Design Automation for Embedded Systems, 6, 425-449, 2002.

A d
".‘ © 2002 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Comparing Three Heuristic Search Methods for
Functional Partitioning in Hardware—Software
Codesign

THEERAYOD WIANGTONG twl@icacuk
Department of Electrical & Electronic Engineering, Imperial College, Exhibition Road, London

PETERY. K. CHEUNG p.cheung@ic.acuk
Department of Electrical & Electronic Engineering, Imperial College, Exhibition Road, London

WAYNE LUK wl@doc.ic.acuk
Department of Computing Imperial College, Queen’s Gate, London

Abstract. This paper compares three heuristic search algorithms: genetic algorithm (GA), simulated annealing
(SA) and tabu search (TS), for hardware—software partitioning. The algorithms operate on functional blocks for
designs represented as directed acyclic graphs, with the objective of minimising processing time under various
hardware area constraints. The comparison involves a model for calculating processing time based on a non-
increasing first-fit algorithm to schedule tasks, given that shared resource conflicts do not occur. The results show
that TS is superior to SA and GA in terms of both search time and quality of solutions. In addition, we have
implemented an intensification strategy in TS called penalty reward, which can further improve the quality of
results.

Keywords: Functional partitioning, genetic algorithm, hardware—software codesign, heuristic search algorithms,
simulated annealing, tabu search.

1. Introduction

Task partitioning and task scheduling are required in many applications, for instance
codesign systems, parallel processor systems, and reconfigurable systems. Sub-tasks
extracted from the input description should be implemented in the right place (using the
partitioner) at the right time (using the scheduler). It is well known that such scheduling
and partitioning problems are NP-complete and are therefore intractable [1], [2].
Furthermore, in the case of reconfigurable hardware, such problems are considered as
NP-hard [3]. Optimization techniques based on heuristic methods are generally
employed to explore the search space so that feasible and near-optimal solutions can be
obtained.

This paper focuses on algorithms involving heuristic search to solving hardware—
software partitioning problems. Although heuristic methods do not guarantee the
optimum point, they can produce acceptable solutions within a reasonable amount of
time. Common heuristic-based algorithms include tabu search (TS), simulated annealing
(SA), and genetic algorithm (GA). To the best of our knowledge, there has not been a

426 WIANGTONG ETAL.

systematic comparison of these three algorithms for hardware—software partitioning and
scheduling. The novel contributions made in this paper are:

1. We compare TS with GA and SA, and find that for randomly generated task graphs
as well as some task graphs normally encountered in real applications, TS is
superior to GA and SA in terms of search time and quality of solutions.

2. We introduce an approach that uses processing time (makespan) as a system cost
and also an architectural model for estimating processing time based on a non-
increasing best-fit algorithm, in which hardware tasks are scheduled without
resource conflicts.

3. We extend TS to include penalty reward, based on an intensification strategy, and
prove that it can improve the quality of solutions obtained from search space.

The rest of the paper is organised as follows. Section 2 describes previous work on
partitioning and scheduling. Section 3 provides an overview of the three heuristic
algorithms used, and introduces the method implemented in TS to intensify searching in
promising regions. Section 4 introduces the reference system architecture used in the
comparison, and the model for estimating processing time as a measure of design quality.
Section 5 consists of experimental results and discussions. In the last section, we draw
some conclusions and propose future work.

2. Previous Work on Partitioning and Scheduling

Research in hardware—software codesign encompasses many interesting areas of research
such as system specification and modeling, partitioning and scheduling, compilation,
system co-verification, co-simulation, code generation for hardware and software, and
hardware—software interfacing. However the common objective is to develop design
methodologies and tools for systems containing both hardware and software.

A number of hardware—software codesign systems have been reported in the literature
and they focus on different aspects in the design process. For instance, in COSYMA [14]
hardware—software partitioning is based on simulated annealing. Tasks in the initial
software-only solutions are mapped to hardware in order to provide the necessary
acceleration so that system timing constraints are met. In contrast the VULCAN system is a
hardware-oriented approach. It starts with a complete hardware solution and tries to reduce
system cost by moving the non-time-critical parts to software. Other tools such as Ptolemy
[26] and Chinook [27] emphasise different problems in codesign rather than partitioning or
scheduling. Ptolemy concentrates on hardware—software co-simulation and code
generation. Chinook focuses on the synthesis of interface between hardware and software.

Partitioning is a crucial step in codesign [9], [14], [16], [17] because it plays an important
role in allocating tasks properly between hardware and software under system constraints.
The results of partitioning directly affect system cost and performance. The approach used

COMPARING THREE HEURISTIC SEARCH METHODS 427

for partition is dependent on the type of scheduling employed. Two types of scheduling are
common: pipelined scheduling and sequential scheduling. Partitioning for pipelined
scheduling is very different from partitioning for sequential scheduling [11]. The objective
of partitioning for sequential implementation is to minimize the time for one complete
execution of the directed acyclic graph (DAG), while partitioning for pipelined
scheduling intends to obtain the least number of pipelined stages and memory
requirement, and also to satisfy constraints on pipeline stage delay time.

An example of pipelined partitioning is described in [12] where tasks are partitioned
and pipelined to satisfy the system throughput requirement. As a result the pipeline stage
delay becomes the system constraint. Partitioning and scheduling are characterized into
functional blocks in the spatial domain. The functional partitioning approach has several
advantages that make it a good technique for hardware—software codesign [9]. The most
important feature is that both software solutions and hardware implementations [20] can
be obtained simultaneously. Another pipelined partitioning method is reported in [11]
where the partitioner uses a branch-and-bound approach to minimize the initiation
interval in a pipelined implementation. (Initiation interval is the time difference between
the start of two consecutive iterations after steady state is reached.)

The work reported in this paper involves partitioning in functional level for sequential
scheduling rather than pipeline scheduling. Each precedence level, containing both
software and hardware tasks, is sequentially executed from the top level down. In the
same precedence level, however, hardware and software tasks can run concurrently.

There are many algorithms are available to solve the optimization of the partitioning
and scheduling problem [10], [13], [14], [15]. These include dynamic programming, branch-
and-bound, a list scheduling, integer linear programming, graph partitioning, simulated
annealing and genetic algorithm. Some hybridization approaches combine several
algorithms to solve the problem. Common to all these algorithms are the following
objectives: fast execution; applicability to hardware—software partitioning; scalability
with ease of inclusion of new constraints; consistently yielding good quality results.

Comparisons between these optimization algorithms have been reported recently. For
example, there is a comparison between simulated annealing (SA) and genetic algorithm
(GA) in [9], and GA was found to yield the best solutions. However, the system architecture
used in that paper is simple and may not be applicable to complex systems. In contrast, our
model can deal with resource conflicts. There is also a comparison between SA and GA in
[6] but the context is to solve routing problem in communication networks.

While SA and GA are commonly used to overcome the intractability of partitioning and
scheduling problems [22], the tabu Search (TS) method is less popular. TS was described
and compared with SA in [22] and, surprisingly, TS achieved higher performance.
However the focus of that work is to minimise the communication cost without taking
into account resource conflicts. Also there is no attempt to utilise re-annealing strategy
in SA and intensification strategy in TS.

While [19] covers a comparison of the three heuristic search methods (SA, GA and TS),
its main emphasis is on hardware—software system architecture synthesis. Functional
partitioning in [19] is obtained by an optimal branch-and-bound algorithm and only the
component selection is optimized using heuristic methods.

428 WIANGTONG ETAL.

The aim of this paper is to compare the GA, SA and TS algorithms for hardware—
software partitioning. The algorithms will be used to minimize processing time subject to
area constraints, precedence constraints and constraints due to shared resource conflicts.

3. Heuristic searches

The following section describes how the three optimization algorithms are adapted and
modified to solve the partitioning problem. The fitness function and modifications in GA
is described. The strategy used to intensify searching in local regions to improve the
efficiency of TS, called penalty reward, is explained.

Briefly, GA is a general search algorithm [6]. It is versatile and effective for solving
combinatorial optimization problems [8]. To apply GA to a particular problem, it is
common to use a non-standard chromosome representation or a problem-specific
genetic operator.

SA is a search algorithm that avoids becoming trapped in local optima by using
Boltzmann distribution. The crucial factor in getting a good result comes from the
“cooling schedule” [6], [7]. Localized simulated annealing (LSA) divides search space
and provides a better control over temperature and annealing speed in different subspaces.

TS is a systematic approach to searching a solution space to avoid cyclic searching or
being trapped in local optima. Reactive tabu search (RTS) is an improved version of tabu
search. It uses a simple feedback scheme to determine the value of the prohibition
parameter in TS [6]. In this paper, rather than only diversifying searching, we adapt
penalty strategy to intensify searching in particular promising regions of the solution
space. TS with this adaptation—called Tabu Search with Penalty Reward, TSPR—offers
better results compared to those from the standard TS.

3.1. Genetic Algorithm

Genetic algorithm is based on Darwinian natural evaluation and selection. The algorithm
has four main operations: evaluation, selection, crossover and mutation. Starting from an
initial population, the degree of “fitness” for each member of the population is evaluated
according to a fitness function. A set of parents is then selected from this population based
on the fitness evaluation to breed a new generation of candidate solutions. The desirable
features in each parent are encapsulated in a code associated with each parent, and this
code is known as its “chromosome.” Each chromosome is made out of a number of
“genes,” each capturing a desirable feature. Two children are reproduced from two
parents by first randomly dividing each parents chromosome into two sets of genes, and
then mixing them in a crossover fashion. This process, known as “crossover,” helps to
transmit the good features of parents into the next generation. Finally, mutation is used to
avoid the searching process being trapped in local minima. This is done by occasionally
(say with a probability of 0.01) modifying a gene (i.e., mutated). Figure 1 depicts the GA
algorithm.

COMPARING THREE HEURISTIC SEARCH METHODS 429

getinput parameters :
Pcr, Pmu, Pop size,
Number of generations

v

initialize population

»
-

A A

Evaluation
calculate cost function and
fitness function

v

Selection
using a roulette wheel

v

Crossover
using single point crossover and the
number of generations is increased

v

Mutation

reach the number
Qf desired generations2.

display resulis

Figure 1. GA algorithm.

The efficiency of GA in solving a given problem depends heavily on the representation
of desirable characteristics in the chromosome, a good choice of the fitness function, and
the appropriate use of the crossover mechanism. In our formulation, each individual in a
population is characterised by a chromosome with the number of genes equal to the
number of tasks or functional blocks. A gene is encoded as “0” if the task is implemented
in software, and “1” if it is mapped to hardware.

430 WIANGTONG ETAL.

To calculate the fitness of a member in a population, we first define the cost of the
member as:

C;=K\A4; + ¢B; if 4;>0
=¢B; if 4; <0 (D
where C; = cost of member 7 in the population
K, K;, ¢ = constants
A; = (HwArea; — Aconstraint) 18 the amount of hardware
area exceeding the area constraint
B; = processing time of member 7 in the population

Fitness F; is defined as:
F; = max(C;) — G; (2
while the normalised fitness is defined as:

F;
> F

alli's

E:

(©)

In order to ensure that hardware area does not exceed the area constraint A pusrain, K1
must be chosen to be significantly larger than ¢. We also investigate the use of an
alternative cost function defined as:

C; =A% + ¢B; if 4; >0
=¢B; ifA4,<0 4)

These cost functions are adapted from those found in [9]. The objective of the optimization
procedure is to maximize the fitness values and to minimize the cost.
In order to perform selection, we first construct a cumulative fitness graph based on:

CumF; = F; (5)
1

This is shown in Figure 2(b). A roulette wheel selection method is applied by generating
a random value between 0 and 1. For example, if)’ is generated, the chromosome 3 will be
selected as a parent. It can be seen that the larger the fitness value of a chromosome, the
higher the gradient on this curve, and the higher the probability of it being selected. Based
on this selection procedure, a set of parent population is chosen for crossover
reproduction. A chromosome can be selected more than once into the set of survivors.

A conventional single cut-point crossover scheme is employed to generate two children
for every two surviving parents. In GA, because we want to maintain population size in

COMPARING THREE HEURISTIC SEARCH METHODS 431

CumF{i)

a 1

/
N

N

\

0.5~

most opportunity region
<

D\
w Chromosome 3 i selecied.

l T B A
12 3 4 5 6 chromosomel(i) Chromosome(i)

(a) Normalized fitness (b) Cumulated normalized fitness

Figure 2. Normalized and cumulated normalized fitness for roulette wheel selection.

each generation, some new children possibly exceed the area constraint due to a random
crossover operation. However, these children have a high chance to be rejected in the
selection procedure because of having a small value of fitness.

Finally, mutation is implemented by randomly flipping individual bits in the child
chromosome with a small probability value (e.g., less than 0.01).

3.2. Simulated Annealing

Simulated Annealing (SA) was first introduced in 1953 by Metropolis et al. [6], [21]. Thirty
years later, Kirtpatrick [25] suggested that this technique could be used to search feasible
solutions in optimization problems. Since then the method has become very popular in
solving many combinatorial optimization problems because of its simplicity, ease-of-use,
robustness for a large number of problems, and the ability to avoid being trapped in local
optima.

SA is adapted from the well-known neighborhood search (NS), a hill-climbing
algorithm. Unlike NS which always chooses the best solution in the neighborhood and
thus missing a better solution further away, SA accepts an inferior solution in the
neighborhood according to a probability function. This probability is set high at the
beginning of the optimization process, but is gradually reduced to zero. This is akin to the
annealing process where the temperature of annealing is gradually reduced. The rate of the
drop of the acceptance probability is governed by a function known as the cooling
schedule. As the temperature cools to a predefined threshold, a solution is arrived.

It is well known that the choice of the cooling schedule is important [6]. It affects the
efficiency of the algorithm and the quality of the solution. Too fast a cooling schedule can
result in the algorithm stopping early at some local minimum; too slow a cooling schedule
makes the algorithm jump more or less randomly for a long time before settling to a
solution. Two popular cooling schedules used in this paper are:

432 WIANGTONG ETAL.

1. Geometric schedule
Thew = Ty (6)

ais a constant close to 1 (typically in the range of 0.9-0.99). k is the number of iterations
givenby k = [log(Ty) — log(Ty)]/log(c) where T = starting temperature, 7y = finish
temperature.

2. Lundy and Mees schedule [21]
To/d

me E rE——
(1 + BTo1a)

(N

0 is a constant near to zero or equals to (T — Ty)/(kT,Ty) where k is the number of
iterations.

The SA algorithm used to solve the partitioning problem in this study tries to minimize
processing time while staying in the boundary of area constraints. Our implementation of
SA has the following features:

1. It supports two popular cooling schedules described above and provides a
comparison between them.

2. The cost function is chosen to minimize processing time without violating hardware
area constraints.

3. New solutions are generated by randomly swapping a task between hardware and
software in the task graph.

A re-annealing strategy is also used: when a move is rejected, the temperature is
increased (for example, by the rate of the equation Te,, = T/ (1 — vT,1))- To avoid
being trapped in an infinite loop, the increasing rate of temperature is made much lower
than the decreasing rate (e.g., 3 = 100v). The two cooling schedules, geometric and
Lundy/Mees with re-annealing, are compared. The better one is selected for comparison
with the GA and TS algorithms.

The flowchart of SA algorithm is depicted in Figure 3. An initial solution that obeys the
area constraint is first generated. A neighborhood searching is performed by randomly
changing one state bit in the solution, effectively swapping between hardware and
software implementation of one of the tasks. A neighborhood solution is only considered
if it obeys the area constraint. The cost difference between the current solution (S,,,,,) and
the neighboring solution (Sj.;n) is calculated. In our formulation, the cost is a direct
function of processing time. The neighborhood selection process already guarantees that
the area constraint will be met.

The acceptance (or not) of a more costly neighboring solution is determined by the
Boltzmann probability distribution function:

COMPARING THREE HEURISTIC SEARCH METHODS 433

get input parameters:
Tstart, Tstop
alpha, beta

area constraint, etc

v

initialized solution
(Snow)

=|<

generate a
neighboring solution
{Sneigh) randomly

compute diff of cost function
deost = cost{Sneigh}-cost(Snow)

v

q=random(0.1) <N—

N
g < exp(-decostiT) ? Y
A
Snow = Sneigh

Updated Temp
using cooling
schedule

v

fneet the terminating
condition?

+Y

display the solution

Figure 3. Simulated annealing.

®)

temperature

< cost difference)
g=oxp(——————

An accepted move replaces the current solution and then the temperature is reduced
according to one of the two cooling schedules described earlier. The optimization loop
terminates when the following conditions are met: 1) when the new temperature reaches
T's10p; or 2) there is no improvement over the last 500 iterations.

434 WIANGTONG ETAL.

3.3. Tabu Search with Penalty Reward

In contrast to simulated annealing (SA) which exploits random moves, tabu search (TS)
exploits data structures of the search history as a condition of the next moves. More
generally, TS is a search method designed to cross boundaries of feasibility normally
treated as barriers, and it systematically imposes and releases constraints to allow the
exploration of forbidden regions [6].

The major distinction of TS compared to the other search methods is that it uses a short-
term memory, recency-based memory, to store recent search areas and a long-term
memory, frequency-based memory, to store frequency of searching in each area. It is able
to avoid searching the same neighborhood recorded in the memory (tabu status). However,
after a given time has elapsed (depends on short-term memory size), the tabu status will be
released and the area become eligible for searching again.

For the frequency-based memory, the frequency information will be used to penalize
non-improving moves by adding a larger penalty to a neighbor that stays in a region of
greater frequency counts. This frequency penalization can be used for both
diversification and intensification strategies as explained in [21]. We introduce a way to
implement these strategies in this paper, called penalty reward. We use two different
values of penalty weights. The large value will be used to diversify searching while the
small value will be used to intensify searching in promising local regions. The details
will be explained later.

Sometimes, aspiration criteria are introduced in TS to determine when tabu restrictions
can be overruled. The appropriate uses of the criteria might be important for improving
the efficiency of TS. A simple type of aspiration criterion, as used in this paper, is that
when a trial move yields a solution better than the best so far, the move will be picked
although it is in tabu status.

Figure 5 shows the structures of recency-based memory and frequency-based memory
used in this paper. The tabu list is kept in recency-based memory. After searching a new set
of neighbors for the current solution, one of the neighbors is selected by using conditions
shown in blocks A, B and C in Figure 4. Only the neighbors not in the tabu list are placed
on the top of the FIFO memory, and such neighbors are said to have the maximum tabu
degree. However, in the next iterations, they are shifted down to reduce the degree of tabu.
Values of tabu degree between 7 to 20 appear to work well for a variety of problem classes,
while values between 0.5v/N and 2v/N appear to work well for other problems where N is
a measure of the problem dimension [21].

Frequency-based region is a long-term memory used to store the frequency of visiting to
defined regions. For a problem consisting of NV tasks each of which could be in hardware
represented by “1” or in software represented by “0,” the entire search space can be
represented by an N-bit state value. Storing the frequency of visit for the entire space can
be extremely memory intensive. Therefore we define a region as the k least significant bits
of the search space as shown in Figure 5(b). Each visited neighborhood will have its
corresponding region frequency count incremented. For example, if k = 4 as in Figure 5
(b), and the current visited neighbor is as shown, then frequency-based memory at address
“0100” will be incremented by 1.

COMPARING THREE HEURISTIC SEARCH METHODS 435

initializing a
solution {Snow)

A4
generate neighbors of the

solution {Sneigh(1..M))
M=Neighborhood size

!

compute the changes of cost function between the
neighbors and the current solution
dcost (k)= cost(Sneigh{k))-cost(Snow) ; k=1..M

| Penalty Reward

penalty(k) = Q . freq
if the neighbor k is "not" in the promising region or
penalty(k) = Q. freq
if the neighbor k is in the promising region

(dcost(k) < 0)
& (not tabu)

| dcost(k) = dcost(k) +penaity(k)

<
B b4 C
Select k with
the lowest select the new
dcost not tabu ? solution with the
N least tabu degree
Y
Select k with
the lowest
dcost
v v
Snow = Snow = Snow =
Sneigh(k) Sneigh(k) Sneigh(k)

record the best
solution so far

reach to the
no. of iterations?

Figure 4. Tabu search—blocks A, B and C are used to new neighboring solution.

Data in frequency-based memory are scaled by a positive constant Q which is then used
as penalty values. This penalty is added to the cost difference dcost(k) = cost(Syeign(k))—
cost(Syow), where cost() is the cost function, S;,, is the current solution and S, (k) is
the k" neighbor of the current solution. The purpose of such penalty modification is to

436 WIANGTONG ETAL.

a set Pf ne!ghbors n IN Example of a neighbor generated in each iteration
each iteration C
Defined Region
I] HW S = k bits LSB
Max Tabu Degree

T - Lofr]1[+]ofof—rAt]ofr]o]0]
41 task task

1 N

data refer to the number of times

T addrgsses refer the neighbor has visited the
FIFO o visited regions same the region (the same

block shift format of k bits in defined region)

Tabu Length or
tabu tenure

/\/\/
APy 0000 X 0

Min Tabu Degree

U 1111 0 2%k -1

ouT

Recency-based memory Structure Frequency-based memory Structure

Figure 5. The structure of (a) Recency-based memory, (b) Region and frequency-based memory.

divert future search into regions which are rarely visited. We improve upon this idea of
penalty [6] in the following way: the region of the best solution in the last K|, iterations is
selected. For all neighbors in this region, instead of using Q to compute the penalty factor, a
new reward constant Q' < Q is used. The region that earns the reward (Q') is called the
promising region. So neighbors belonging to the promising region in the next K|, iterations
have a higher chance to be selected because of the reduced penalty value. Normally, the
penalty is only used to diversify searching but here we also use it to intensify searching on
the promising region using Q'. As we shall see later, TS with the penalty reward—called
TSPR—provides better solutions compared to those using the standard TS algorithm.

4. Reference Architecture and Timing Model

Timing model, in this context, refers to the algorithm used to estimate processing time
taken by all hardware and software tasks which may be executed concurrently. The
timing parameters include communication time, execution time on hardware or
software, and/ or configuration time in the case of reconfigurable hardware.

COMPARING THREE HEURISTIC SEARCH METHODS 437

shared
memory
Software] Hardware
Processor ASIC/IFPGA
y Swhus ." hwbus
Local Local
memory Memory

Figure 6. Reference architecture.

4.1. Reference System Architecture

The system architecture used here covers important features of the target system such as
shared resource conflicts and communication time overhead. In the general model, the
system architecture consists of one processor (software representative) and one
Application-Specific Integrated Circuit (ASIC) or Field Programmable Gate Array
(FPGA) chip (hardware representative). Both software and hardware have their own
local memory and communicate with each other through shared memory (system
memory). There is no memory limitation in this model but shared resource conflicts are
taken into account. Waiting time is added when a shared resource is engaged by another
task, and a waiting task can only be executed after the shared resource is released (non-
preemptive). The software processor is a uniprocessing system and it can execute only
one task at a time while hardware can execute multiple tasks concurrently.

In case of ASIC, hardware and software can work in parallel and all hardware tasks are
bounded to on-chip hardware and there is no reconfiguration time required. In the case of
an FPGA, tasks can share hardware resources at different times, but will incur additional
configuration time that must be taken into account. In this paper, only an ASIC or an
FPGA without reconfiguration is used for implementing hardware tasks.

4.2. Criteria for Building the Timing Model

A node in the task graph is placed in a ready list only if all its predecessors have been
executed. Hence nodes in the current ready list are at the same level of precedence. To
find the processing time, we accumulate the maximum execution time between nodes in
software and nodes in hardware in each precedence level. The basic criteria for timing
calculation are shown inTable 1.

4.3. Example of DAG and Timing Diagram

A Directed Acyclic Graph (DAG) is used to represent the process to be partitioned and
scheduled. A typical DAG is shown in Figure 7(a). The numbers on the edges represent the

438

Tuble I. The Basic Criteria for Timing Calculation

WIANGTONG ETAL.

Software

Hardware

1. Software can handle a single task at a
time. Consequently, tasks located in
software are sequentially executed.

2. Local memory acts like a medium
between tasks. Data are read from
memory to be executed and then written
back in every task.

3.To communicate with hardware, software
data output is written into a shared
memory using the shared bus and waits to
be read by hardware.

4. Multiple tasks cannot read (write) data
from (to) memory at the same time, even
for data located in different area of
memory, because all software tasks are
executed in sequence.

1. Tasks in the same precedence can operate
concurrently but have to be aware of bus
conflicts during both read and write
periods.

2. Data have to be buffered in hardware
local memory to prevent the loss of data,
especially if a subsequent hardware block
could be waiting for data from software.

3.To communicate with software, hardware
data output is written into shared
memory using the shared bus and wait to
read by software.

4. Aslong as bus contention is avoided,
concurrent memory accesses to different
memory blocks are allowed.

amount of data dispatched between the nodes. Tasks implemented in hardware are shaded
and execution times are shown in square boxes. To calculate communication time, read
and write access times on each bus are required. We denote shrd, shwr, swrd, swwr, hwrd,
hwwr respectively as the time taken to send or receive unit data for the shared memory, the
software, and the hardware. Communication time is obtained by multiplying the numbers
on the edges with the bus speed.

Figure 7(b) shows a possible schedule for Figure 7(a), assuming that all bus read/write
speeds are unity and that tasks 2, 4, 5 and 6 are implemented in hardware. The level of
precedence progresses from top to bottom. The task number is labeled inside the square
boxes. Delay may be added due to bus conflict (as at the end of task 2). Our algorithm
finds the worst-case time at each precedence level and these are summed together to give
the processing time. Since hardware is in general faster and more flexible, software tasks
are allocated before hardware tasks so that software tasks have a higher priority in using
the shared bus. As an example, consider precedence level 2 in Figure 7(b), which includes
tasks 2, 3 and 4. Task 3 is first allocated and a portion of the shared bus access is utilized to
write data to shared memory. Task 2 also requires the use of the shared bus, but is forced to
wait until task 3 has finished accessing the shared bus. As a result, a delay is imposed on

COMPARING THREE HEURISTIC SEARCH METHODS

439

gz

g e
I axsc
D write

FPAT]
|

o Dieboyesd beconne shared
s - ergagnd by task 3

ool {of | eoreurer ey
B chla ko o st e

T_—

precedence

£84 tavel 4 |
56 |
® =

(b)

@

Processing Time = 250 ns

Y

Figure 7. An example of (a) DAG, (b) Task precedence and Process Timing.

30d ‘

task 2.

4.4. Processing Time Calculation Model

Initially, tasks at the same precedence level are grouped together. Software tasks are
allocated before hardware tasks; the one that has the minimum use of shared bus will be
allocated first. Then hardware tasks are placed based on the non-increasing first fit
algorithm since, heuristically, packing objects in a rigid storage is effectively done by
starting with the placement of the largest one first. Hardware tasks are sorted into a
descending sequence before being allocated; the longer execution time the hardware task
has, the earlier it is in the sequence. The allocation algorithm is described in Figure 8 in the
form of pseudo-code.

Software tasks are allocated first in step 2.2, and then followed by hardware tasks, which
are already sorted in decreasing order of execution time. Allocated time of both sibus and
hwbus are updated after each task is placed without any bus conflicts. The subprogram
allocate_hardware(), responsible for placing hardware tasks, is shown in Figure 9.

The subprogram allocate_hardware() gradually increases the time of placing hardware

440 WIANGTONG ETAL.

I Vmap|N] from each trial

2. LOOP: while (not reach the exit nodes)
2.1 Find RdyList[] that contain tasks at the same precedence level
2.2 FOR (all tasks in RdyList[])
time = allocate,w();
// place software tasks first, the one that has the
//minimum use of shared bus will be allocated first.
time_sw = time_sw + time;
Update allocated time on shbus
END FOR
23 HwlListDec|] = sort(RdyList[])
// sort hardware tasks in RdyList[] in
// non-increasing order and keep in HwListDec|]
24 FOR (all tasks in HwListDec[])
time = allocate_hardware();
/ /place task with the greatest execution time first.
time_hardware = max (time);
Update allocated time on shbus and hwbus
END FOR
2.5 TimePrecedence = max (time_sw, time_hardware)
2.6 ProcessTime = ProcessTime + TimePrecedence;
27 EmptyRdyList();

Figure 8. Processing time calculation algorithm.

tasks from the starting point (Start Read = 0) of the current precedence, or the latest point
of finishing time in the previous precedence, in order to find the earliest location as
possible. The amount of increment, step, depends on whether we wish to reduce the
search time or to improve the results accuracy. If a writing (reading) period on one or
both of hwbus and shbus is in conflict (the condition in step 8) indicating that data cannot
be written after finishing execution, the task will be re-allocated to further locations using
the new values of StartRead = StartRead + (Time — StartWrite).

5. Experimental Results and Discussions

In general, the two main measures of the performance of a searching algorithm are the
quality of solution and the search time. The quality of solution is generally measured by a
cost function mainly based on heuristic criteria. In our case, we use the processing time as
a cost function. The best solution is the one that yields the shortest processing time. Our
investigation is divided into two parts. In the first part, we compare the results from all
three heuristic search algorithms in terms of the quality of solution and the search time.
To obtain a fair comparison, we use the standard algorithms, so at this stage penalty
reward is not included in TS. Also values of input parameters for each algorithm are

COMPARING THREE HEURISTIC SEARCH METHODS 441

1. Find the length of reading and writing in both shbus and Awbus of task i

2. StartRead = 0;

3. Time = StartRead,
DO
Check conflict of placing shbus reading time at Time
Check conflict of placing hiwbus reading time at Time
Time = Time + step;
WHILE (still have conflict)

4. StartExec = max (End of reading time on shbus,
End of reading time on Awbus)

5. StopExec = StartExec + TaskExec;

StartWrite = StopExec;

7. Time = StartWrite;
DO
Check conflict of placing shbus writing time at Time
Check conflict of placing hwbus writing time at Time
Time = Time + step;
WHILE (still have conflict on both buses)

8. IF (Time # StartWrite)
THEN StartRead = StartRead + (Time — StartWrite);

GOTO 3.

ENDIF

9. StopWrite = max (End of writing time on shbus,
End of writing time on hwbus)

10. RETURN (StopWrite)

)

Figure 9. Subprogram allocate hardware().

carefully selected by several pre-simulations to get the most promising values. In the
second part, we focus on the TS algorithm only. We compare results from the penalty
reward strategy in TS with those from using the conventional TS.

In our experiments, randomly generated task graphs with a uniform distribution are
used as input, as well as task graphs of commonly encountered structure: in-tree, out-
tree, fork-joint, mean value analysis, and FFT (Figure 10).

Table 2 shows the common parameters used in all experiments. Reasonable
assumptions are used to produce these parameters. Hardware tasks are usually faster
than software tasks, but there are exceptions. Floating point calculations and pointer
operations may be faster in software than hardware. As a result the range of software and
hardware execution time is shown to overlap. System buses, Aiwbus (hardware local bus),
swhus (software local bus) and shbus (shared bus), are assumed to have different speed.
hwbus is assumed to be four times faster than swbus, and two times faster than shbus.

442 WIANGTONG ETAL.

£y <@

Fork-joint

Mean value FFT

Figure 10. Examples of task graphs of commonly encountered structures.

Tuble 2. Values Used to Randomly Generate Task Graph

Parameters Values
Range of software execution time 800-2000 (ns)
Range of hardware execution time 200-1200 (ns)
Range of hardware area 100—400 (unit)
Range of no. of bytes on edges 10-500 (bytes)
Hardware local bus speed (rd/ wr) 1/1 (ns/byte)
Software local bus speed (rd/wr) 4/4 (ns/byte)
Shared bus speed (rd/wr) 2/2 (ns/byte)

Read and write cycle times are assumed to be equal.
The number of data (bytes) on the edges is randomly generated. We also assume that the
area constraint is around 30% of the area used by a hardware-only solution.

5.1. Comparison between Three Heuristic Searches
RESULTS FROM RANDOMLY GENERATED TASK GRAPHS

The algorithms are written in C and run on a 866 MHz Pentium III processor. In the case
of GA, the population size is chosen to be between N and 2N, where N is the number of
genes in the chromosome, as suggested in [23]. Population sizes of 40, 50, 100 and the
corresponding task graphs with node = 20, node = 50, node = 100 are used respectively.
Others parameters are: K; = Processing time of the current member in Pop/Pop size,
K,=2 ¢=1,P, =09, P,, =0.01; for the values K; we found that, from several
experiments, K; usually gives us a good result in various problem sizes when it is
adaptively changed by that proportion. For SA, the parameters are set as follows to slowly

COMPARING THREE HEURISTIC SEARCH METHODS 443

Different Fitness Functions (Node=20, Edge=40)

8600
8500
8400
8300 | ®
8200 & KAHB
8100 4 B AKB
8000 ‘ | |

7900 S

7800 —— =
7700

Processing Time

0 200 400 600 800
Mo of Generations

Figure 11. GAwith different fitness functions.

Different Cooling Schedules (Node=20, Edge=40)
7750

'

§ 7700 :Z ‘ . Q -
= - - \ | —&— Geometric
Al i \ P - m Lundy/Mees|
8 m \ S 1
i 7550 ,,_: s | i
o LAY rs

7500 .

i} 2000 4000 GOOO BOOD 10000 12000

Start Temperature

Figure 12. SAwith different cooling schedules.

reduce temperature: o = 0.999, 3 = 0.0001, v = 3/100. In the case of TS, we do not use
penalty reward at this stage, so parameters are: neighborhood size = 20, tabu length = 20,
Q = 80, and 10-bit for the LSB defined region.

We also set the terminating conditions in each algorithm as follows. In GA the program
will stop when there are 400 generations. In SA the program will stop when the
temperature reaches T, or when there is no improvement over the last 500 iterations.
InTS the program will stop after 400 iterations.

Because SA has two cooling schedules and GA has two different fitness functions, we
first determine which cooling schedule and which fitness functions would give better
results. The results from GA with different fitness functions and SA with different cooling
schedules are shown in Figures 11 and 12 respectively.

From Figure 11, it is clear that the first fitness function (K(A4) + B) provides a shorter
processing time. Results in Figure 12 are less conclusive. Notice that a higher start
temperature may not result in a shorter processing time. Since the Lundy/Mees cooling

444 WIANGTONG ETAL.

Genetic Algorithm (Node=50 Edge=100) Area Convergence (Node=50 Edge=100)
60000 4500
5 2000 A Al
3 50000 3500
£5 40000 3000
] © 250014
78 @
83;,30000 < 2000 ;
@
S & 20000 1500 1§
° 1000
é 10000 50
0 T . 0 : : :
1000 1500 2000 2500 3000 3500 4000 4500 0 100 200 300 400 500 60 700

Average area (in each generation) Generation

Figure 13. Variation of cost function and area convergence in genetic algorithm.

SA Node=50, Edge=100, Start Temp = 200
22500 <
|
21500 +*
g 20500 3
E
2 19500 ‘.
= 18500
ks
° o
17500 -
Pt
16500
220 200 180 160 140 120 100 80 80
Temperature

Figure 14. Variation of processing time (cost function) in simulated annealing.

TS Node=50 Edge=100

22000

21000

20000

19000

Process Time

18000

17000

16000

Iteration Number

Figure I5. Variation of processing time (cost function) in tabu search.

schedule with re-annealing strategy takes longer to execute than the geometric cooling
schedule to reach a solution of similar quality, the geometric cooling schedule is selected
for further investigation.

Figures 13, 14, 15 show the convergence characteristic of GA, SA and TS respectively.

COMPARING THREE HEURISTIC SEARCH METHODS 445

Tuble 3. Processing Time and Search Time of the Best Solution From Each Algorithm

Genetic Algorithm Simulated Annealing Tabu Search
Mean Mean Mean Mean Mean Mean Mean Mean Mean
Proc. Search Bestof Proc. Search Best of Proc. Search Best of

Time Time (sec) Proc.Time Time Time (sec) Proc.Time Time Time (sec) Proc. Time

Node =20 614185 4.19 5844417 596852 290 5740615 5837.64 0.96 5762.64
Edge =40

Node=50 1639108 3457 1586315 1531994 1987 1473079 1488750 6.96 14656.67
Edge =100

Node =100 3378893 20307 3264771 3116921 11813 29996.82 29943.19 44.70 29275.14
Edge =200

Different Area Constraints (Node=50, Edge=100) Different Area Constraints (Node=50, Edge=100)

25000 o — -
2 70| ™ iy g P A
Ewo)t- \.xl | mosA é’“ .I.O.I [—e—0a |

17000 - | | E ; 3
c’: 15000 ..i ATs L * nN . s
% 13000 ! .__‘ 5 ’.. = ; A TS
gt Lag $.| gut aaatad o
& o & = N s 4 AA

5000 3

o 2000 4000 GOO0 8OO0 10000 12000 14000 1 2000 4000 6000 BOO0 10000 12000 14000
Area Constraint Area Constraint

Figure 16. Processing time and search time with a variety of area constraints.

They are all applied to a task graph with 50 nodes and 100 edges. The area constraint is set
such that the total area should not exceed 4000 units. Figure 13 shows that the cost for the
generation, which contains some members exceeding this constraint, is increased rapidly.
Table 3 compares the three algorithms in terms of processing time and search time in
random task graphs. 30 instances of each random graph size are generated, and the results
are obtained from 20 runs in each problem instance. SA and TS both produce solutions
that are slightly better than GA. TS produces the best solutions, while taking the least
amount of computation time. TS also scales better with the complexity of the problem.

RESULTS FROM SOME REALISTIC TASK GRAPHS

In this experiment, rather than using random graphs, we use graph structures that are
common in real applications. These structures include out-tree, in-tree, fork-joint, mean
value and FFT with a constant number of nodes and edges as shown in Table 4. For each
graph type, 20 runs are performed.

Results obtained from all realistic graphs clearly show that TS is superior to SA and GA
in terms of both processing time and search time. On average, TS provides the shortest

446 WIANGTONG ETAL.

Tuble 4. Results From Some Realistic Task Graphs (N.B. 31/30 : Node=31, Edge = 30)

Genetic Algorithm Simulated Annealing Tabu Search
Mean Values Best of Mean Values Best of Mean Values Best of
Proc. Time Proc. Time Proc. Time
Proc. Search Proc. Search Proc. Search
Time Time (sec) Time Time (sec) Time Time (sec)
In-Tree 67135 13.27 6577 66299 791 6279 6446.9 6.51 6327
31/30
Out-Tree 63881 12.09 6181 64529 915 6137 6328.4 6.95 6063
31/30
Fork-Joint 89671 20.11 8373 88384 10.56 8483 8653.3 10.48 8468
31/50
Mean Value 95150 3274 9335 9699.5 18.09 9123 9198.3 14.70 8922
36/60
FFT 78883 2225 7681 7926.85 1383 7523 7666.5 12.54 7415
31/46

processing time and the lowest search time compared to the other search algorithms. Also
most of the best values of processing time—the lowest ones—belong to solutions getting
fromTS.

5.2. TS with Penalty Reward

We implement TS with the penalty reward modification described earlier with different
values of neighborhood size (Nsize). The results are averaged over 20 runs to improve
reliability. In experiments graph sizes of 50 nodes and 100 edges, and 100 nodes and 200
edges are used. 400 iterations are performed to select the best solution that offers the
minimum processing time. In the case of supporting the penalty reward strategy in TS,
we define Kqg = 20, Q = 80, Q' = 10.

Results in Figure 17 indicate that TS with the penalty reward strategy (PR) always
produces designs with a shorter processing time than those from TS. Although the
improvement is only about 2% (from Figure 17(a)) and 1.6% (from Figure 17(b)), the
ability of finding a new solution better than the best from the conventional TS is shown.
From additional experiments, we also found that neighborhood size has greater effect on
processing time than tabu length.

6. Conclusions and Future Work

An approach that combines partitioning and scheduling has been presented. The results
from our heuristic partitioner are used successfully in providing a schedule that

COMPARING THREE HEURISTIC SEARCH METHODS 447

Comparison between TS with and without Penalty Reward in various
MNeighbourhood Sizes (Tabu Length = 20)

16600
16400 4 ‘——O—wiammpn-
g 162001 | ——wihPR |
= 18000
L
£ 15800
@
8 15600
2 ;
& 15400
15200
15000
il 10 20 30 40 50 60
Msize
(a) Random Graph of 50 Nodes 100 Edges
Companson between TS with and without Penalty Reward in
various Neighbourhood Sizes (Tabu Length = 20)
30200
j - —
E 29600 el
B
o 29400
@ 29200
@ 29000
£ 28800
o
28600
28400
28200
0 10 20 30 40 50 60
MNsize

(b) Random Graph of 100 Nodes 200 Edges

Figure 17. Comparison between TS with and without penalty reward.

minimizes processing time.

Three popular combinatorial optimization algorithms, namely genetic algorithm,
simulated annealing and tabu search, have been compared using a reference system
architecture on various sizes and types of problems. In partitioning a design into
hardware and software components, we find that tabu search provides higher quality
results in a shorter time than both simulated annealing and genetic algorithm.
Furthermore genetic algorithm demands more memory to store information about a
large number of solutions, while tabu search and simulated annealing are more memory
efficient. We have also implemented the penalty reward scheme in an intensification
strategy for tabu search, which can further improve the quality of solutions.

This work has only examined the partitioning and scheduling problem using simulated
inputs in the form of directed acyclic task graphs. While this approach allows investigation
of all three algorithms with a variety of problem complexities, our approach needs to be

448 WIANGTONG ETAL.

verified on real hardware—software systems. Future work includes the use of realistic
benchmarks in evaluating the partitioning and scheduling algorithms on appropriate
hardware platforms, such as the SONIC reconfigurable computing system for real-time
video processing [24]. We also plan to explore other approaches (such as those in [28],
[29], [30]) when refining our work.

Acknowledgements

We thank the four reviewers for their comments and suggestions.

References

—_—

. Oudghiri, H., and B. Kaminska. Global Weighted Scheduling and Allocation Algorithms, In European
Conference on Design Automation, pp. 491-495.

2. Jinwoo, S., D.-I. Kang, and S. P. Crago. A Communication Scheduling Algorithm for Multi-FPGA Systems,
IEEE Symposium on Field-Programmable Custom Computing Machines, 2000, pp. 299-300.

. Diessel, O., H. ElGindy, M. Middendorf, H. Schmeck, and B. Schmidt. Dynamic Scheduling of Tasks on
Partially Reconfigurable FPGAs, Computers and Digital Techniques, /EE Proceedings, vol. 147, no. 3, pp.
181188, May 2000.

4. Gerez, S. H. Algorithm for VLSI Design Automation, John Wiley & Sons, England, 1999.

. Neapolitan, R., and K. Naimipour, Foundations of Algorithms using C++ Pseudo Code, 2" ed., Jones and
Bartlett Publishers, London, 1998.

6. Rayward-Smith, V. J., I. H. Osman, C. R. Reeves, and G. D. Smith. Modern Heuristic Search Methods, John
Wiley and Sons, England 1996.

. Kalavade, A., and E. A. Lee. A Global Criticality/Local Phase Driven Algorithm for the Constrained
Hardware/Software Partitioning Problem, Proceedings of the Third International Workshop on Hardware/
Software Codesign, 1994, pp. 42—-48.

. Coley, D. A. An Introduction to Genetic Algorithms for Scientists and Engineers, World Scientific, 1998.

9. Hidalgo, J. I., and J. Lanchares. Functional Partitioning for Hardware—Software Codesign Using Genetic
Algorithms, EUROMICRO 97. New Frontiers of Information Technology, Proceedings of the 23rd
EUROMICRO Conference, 1997, pp. 631-638.

10. Chatha, K. S., and R. Vemuri. An Iterative Algorithm for Partitioning and Scheduling of Area Constrained
Hardware—Software Systems, IEEE International Workshop on Rapid System Prototyping,1999, pp. 134-139.

11. Chatha, K. S., and R. Vemuri. A Tool for Partitioning and Pipelined Scheduling of Hardware—Software
Systems, 11th International Symposium on System Synthesis Proceedings, 1998, pp. 145-151.

12. Bakshi, S., and D. Gajski. Partitioning and Pipelining for Performance-Constrained Hardware/Software
System, IEEE Tiansaction on Very Large Scale Integration Systems,vol.7, no. 4, pp. 419—432, Dec. 1999.

13. Chatha, K. S., and R. Vemuri. An Iterative Algorithm for Hardware—Software Partitioning, Hardware
Design Space Exploration and Scheduling, Journal of Design Automation for Embedded Systems, vol. 5, pp.
281-293, 2000.

14. Ernst, R., J. Henkel, and T. Benner. Hardware—Software Co-Synthesis for Micro-Controllers, /EEE Design
and Test of Computer,vol. 10, no. 4, pp. 64-75,1993.

15. Vahid, F., and T. Le. Extending the Kernighan/Lin Heuristic for Hardware and Software Functional
Partitioning, Journal of Design Automation for Embedded Systems,vol. 2, pp.237-261,1997.

16. Harkin, J., T. M. McGinnity, and L. P. Maguire. Partitioning Methodology for Dynamically Reconfigurable

Embedded Systems, Computers and Digital Techniques, IEE Proceedings, vol. 147, no. 6, pp. 391-396, Nov.

2000

W

w

~

oo

COMPARING THREE HEURISTIC SEARCH METHODS 449

17.

18.

19.

20.

2L

22.

23.

24.

25.

26.

27.

28.

29.

30.

Bianco, L., M. Auguin, G. Gogniat, and A. Pegatoquet. A Path Analysis Based Partitioning for Time
Constrained Embedded Systems, Proceedings of the Sixth International Workshop on Hardware/Software
Codesign (CODES/CASHE *98),1998, pp. 85-89.

Maestro, J. A., D. Mozos, and H. A. Mecha. Macroscopic Time and Cost Estimation Model Allowing Task
Parallelism and Hardware Sharing for the Codesign Partitioning Process, Proceedings on Design,
Automation and Tést in Europe, 1998, pp. 218-225.

Axelsson, J. Architecture Synthesis and Partitioning of Real-Time Systems: A Comparison of Three
Heuristic Search Strategies, Proceedings of the Fifth International Workshop on Hardware/Software
Codesign, (CODES/CASHE '97),1997, pp. 161-165.

Gajski, D. D., F. Vahid, S. Narayau, and J. Gong. Specification and Design of Embedded System, Prentice
Hall, 1994.

Reeves, R., Modern Heuristic Techniques for Combinatorial Problem, Blackwell Scientific Publication, UK,
1993.

Eles, P, and Z. Peng et al. System Level Hardware/Software Partitioning Based on Simulated Annealing and
Tabu Search, Design Automation for Embedded Systems, vol. 2, pp. 5-32,1996.

Alander, J. T. Optimal Population Size of Genetic Algorithms, Proceeding in IEEE Computer Society Press,
pp. 65-70,1992.

Haynes, S. D., J. Stone, P. Y. K. Cheung, and W. Luk. Video Image Processing with the Sonic Architecture,
IEEE Computer,vol. 33, no. 4, pp. 50-57, April 2000.

Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by Simulated Annealing, Science, vol. 200,
no. 4598, pp. 671-680, 1983.

Buck, J., S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems, International Journal on Computer Simulation,vol. 4, pp. 155-182,1994.

Chou, P, and R. Ortega, and G. Borriello The Chinook Hardware/Software Co-Synthesis System,
International Symposium on System Synthesis (ISSS), pp. 22-27,1995.

Teich, J., T. Blickle, and L. Thiele, An Evolutionary Approach to System-Level Synthesis, Proceedings of
International Workshop on Codesign (Codes),1997.

Dick, R. P., and N. K. Jha. MOGAC: A Multiobjective Genetic Algorithm for Hardware—Software
Cosynthesis of Distributed Embedded Systems, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 17, no. 10, pp. 920-935, Oct. 1998.

Sih, G. C., and E. A. Lee. A Compile-Time Scheduling Heuristic for Interconnection-Constrained
Heterogeneous Processor Architectures, IEEE Transactions on Parallel and Distributed Systems, vol. 4, no.
2, pp. 175-187, Feb. 1993.

