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This paper compares the performance of centralized and in-network data processing for
wireless sensor networks (WSNs) under various deployment conditions on the real sensor
hardware Sun SPOT from Sun Microsystems. We define several criteria to measure the quality
of responses in WSN applications. Guided by an extensive experimental study, we discuss
in detail the performance impacts of different deployment factors on algorithms that
implement both centralized and in-network computing. Finally, performance guidelines are
given to algorithm designers for WSN applications.
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1. Introduction

It has been established that in-network processing in
wireless sensor networks is the acceptable processing
model due to the energy constraints of battery powered
sensor nodes. However, this hypothesis does not always
hold in all scenarios with different network topologies
when considering other factors. In this paper, we perform
an analytical comparison, based on extensive experimental
study, between centralized and in-network processing set-
ting up a set of criteria for the designer to choose between
the two models of operation.

We have implemented our experimental study on the
Sun SPOT sensor nodes [1] from Sun Microsystems. This
gives a clear strength and significance to the produced re-
sults as opposed to simulation results. The same aggregate
query runs in all the experiments for a fair comparison
of the results. We have chosen to run the average (AVG)
query. Although other experiments with different queries
could also be performed, our results are able to establish
the different guidelines to other processing tasks in wire-
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less sensor networks. This is a result of the similarity of
many of these tasks with the chosen query.

The paper is organized as follows. Section 2 provides
the different possible scenarios of data processing for cen-
tralized and in-network processing in a WSN. The experi-
mental setup and results are discussed in Section 3. Sec-
tion 4 discusses the related work. Finally, the paper is
concluded in Section 5.

2. Data processing alternatives in wireless sensor
networks

Our research makes use of the two implementation
options to develop centralized computing paradigm algo-
rithms. The first is the central data optimized depicted in
Fig. 1(a). This is a simple algorithm that collects all avail-
able data from the nodes and transfers it to a central off
network computing facility. This leads to high response ac-
curacy since all processing is done off the network. It also
leads to complete data reusability as all the data are trans-
ferred off the network and can be stored in full resolution.
The negative effects of this approach are associated with
high data transfer costs.

The second option for the centralized computing para-
digm is the central result optimized algorithm shown in
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1. Receive request from parent node
2. FOR EACH child node
Forward request to child
3. Retrieve local data
4. Send local data to parent node
5. FOR EACH child node
Receive response value
Send response value to parent node

(a) Central Data Optimized

1. Receive request from parent node
2. FOR EACH child node
Forward request to child
3. Retrieve local data
4. Perform local data processing
5. Store response value
6. FOR EACH child node
Receive response values
Store response values
7. Send all response values to parent node

(c) Local

Fig. 1.

Fig. 1(b). This algorithm applies transformations to in-
network data to minimize the data transfer overhead,
thereby remedying the main shortfall of the central data
optimized algorithm. The data are then transferred to a
location off the network. The computations that produce
query results are performed off network on a central
server. The benefits of using this algorithm are high re-
sponse accuracy, since all processing is done off the net-
work, as well as low data transfer overhead. The largest
pitfall of this algorithm is that data transformations are
performed in the network; therefore they are limited by
the computational capabilities of the nodes. In addition the
transformed data delivered to the central location may not
be further reusable; this depends purely on the type of
transformation. This algorithm also requires cache/storage
on each local node.

Similarly, we have made use of the two available
choices to develop the algorithms for the in-network com-
puting paradigm. The local algorithm depicted in Fig. 1(c)
represents the first one. This is a simple algorithm that
computes a local result for each node that participates
in a query. The result is appended to a string of all re-
sults gathered from children nodes and forwarded to the
parent node. The amount of data overhead is directly pro-
portional to the size of the network. However, since only
local results are transferred the overall data transfer over-
head tends to remain much lower (depending on the size
of data cache) than that of the central data optimized
algorithm. This algorithm has the potential to introduce
computational error attributed to limited computing re-
sources available onboard the sensor node. It also offers
a limited amount of data reusability as local results from
each participating node are passed to the base-station for
further processing. Storage is also needed, and it must
be large enough for the subtree results; not to mention

1. Receive request from parent node
2. FOR EACH child node

Forward request to child
3. Retrieve local data
4. Perform local data transformation
5. Store response value
6. FOR EACH child node

Receive response value

Store response value
7. Transform stored response values

into a single representative value

8. Send transformed value to parent node

(b) Central Result Optimized

1. Receive request from parent node
2. FOR EACH child node
Forward request to child
3. Retrieve local data
4. Perform local data processing
5. Store response value
6. FOR EACH child node
Receive response value
Store response value
7. Aggregate stored response values into
a single representative value
8. Send aggregate value to parent node

(d) Local Optimized

Algorithms.

that it typically will have to be written to flash mem-
ory.

The second algorithm is the local optimized shown in
Fig. 1(d). This is also referred to as in-network aggregation
in the WSN literature. This algorithm is similar to the local
algorithm, but additionally makes use of in-network data
aggregation. Each node that participates in a query under-
goes the following steps. It computes a local result, and
then collects aggregate results from all of its direct chil-
dren. Finally, it computes a single aggregate value that rep-
resents its own local result as well results received from its
children. This single aggregate value is then forwarded to
the parent node. This algorithm minimizes the data trans-
fer overhead by passing only a single value between nodes
at a time regardless of the network size. This algorithm
has larger potential for computational error than the local
algorithm. This is due to the recursive aggregation behav-
ior that causes computational error to increase with every
additional iteration. Even with simple aggregate functions
like COUNT and SUM, overflows can be encountered, espe-
cially is large networks.

3. Experimental study

All experiments were performed on a wireless sensor
network built using the Sun SPOT wireless sensor nodes
modules. The base-station is a node connected to an iBook
G4 apple notebook via a USB cable. All the source code
implementing the in-network techniques as well as base-
station functionality is written in Java programming lan-
guage using a combination of Java SE 5 on the desktop
and J2ME on the nodes. There are several key environmen-
tal factors that affect the behavior of a WSN as a whole.
These are:



64 M.M. Gaber et al. / Information Processing Letters 110 (2009) 62-70

Base Station

(a) Small Wide Tree Network

®

@

Base Station o

O—®

(c¢) Large Balanced Tree Network

@)
(3
O

Base Station 1 4

O,
(&)

(b) large wide tree network

Base Station| (1) @) ©)

(d) Small Deep Network

Base Station o 6 6 o e 0

(e) Large Deep Network

Fig. 2. Network topology.

1. Network topology.
2. Amount of data that each sensor can hold (cache).
3. Domain of data collected by sensors (dataset).

For our experiments, we have used five different topolo-
gies shown in Fig. 2. Three levels of cache sizes have been
used as follows: 5 (small), 25 (medium) and 125 (large) el-
ements. It has to be noted that the cache size refers to the
memory buffer where data are stored, not the hardware
cache. Finally, we have used three ranges for the domain
of the data sets as follows: (1) Small value set in the range
between 0 and 3, (2) medium value set in the range be-
tween 0 and 1100, and (3) large value set in the range
between 10000 and 11100. We have used the following
quality criteria to assess the performance of the processing
algorithm:

1. Number of bytes transferred.

2. Number of messages transferred.

3. Response Time (RT): the time between query dissemi-
nation and the time when the first message containing
(possibly partial) response arrives to the base-station.

4. Execution Time (ET): the time between query dissemi-
nation and the time when the last message containing
response arrives to the base station.

5. Response Percentage Error (RPE): the amount of error
in the response.

6. Data reusability.

3.1. Impact of network size

Figs. 3, 4, and 5 show the different effects of the net-
work size on the different performance criteria. The exper-
iments were repeated with different sizes of cache mem-
ory. In Fig. 3(a), we compare the quality of responses of
the four algorithms in terms of response time using small
cache size and small values in a wide network. We ob-

serve that the central data optimized algorithm is the
least affected by growing the network size. This is ex-
plained by the fact that the central data optimized algo-
rithm is implemented without any additional data pro-
cessing. Therefore responses are sent to the base-station
as soon as they become available without any delay. In
contrast, all other algorithms do additional processing that
causes nodes to wait for replies from their children be-
fore they send a response. This effectively makes the re-
sponse time equal to the execution time for all algorithms
other than the central data optimized algorithm. It is im-
portant to note that with increasing the cache size, the
response time of the central data optimized algorithm will
degrade due to high network resource contention as shown
Fig. 3(b).

In Fig. 3(c), we illustrate the effects of network size
on the number of bytes transferred in the network during
query execution. The graph follows expected nearly linear
growth for all algorithms other than central data optimized
algorithm. In the case of the central data optimized algo-
rithm, doubling the number of nodes results in 2.2 times
increase of the size of transferred data. This trend holds for
all cache sizes and the very same trend is also reflected in
the number of messages that are passed through the net-
work during query execution.

Figs. 4(a) and 4(b) show that the impact of network
size on execution time is similar in both balanced and
wide networks. It can also be observed that the balanced
network topology yields better results than wide network
topology in terms of execution times for all network sizes
and algorithms. This is caused by the throughput bottle-
neck at the root node of the wide network. We again see
that cache size strongly degrades the performance of the
central data optimized algorithm.

Fig. 5(a) shows that the effects of the network size on
the response time using small caches. While the response
time of central data optimized algorithm is largely unaf-
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Fig. 3. Impact of network size on wide network.

fected by increasing the network size, response times of
the three remaining algorithms increase. Fig. 5(b) shows
the results of the same experiment with lager cache size.
Although the central data optimized algorithm is required
to transfer much larger quantity of data, it still remains
the best choice for its minimal response time. The same
does not hold true for balanced or wide topology. This
property of the deep topology is explained as follows.
At the time the first node receives a query request from
the base-station, it has relatively large amount of time
(depending on the network depth) to transmit its data
back to the base station before the request propagates

all the way through the network, and then responses are
transmitted back through the network to the base sta-
tion.

We now examine the effects of network size on the ex-
ecution time. In case of the deep network topology, the
performance of the four algorithms is comparable in small
networks using small cache size. When the size of the net-
work increases, the local optimized algorithm becomes the
best performing one. On the other hand, the central data
optimized algorithm comes the last. However, the perfor-
mance of all the algorithms is in reasonably close prox-
imity with the slowest time 36% behind the fastest time
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as shown in Fig. 5(c). The performance gap widens con-
siderably once the cache size is increased as illustrated in
Fig. 5(d). This is a common trend observed in all topolo-
gies. The central data optimized algorithm performs poorly
in terms of execution time with large caches, and this
effect is further magnified with increasing the network
size.

3.2. Impact of dataset domain

The domain of the dataset mainly impacts the response
percentage error. We have run a set of experiments with
setting the cache memory to its small size setting. Fig. 6
shows the results of these experiments.

We can observe from Fig. 6(a) that the amount of per-
centage error with small and medium values varies among
different topologies in a random fashion with values be-
tween 6% and 21% approximately. In the case of large val-
ues, we can see that response error values in the range
between 0.38% and 0.99%. It is important to note that the
potential for error in the case of large values is limited by
the value range of 10000-11100, i.e. maximum possible
error value of 9.9%, in which case the smallest error using
large values of 0.38% is equivalent to 3.8% error when us-
ing medium values. This suggests that the response error
is not affected by the dataset domain, but rather by the
potential for error and value distribution within the net-
work.

In Fig. 6(b), we illustrate the effects of dataset do-
main on the local optimized algorithm in various net-
work topologies. We observe that the small value dataset
with value in range from 0 to 3 produces large execution

percentage error, while the medium value dataset with
value range from O to 1100 produces much smaller exe-
cution percentage error. This effect is caused by rounding
error which is lager in operations on smaller data val-
ues.

In Fig. 6(c), we project the effects of dataset domain
on the local algorithm in various network topologies. We
observe much the same effects as in Fig. 6(b), i.e., that
the small value dataset with value in the range from 0
to 3 produces large execution percentage error, while the
medium value dataset with value range from 0 to 1100
produces much smaller execution percentage error. It could
be also observed that the percentage error produced by the
local algorithm is smaller than or equal to the error pro-
duced by the local optimized algorithm. This holds true
across all network topologies and data sets.

3.3. Impact of cache size

Fig. 7 shows the impact of varying the cache size on the
response time, the execution time and the amount of data
transferred in all the different topologies.

In Fig. 7(a), we illustrate the impact of cache size on
the response time in various topologies with small values
using central data optimized algorithm. The graph con-
veys several important points. Firstly, we observe that even
though the cache size grows exponentially, the growth
of response time for all implemented algorithms is much
slower. This is attributed to the constant network packet
size of 96 bytes as well as to the implementation of ran-
dom time-out periods during network collisions. Secondly,
we observe that the large wide topology is the most neg-
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Fig. 5. Impact of network size on deep network.

atively affected by increasing the cache size. This is at-
tributed to the very high network resource contention
rates in large wide topologies. As the number of child
nodes attempting to send to a single parent node increases,
the amount of time required to complete the data trans-
fer increases. A point of interest is that “wide” is the only
topology that copes badly with increasing the network
size. On the other hand, the network size has little effect
upon the response times in all the other topologies.

Fig. 7(b) demonstrates the impact of cache size on the
execution time in various topologies with small values us-
ing central data optimized algorithm. A noticeable differ-
ence between Figs. 7(b) and 7(a) is that the network size
plays an important role in result quality in terms of ex-
ecution time. This is predictable, because execution time
measures the entire period between the time of request
dissemination and the time of arrival of the final packet of
response data to the base-station. It is also clear that re-
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sponse quality suffers noticeably as cache size increases.
For example, in the case of large balanced topology, as
the cache size increases from 5 elements to 25 elements,
the execution time in turn increases from 4801 ms to
25961 ms, which is a substantial increase.

In Fig. 7(c), we observe that the cache size has very
direct impact on the number of bytes transferred. Due to
the fact that the number of messages has a linear direct
relationship with the number of bytes transferred, we ob-
serve the same trend when considering the number of
messages transferred. While both values are very closely
correlated, it is important to consider them separately as
each measurement has its own significance in terms of
power usage. While we are unable to measure power usage
directly, it can be derived from the amount of power de-
manding operations that a sensor node undertakes during
query execution. Depending on the platform and network-

ing implementation, either number of messages (in case
of datagram connectivity), or number of bytes (in case of
stream connectivity) can be the determining measure of
power use for network communication.

3.4. Performance guidelines

Having examined the previously discussed results, we
have been able to come up with a set of performance
guidelines detailed in Table 1.

4. Related work

To the best of our knowledge, a detailed analytical
comparison between centralized and in-network data pro-
cessing in wireless sensor networks has not been con-
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ducted. Thus, we can identify the following indirect related
work.

The hardware and software implementation of our ex-
perimental platform is described in detail in [1]. Although
our research makes extensive usage of the data-centric lo-
calized algorithms, the idea is the main focus of [3,5,6].
As our experiments used data aggregation, this processing
task has been the main focus of [7] and [2].

Query processing in wireless sensor networks has been
addressed in developing four main system prototypes,
namely TinyDB [8], Cougar [10], SSDQP [9] and Nile [4].
However, these systems have not addressed the trade-
off between centralized and in-network query process-
ing.

5. Conclusion and future work

Our research clearly outlines the key differences be-
tween in-network and centralized processing using a con-
crete implementation of both computing paradigms on real
hardware as opposed to simulation results. Our experi-
mental results show that centralized computing is a viable
alternative to in-network computing under various circum-
stances especially when the result accuracy, the response
time, and the data reusability are of primary concern.

The research presented in this paper offers a variety of
future directions. One way to extend our research is by
improving the currently implemented algorithms by com-
pressing or approximating the data, and then analyzing the
impact they have on the quality of the produced results.
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Table 1
Performance guidelines.
Quality Optimal algorithm Conditions
requirement
Execution Central result optimized None
accuracy
Central data optimized None
Response Central result optimized None
accuracy
Response Central data optimized Topology: Small
time wide/balanced, Large
balanced
Cache size: Small,
Medium
Topology: Large wide
Cache size: Small
Topology: Small deep,
Large deep
Cache size: All
Local optimized Topology: Large wide
Cache size: Medium
Local optimized Topology: Large wide
Cache size: Large
Local optimized Topology: Small
wide/balanced
Cache size: Large
Local optimized Topology: Large balanced
Cache size: Large
Execution Local optimized None
time
Bytes Local optimized None
transferred
Messages Local All encapsulated results
transferred can be sent in a single
message
Local optimized None
Central result optimized  None
Data Central data optimized High data resolution
reusability required

Local

Low data resolution
required
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