t  or after time t .  Let 
the completion time of task i be the new current time 
t .  Repeat until all jobs have been either scheduled or 
rejected. This algorithm runs in time C3(n2). 

4 Experimental Results 

SHaPES has been implemented as a prototype in 
Java and applied to several examples from the litera- 
ture. These examples schedule a given task graph on a 
subset of given Processing Elements (PES). Although 
SHaPES assumes a target architecture consisting of 
a single processor and a single ASIC, it can be ap- 
plied to these systems in a straightforward manner. 
Choose an initial PE and call it the ‘processor.’ Run 
SHaPES with this target processor. The solution to 
this problem yields a scheduled set of tasks that are to 
be implemented on the chosen P E  and a rejected set of 
tasks. The release times and deadlines of the rejected 
tasks can be recalculated based on their dependencies 
with the scheduled tasks. The rejected tasks then form 
the input to a second iteration of the scheduling with 
rejection problem formulation. A second P E  is chosen 
to  act as the processor, and the scheduling problem is 
solved with only the rejected tasks as input. This pro- 
cess is repeated until either no feasible schedule can be 
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Table 1: Prakash and Parker’s examples. 

Table 2: HOU’S examples. 

found, or all tasks have been scheduled on some PE. 
Our results were obtained on a 300 MHz Pentium I1 

system with 128 MB of main memory running the 
Windows NT 4.0 operating system and Java JDK 1.2. 
We compare our results with those of MOGAC [ 2 ] ,  
Oh and Ha [7], SOS [8], and Yen and Wolf [ll]. MO- 
GAC was implemented in C++, and its results were 
obtained on a 200 MHz Pentium Pro system with 
96 MB of main memory running the Linux operating 
system. Oh and Ha [7] implemented their algorithm 
in C++, and their results were obtained on an Ultra- 
sparc I with a 200 MHz processor and 256 MB of main 
memory. SOS’s results were obtained on a Solbourne 
SeriesSe/SOO (similar to a SPARC 4/490) with 128 MB 
of main memory. Yen and Wolf [Ill implemented their 
algorithm in C++, and their results were obtained on 
a Sun Sparcstation SS20. 

Table 1 compares the performance of SHaPES to 
that of SOS, MOGAC, and Oh and Ha when they are 
applied to Prakash and Parker’s task graphs [8]. The 
performance number shown by each task graph is the 
worst-case finish time, or makespan, of the task graph. 
For example, “Prakash & Parker 1 (4),” refers to  
Prakash and Parker’s first task graph with a makespan 
of 4 time units. The cost of a solution is determined 
by the price of the PES used in the solution, plus 1 for 
each communication link required. 

Table 2 compares the performance of SHaPES to 
that of Yen’s system, MOGAC, and Oh and Ha’s ap- 

proach when each is run on the clustered and unclus- 
tered versions of HOU’S task graphs [4]. Hou ran Yen’s 
system on the clustered and unclustered versions of 
his graphs. We use the same clusters as Hou, MO- 
GAC, and Oh and Ha when comparing our results 
with theirs. 

Table 3 compares the performance of SHaPES to 
that of Yen’s system, MOGAC, and Oh and Ha’s ap- 
proach when each is applied to Yen’s large random 
task graphs [ll]. 

Table 4 compares the performance of SHaPES to 
that of MOGAC and Oh and Ha’s approach when 
each is applied to MOGAC’s very large random task 
graphs [a]. MOGAC’s random 1 contains eight inde- 
pendent task graphs, each containing approximately 
sixty-three tasks. There are eight P E  types and five 
link types. MOGAC’s random 2 contains ten inde- 
pendent task graphs, each containing approximately 
ninety-nine tasks. There are twenty P E  types and ten 
link types. 

For all of the examples, SHaPES was able to de- 
termine the optimal solution. It was able to do this 
despite the fact that it was designed assuming the 
SOC target architecture, not the multiple P E  target 
architectures of the examples. The simplicity of the 
SHaPES approach is apparent in the extremely short 
running times required to  solve the examples. The 
running time of 2.486 seconds required to find the op- 
timal solution to MOGAC’s Random 2 example illus- 
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Yen MOGAC Oh & Ha Example No. of 
P U  PU 

 asks cos t  t i Z y s )  cost ti:= (s) Cost ti:= (s) 

Yen Random 1 50 281 10,252 75 6.4 51 2.1 
Yen Random 2 60 637 21,979 81 7.8 81 3.6 

SHaPES 
CPU . 

cos t  t imc  ( s )  

51 0.699 
81 0.826 j 

trates the applicability of SHaPES to  large examples. 
It also illustrates the applicability of SHaPES as a fast 
analysis tool for the designer. 

MOGAC Oh & Ha Example No. of 
C P U  P U  

MOGAC Random 1 510 39 2,454 39 17.6 
MOGAC Random 2 990 35 12,210 13 299.8 

Tasks Cost t lme  (s) Cost t 8 L  ( e )  

5 Conclusions 

SHaPES 
PU . 

Cost ti:= ( s )  

39 1.302 
13 2.486 

We have presented a new approach to solving the 
hardware-software partitioning problem in embedded 
system design. Formulating both the allocation and 
scheduling subproblems of the hardware-software par- 
titioning problem as a scheduling with rejection prob- 
lem forms the cornerstone of SHaPES. SHaPES is 
amenable to  multi-rate, real-time systems and systems 
targetting complex hardware architectures. 

The SHaPES approach to solving the hardware- 
software partitioning problem is a simple, fast, and 
effective approach to  performing automated analysis 
of a system design and quick exploration of the solu- 
tion space. 
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