
Architectural and Physical Design Optimizations for Efficient
Intra-tile Communication

A. Papanikolaoul, F. Starzer2, M. Mirandal, K. De Bosschere3, F. Catthoor14
1IMEC v.z.w., Kapeldreef 75, 3001 Leuven, Belgium

2FH Hagenberg, Hauptstr. 117, 4232 Hagenberg, Austria
3Universiteit Gent, Sint-Pietersnieuwstr. 25, 9000 Gent, Belgium

4Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

Abstract-Intra-tile communication requirements for future SoC plat-
forms are becoming ever more demanding for new processor and
memory architectures. Increased bandwidth, low latency and low energy
consumption are required, which the current communication architecture
solutions cannot provide. In this paper we propose the use of software-
controlled, light-weight segmented buses to implement the communication
between the processing elements and their working memories. We show
that significant energy and delay/latency gains can be expected from the
use of this communication architecture.

I. INTRODUCTION

Energy minimization is fast becoming the major optimization
criterion during the design of embedded systems, in order to max-
imize their battery lifetime. The System-on-Chip (SoC) architecture
comprising synchronous tiles or islands is an architectural template
for low-energy and high-performance application domain specific
system instantiations.
The communication architectures in the SoC architectural template

can be divided into inter-tile and intra-tile architectures. Inter-tile
architectures take care of the communication between the tiles, which
is not very frequent if the application mapping is done properly and
where a significant latency can be tolerated. Intra-tile communication
architectures provide the means for transferring data between the
components of the same tile, the local memories and processing
elements for instance.
The requirements on the intra-tile communication network are

more severe than the inter-tile ones. Inside the tile, the communication
bandwidth is large, for the wireless and multimedia application
domain our measurements indicate a bandwidth of a few tens of
Gbps is needed. Additionally, latency should not exceed one, or
maximally two, cycles and the energy per transfer should be very low,
given the large bandwidth. Currently, past solutions are being re-used
for intra-tile communication, such as point-to-point connections and
crossbars, in the case of processing architectures with a centralized
local memory [1].

For global energy efficiency reasons, however, new system archi-
tectures are moving toward fully software-controlled solutions. Dis-
tributed local memory organizations consisting of software-controlled
scratch-pad memories instead of caches are used. New processor
architectures are also moving toward software-controlled VLIW
architectures, which offer the right amount of programmability and
energy efficiency to fill the gap between ASICs and general purpose
processors for various application domains. The TI C54x [2], for
instance, has 4 local data memories, 5 local program memories and 3
load/store units. Shared buses, based intemally on crossbars, are used
for the communication in this architecture. They consume, however,
too much energy per bit and are not scalable in number of connected
components or technology node, see [3]. Furthermore, the number
of memories and load/store units will further increase to fill the

massively parallel datapaths of the future in order to exploit the
application level parallelism.

Thus, a more scalable and energy-efficient programmable com-
munication architecture is required to meet the demands of such
platforms. It should be software-controlled and not run-time hardware
based as current advocated solutions. The software control should
move the exploration penalty fully to design time so that at run-
time energy and delay overhead becomes negligible. Furthermore, it
should be programmable in order to be flexible enough to handle
several applications, but not designed under worst-case connectivity
assumptions to improve energy efficiency.
On the other hand, interconnect wire technology scaling trends

further deteriorate the energy efficiency of communication architec-
tures, because the scaled wires cannot keep up with the improved
performance and energy characteristics of the scaled transistors.

In this paper we describe an application domain specific, software-
controlled communication network for intra-tile communication that
is based on a light-weight implementation of multiple segmented
buses. This architecture is scalable to future technology nodes and to
more complicated systems. We also illustrate a number of optimiza-
tions that are required at the architectural and the physical design
level in order to achieve energy-efficient intra-tile communication.

II. RELATED WORK
Most of the past and current research on communication archi-

tectures has been focused on the communication between the SoC
tiles. Emerging industrial standards, such as the AMBA bus [4],
CoreConnect [5], STBus [6], WISHBONE [7] as well as a number of
academic contributions, like NoCs [8], [9] and self-timed segmented
buses [10], all target this type of communication. The architecture
proposed in this paper uses a much finer-grain segmentation and much
simpler control than the one proposed in [10].

In the context of intra-tile communication, however, the amount of
literature is limited. As already mentioned, current industrial System-
on-Chip implementations rely on textbook [11] solutions such as
point-to-point connections [1], shared buses [2] and crossbars [12].
These solutions, however, are general purpose communication ar-
chitectures, which cannot provide both the energy-efficiency, the
programmability and the scalability that will be required by future
massively parallel processing architectures [3]. Each of the existing
solutions can satisfy only one of these major requirements.

Segmented buses are not a novel communication mechanism
as such. They were initially developed in the context of super-
computing, in order to speed up computations on parallel architec-
tures in the mid 90's, see [13] for instance. Chen et al [14] have
illustrated the potential to use them also for communication energy
optimization. They did not, however, show how such an architecture
can be programmed or controlled. Their switch implementation is

0-7803-9294-9/05/$20.00 C2005 IEEE 112

Authorized licensed use limited to: University of Florida. Downloaded on March 28,2010 at 18:57:06 EDT from IEEE Xplore. Restrictions apply.

based on single pass transistors and it incurs a very high delay
penalty, due to the high transistor resistance especially for future
technology nodes. Furthermore, all the existing work on segmented
buses focuses solely on architectural level optimizations, ignoring
the physical aspects of the buses. In contrast, in this paper we show
on a case study how to perform combined architectural and physical
design optimizations during the design trajectory of segmented buses.

Ill. INTRA-TILE SEGMENTED BUSES

Communication between processing elements and their local work-
ing memories involves a very large bandwidth. The TI C54x ar-
chitecture [2] can have a peak bandwidth of 9.6Gbps, while the
Adres architecture [15] can go up to maximally 128Gbps for a clock
frequency of 500MHz. Furthermore, the latency should be minimal
in order to reduce stall cycles.
To meet the requirements for low energy, low latency and high

bandwidth we propose a software-controlled, light-weight implemen-
tation of segmented buses. It is based on bi-directional tri-state buses,
where each bus is divided into segments by introducing switches
at the places where the various components are connected to it,
see Figure 1. Each switch is configured at run-time to form a path
between the source and the sink of the transfer. No handshaking
techniques or transfer protocols are used, thus the control is light-
weight. Conflicts are eliminated by providing enough parallelism
and scheduling the transfers through different paths at compilation
time. The number of parallel buses and the connections between
components and buses are decided based on the application domain
bandwidth requirements. Thus, the communication architecture can
vary from a single segmented bus to a (partial) segmented crossbar.
Depending on the target use of the system, this communication
architecture can be fully customized to a single application or it can
be flexible and programmable enough to handle the communication
required by programmable processing elements in application domain
specific platforms.

A. Data plane
Two major issues exist in the definition of the data plane of the

proposed communication architecture. The first is the number of
parallel buses and the connections to the system components. The
second is the implementation of the switches and where to insert
them in the architecture.
We have made some assumptions about the methodology that

is used to map the application residing on the embedded system.
The methodology presented in [16] is used to define the number of
parallel communication resources needed to satisfy the application
bandwidth requirements. Based on the high-level application mapping
the peak bandwidth per cycle is extracted and sufficient parallel
buses are allocated. The connections of components to buses are
also defined based on the synthesis of the memory organization.
The major assumption in this methodology is that the application is
fully characterizable at compile-time. That enables us to completely
alleviate conflict situations by allocating enough parallel connections.
The implementation of the switches is based on active components

instead of passive components, such as pass transistors. The reason
is that passive components tend to have a very large resistance when
not over-sized, leading to a large communication delay overhead. This
trend becomes even worse as technology scales down. Furthermore,
the active switches can also act as repeaters to drive the signal
through the long interconnect wires. The switches are 3-port uni-cast
or multi-cast components implemented using tri-state buffer chains,
see Figure 2. Each triangle in the figure is a tri-state buffer chain
that can be sized according to the corresponding wire-load and the
latency requirements. The use of tri-state buffers is enabled by the
fact that very long wires do not exist after segmentation and that the
bus conflicts do not occur due to the design-time scheduling. This
simplifies the testing, removing difficulties encountered for tri-state
circuit implementations [17]. A small decoding logic is added to
minimize the number of external control wires. Its area is negligible
compared to the size and the number of the buffers required, 96
buffer chains are needed for a 32 bit switch while the decoding logic
comprises 7 logic gates and can be shared by all the buffers.

por3

Fig. 1. The architecture of the segmented buses communication network
includes a number of parallel shared communication resources, a number of
switches and a mechanism that controls the switches.

Structurally, any communication architecture comprises two major
parts, namely a data plane and a control plane. The data plane is
the infrastructure that provides the means for the transfer of data
from the source to the sink of the communication. The control plane
provides the correct routing of the data. In the proposed architecture,
the buses and the switches form the data plane, while the network
controller and the control wires to the switches are the instantiation
of the control plane.

Fig. 2. The switches consist of a number of tri-state buffers that are required
to buffer the output wire loads and a small control logic that decodes the
control bits coming from the network controller and in turn controls the
activation of the buffers.

B. Control plane
The control plane of the communication network consists of

the controller and the control wires to the switches. As already
mentioned, the communication conflicts are resolved at compile and
synthesis time. As a result no time is needed for handshaking and
run-time arbitration, so the latency of the transfer can be limited

113

Authorized licensed use limited to: University of Florida. Downloaded on March 28,2010 at 18:57:06 EDT from IEEE Xplore. Restrictions apply.

to just one cycle. The network controller only has to configure the
switches to the correct setting.
The controller can be implemented in two ways, either as a

dedicated hardwired controller with a memory-mapped look-up table
(LUT) or via the instruction memory of the programmable compo-
nents of the system in a fully software-controlled manner. In the
case of an application specific hardwired controller, the address of
the transferred data element in the virtual address space is decoded
to identify the target component during a bus transfer. Based on the
target component the controller can retrieve the control bits for the
switches from the LUT. The contents of the LUT can be changed
by the synthesis tool to provide some reconfigurability. In the case
of a programmable platform for a target application domain and
compile-time analyzable applications the compiler itself can generate
the required control bits for the switches, which would be inserted in
the application code as separate network configuration instructions.
We will illustrate the main concepts on an application specific

design of a Digital Audio Broadcast (DAB) receiver system. Thus
the memory access and transfer schedule is defined a priori, so
in the illustration itself we use the hardwired network controller
implementation where the LUT is initialized once.

IV. SYSTEM ARCHITECTURE CASE STUDY

This target system implementation, the DAB receiver, can be
regarded as a single tile in the context of Systems-on-Chip. It is a
standalone tile and the only interaction with other tiles are the signal
coming from the antenna (analog front-end and digital baseband
processing) and the signal going to the audio output.
The system architecture of this receiver consists of three hardwired

datapaths and their 9 working memories. These datapaths implement
the Fourier transform, unscrambling in the time and frequency
domains and error correction functionalities. The complete system
architecture and connectivity is shown in Figure 3.

|., - .,,x.......

Fig. 3. The fi nal architecture of the Digital Audio Broadcast receiver. The
Functional Units are centralized and the network controller is shown. The
communication architecture is clustered into three sets of segmnented buses.
Each switch is controlled by the network controller (connections not shown).

V. ARCHITECTURAL OPTIMIZATIONS

Two architectural optimizations have been performed in order
to optimize the communication energy consumption. The first one
involves the partitioning ofthe entire system into non-communicating
clusters, so that the communication architecture can be implemented
using smaller and more efficient connections. The second optimiza-
tion targets the control plane energy consumption. Both are quite

generally applicable and they will be described next. They will also
be illustrated on our DAB case study.

A. System partitioning

One of the reasons for poor scalability of existing communication
architectures is their centralized structure. Shared buses connect all
the system components on a given communication resource, which
spans the entire system to provide the required connectivity. One
way to tackle this issue is to divide the system into clusters of
components that do not communicate between them and provide
local communication solutions. Even in case where communication
between such clusters is required, hierarchical communication struc-
tures can provide a good altemative solution.
As already shown in Figure 3, the three datapaths are implemented

in a centralized manner and they share intemal registers and three
ports to the memory organization. The accesses to the memories via
each individual port are routed such that no memory needs to have
access to more than one datapath port. This is done by analyzing
the access schedule and determining which memories do not need to
be accessed simultaneously. Memories that have concurrent accesses
should belong to different clusters. This optimization is straightfor-
ward for application specific designs, for programmable platformns it
implies additional constraints to the instruction scheduler. In the case
of the DAB the memories of the system can be grouped into three
clusters, where each cluster is only connected to one datapath port
and no communication between clusters exists.
To conmect this architecture we have built a multiple bus structure.

The data and address buses that connect the memories to the datapaths
are partitioned into three smaller buses, which connect only part
of the architecture and can be implemented as multi-terminal net
point-to-point comnections since no conflicts can occur, see Figure 3.
These nets connect each pin of all the communicating blocks via a
single shared wire. This can bring a very significant reduction in the
communication energy consumption, since the connections do not
need to be routed over the entire die anymore.
A further optimization involves segmenting these connections by

adding switches, we still call this new communication structure
"segmented buses", even though it diverges from the original concept
of [14] and [13]. The number of transfers over them is very large and
segmentation significantly reduces their total switching capacitance
and energy consumption.

B. Communication architecture instantiation optimization

At the communication architecture level the switches were clus-
tered into groups in order to re-use as much as possible the control
wires. A very strong correlation exists between the configurations of
the neighboring data and address bus switches. The information on
the address bus always travels from the datapath to the memories,
while the information on the data bus can travel both ways. As a
result, the address switches can be stripped down to provide only
the required functionality. The control wires can be shared between
adjacent address and data switches. Three control bits can configure
a pair of these switches, by modifying the decoding logic inside the
address switches. This optimization provides a maximum reduction in
the number of required control wires and their energy consumption.
The switches used in this design are uni-cast, because the appli-

cation does not require multi-casting capabilities from the bus. Thus
each data bus switch has seven states, routing data from any input to
any output port, and one idle state. As a result, three control bits are
enough per pair of switches.

114

ww

Authorized licensed use limited to: University of Florida. Downloaded on March 28,2010 at 18:57:06 EDT from IEEE Xplore. Restrictions apply.

Component Area
memories 71%
datapaths 18%

system level controller 7%
network controller 1%

switches 3%
TABLE I

AREA BREAKDOWN OF THE DAB RECEIVER USING THE PROPOSED
SEGMENTED BUS ARCHITECTURE FOR COMMUNICATION. THE AREA

OVERHEAD OF THE SEGMENTED BUSES IS SMALL.

For the DAB, an initial fully segmented bus architecture with
three buses and connections between them to provide full system
connectivity included 22 switches, thus 66 control wires. Reusing
these wires among the address and data switches further reduces their
number to 33.

VI. PHYSICAL DESIGN OPTIMIZATIONS

Segmenting the buses results in each individual memory having
a different communication energy and delay associated to it. In
order to minimize the overall communication energy consumption,
the memories should be connected to the bus in an optimal order.
The most active memories should be connected very close to the
functional units, so that the part of the bus that is very often activated
becomes minimal, see also [18]. The less active memories can tolerate
longer connections.

Furthermore, this ordering should be respected during the floor-
planning and placement stages. Since the memory blocks are placed
manually on the floorplan, their ordering can be done in a good
manner following the architectural ordering decision.

VII. OVERALL RESULTS ON DAB

In order to evaluate the energy consumption, area occupation and
delay of the communication architecture, we pushed the design of the
DAB application through the physical design stage. The area of the
finctional units is estimated via logic synthesis and the characteristics
of the memories come from a 1 30run memory library of an industrial
partner. The characteristics of the switches were calculated based on
the synthesis results for the decoding logic and analytical calculations
for the buffers [19], we used ideal buffering of the interconnect wires.
One iteration is required during floorplanning and global routing,
because the wire-lengths impact the switch area. All the technology
parameters come from the ITRS roadmap for the 130nm technology
node.

The breakdown of the area occupation of the various components
is illustrated in Table I. The portion of area dedicated to the
communication architecture is around 4% including all the control
overhead, which is negligible.

Table II contains the data transfer and storage energy consumption
for the decoding of a DAB audio frame for the memory organization
and the three different communication architectures, the energy of
the datapaths is not included. The arbitration energy for the shared
bus architecture has been neglected. The segmented bus architecture
shows promising energy savings compared to the other two architec-
tures.

The delay of the critical path in our segmented bus communication
architecture was about 1.8 nsec, while the critical memory access
delay in the design was about 2.5 nsec, given that the memory sizes
in the design are very small. This confirms that the transfers over the
bus can be performed in a single cycle, given the lack of run-time
arbitration, and they can be pipelined with the memory access time.

Comm Memory Comm Total Comm Total
arch energy energy energy energy energy

savings savings
single
shared l. I 6e-4 2.44e-4 3.6e-4
bus
multi

terminal I.1 6e-4 5.8e-5 1.74e-4 76% 52%
P2P

segmented 1.16e-4 2.39le-5 (data) 1.48e-4 87% 60%
buses 8.104e-6 (ctrl)

TABLE II
BREAKDOWN OF DATA TRANSFER AND STORAGE ENERGY CONSUMPTION
FOR PROCESSING ONE DAB AUDIO FRAME AT l3ONM. TOTAL SAVINGS
REFERS TO THE ENERGY FOR STORAGE AND TRANSFER OF DATA. THE

MEASUREMENT UNIT IS JOULES.

VIII. CONCLUSIONS
Communication is becoming a significant contributor of system

energy consumption. We propose the use of a light-weight, software-
controlled implementation of segmented buses in order to provide
the required bandwidth and latency for intra-tile communication of
future SoC platforns. Energy gains exceeding 80% compared to using
a shared bus and gains of around 40% compared to shared point-to-
point connections have been demonstrated.

REFERENCES
[1] S. Dutta, R. Jensen, A. Rieckmann, "Viper: a multiprocessor SoC for

advanced set-top box and digital TV systems", IEEE Design & Test of
Computers, Sep. 2001.

[2] "TMS320VC5471 fi xed-point digital signal processor: data manual",
http://focus.ti.com/docs/prod/folders/print/tms320vc547l .html

[3] A. Gangwar, M. Balakrishnan, P.R. Panda, A. Kumar, "Evaluation of bus
based interconnect mechanisms in clustered VLIW architectures", Design
Automation and Test in Europe, March 2005.

[4] ARM AMBA bus specifi cation
http://www.arm.com/arnwww.ns4/html/AMBA?OpenDocument

[5] IBM CoreConnect bus architecture
http:llwww-03.ibm.com/chips/products/coreconnect/

[6] STBus specifi cations
http://www.stmcu.com/inchtml-pages-STBus-intro.html

[7] WISHBONE specifications
http://www.opencores.org/browse.cgi/fi Iter/category. soc

[8] W. Dally, B. Towles, "Route packets, not wires: on-chip interconnection
networks", Design Automation Conf, June 2001.

[9] L.Benini, G. De Micheli, "Networks on chips: a new SoC paradigm",
IEEE Computer, Jan. 2002.

[10] J. Plosila, T. Seceleanu, P. Liljeberg, "Implementation of a self-timed
segmented bus", IEEE Design & Test of Computers, Nov. 2003.

[11] J. Duato, S. Yalamanchili, N. Lionel "Interconnection networks, an
engineering approach", IEEE Computer Society, June 1997.

[12] B. Khailany, W.J. Dally, U.J. Kapasi, P.R. Mattson, J. Narmkoong, J.D.
Owens, B. Towles, A. Chang, S. Rixner "Imagine: media processing with
streams", IEEE Micro, March 2001.

[13] Y Li, S.Q. Zheng, "Prefi x computation using a segmented bus", South-
eastern Symposium on System Theory, April 1996.

[14] JY. Chen, W.B. Jone, J.S. Wang, H.-I. Lu, T.F. Chen, " Segmented bus
design for low-power systems", IEEE Trans. on VLSI, Mar. 1999

[15] B. Mei, A. Lambrechts, J.-Y Mignolet, D. Verkest, R. Lauwereins,
"Architecture exploration for a reconfigurable architecture template",
IEEE Design & Test of Computers, April 2005.

[16] T. van Meeuwen, A. Vandecappelle, A. van Zelst, F. Catthoor, D. Verkest,
"System-level interconnect architecture exploration for custom memory
organisations", Intl. Symposium on System Synthesis, Oct. 2001.

[17] T. Kishi, M. Ohta, T. Taniguchi, H. Kadota, "A new inter-core Built-
In-Self-Test circuits for tri-state buffers in the System on a Chip", Asian
Test Symposium, 2001.

[18] H.Wang, A. Papanikolaou, M. Miranda, F. Catthoor, "A global bus power
optimization methodology for physical design of memory dominated sys-
tems by coupling bus segmentation and activity driven block placement",
Asian South-Pacifi c Design Automation Conference, Jan. 2004.

[19] J.Rabaey, "Digital Integrated Circuits: A Design Perspective (2nd edi-
tion)", Prentice Hall, Englewood Cliffs NJ, 2003.

115

Authorized licensed use limited to: University of Florida. Downloaded on March 28,2010 at 18:57:06 EDT from IEEE Xplore. Restrictions apply.

