
Design and Implementation of a Reconfigurable, Embedded
Real-Time Face Detection System

V. Mariatos1, K.D. Adaos2, G.P. Alexiou2

1Diaplous Machine Vision
6 Ippodamou Str, Patras

26442 Greece

2Dept. of Computer Engineering and Informatics,
University of Patras,

26500 Greece
(Contact author: K.D. Adaos: adaos@ceid.upatras.gr)

Abstract

This paper presents the design and implementation of a
real time face detection system on an embedded reconfig-
urable platform. Our approach to face detection is based
on a skin-segmentation algorithm followed by feature ex-
traction and face verification. Our implementation is done
on DMV, a reconfigurable platform with novel features
targeting real time computer vision applications. DMV is a
system on chip based on the combination of a high perfor-
mance 32-bit SPARC-compliant processor with data-flow
processing blocks.

1. Introduction

Face detection and face localization are tasks that find
application in many areas of contemporary systems. They
are used for authentication purposes (together with face
recognition [8]), in security and surveillance systems, in the
management of image and video databases, in intelligent
human-computer interfacing and so on.

Face detection is regarded as the most important task of
face recognition. Efficient and accurate detection of the
presence and location of a face in an image or sequence of
images, simplifies the task of determining the identity of
the person. The algorithms used for implementing face de-
tection and other similar computer and machine vision
tasks are demanding in terms of speed.

Most practical face detection and recognition systems
must be capable of performing their functionality in real-
time or near real-time manner. Hardware implementation is
therefore desirable to achieve the required speed and obtain
better results in terms of the mobility of the final system or
reduced power consumption.

The concept of system-on-chip (SoC) that integrates one
or more processors with custom hardware, is a popular ap-

proach to build systems with characteristics close to the all
hardware implementation. At the same time, SoCs offer the
capability to alter their functionality with software revi-
sions. Configurability can be further enhanced by using
Field programmable Gate Arrays (FPGAs). Even when FP-
GAs are not desirable for the final implementation of the
system, they are quite often used in the first stages of the
product development, to build a system prototype. This al-
lows the developers to perform extensive architectural ex-
ploration and fine-tuning of their design.

The platform used for the implementation of our face
detection system is DMV (acronym of Digital Machine Vi-
sion). DMV has been introduced by Diaplous [1], a Greek
fabless semiconductor company, to address the needs of
implementing demanding computer vision algorithms.

Section 2 describes the generic architecture of DMV and
its current implementation. Section 3 describes the face de-
tection procedure. Section 4 presents our implementation
results. Finally we conclude the paper and give the future
directions of our work.

2. The DMV Architecture

2.1. Generic DMV Architecture
The DMV architecture extends the concept of a classic

system-on-chip with hardware blocks that can perform
complex image manipulation tasks. A set of front-end hard-
ware image processing blocks reduce the amount of data
that need to be handled by software and stored in memory.
To further relieve the processor, another set of hardware
blocks implement higher-level image processing functions.
The result is a compact architecture, that does not require
the fastest available processor nor does it require huge
amounts of temporary-storage memory. Figure 1 depicts
the main parts of the architecture that is built around a con-
ventional system-on-chip based on a shared bus.

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: University of Florida. Downloaded on January 22, 2010 at 16:26 from IEEE Xplore. Restrictions apply.

Figure 1: The DMV Engine Architecture

The system processor is mainly used for control tasks
and non time-critical tasks. All hardware resources are con-
trolled by the main processor through the shared bus.

The DMV engine capabilities can be extended by in-
cluding a second processor with its own local bus to com-
municate with the image processing blocks. This processor
can also have its own interface to external high speed mem-
ory. This hierarchical bus organization with separate mem-
ory subsystems can further relieve the main processor from
the data processing tasks and provide a memory organiza-
tion that is optimal for real-time image processing algo-
rithms. It must be noted that the DMV architecture is not
limited by the selection of any specific processor or memo-
ry subsystem architecture.

2.2. Current DMV Engine Implementation
The generic concept of the DMV Engine has been im-

plemented in a real hardware system by use of a Xilinx
Spartan3 FPGA (figure 2). The processor used in this im-
plementation is LEON2 available from Gaisler Research [2]
under LGPL license (free for both research and commercial
applications). LEON2 is a 32-bit SPARC V8 compliant
processor, provided as a synthesizable VHDL model. This
model is highly configurable, and particularly suitable for
SOC designs. Its architecture includes a pipelined integer
unit, hardware multiply, divide and MAC units, config-
urable cache subsystem, AHB and APB on-chip buses,
memory controllers for external PROM, SRAM and

SDRAM, on-chip low speed peripherals, interrupt con-
troller and a 10/100 Ethernet MAC (based on the Open-
cores MAC core). Software development can be done with
the GNU toolset. LEON2 is capable of executing a total of
0.85 dhrystone MIPS/MHz.

Figure 2: Current Implementation of DMV

Sensor
Interface

Sensor
Interface

Pixel/Color
Processing

Pixel/Color
Processing

Image
Memory
blocks

Image
Memory
blocks

Data-Flow
Image

Processing

Data-Flow
Image

Processing

Program
Memory

Program
Memory

RISC
microprocessor

RISC
microprocessor

Peripherals
-Ethernet
-Serial Port
-Timers
etc.

Peripherals
-Ethernet
-Serial Port
-Timers
etc.

B
U
S

Switch
Fabric

Hardware
Acceleration

(co-processor)

Hardware
Acceleration

(co-processor)

External Program/Data Memory (Optional)

sensor interface

front end processing

Ethernet
PHY

FLASH

System Bus (AHB)

System
Processor
(LEON2)

Memory
Subsystem

VGA
Driver

On Chip Peripherals
(Timers, Serial, GPIO,

Ethernet, PCI, I2C)

Expansion
Interfaces

Embedded
PCI

On-Chip
Resources

External Components

image filter

rgb2chroma

local memory

SDRAM

thresholding

DMA

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: University of Florida. Downloaded on January 22, 2010 at 16:26 from IEEE Xplore. Restrictions apply.

This base system has been extended with an embedded
master/target PCI-like interface to allow two or more simi-
lar systems to connect at the board level. Custom tools have
been developed to allow control of the system from any
workstation possessing a serial port. This debugging inter-
face allows accessing the system AHB bus during real time
operation without processor intervention.

We have customized the DMV engine architecture for
the image processing tasks required for our face detection
system by designing a set of operations that can be applied
to the image captured by a high resolution image sensor.
The set of tools provided by Gaisler and Diaplous proved
sufficient for the rapid implementation of the face detection
algorithms.

3. Face Detection

For face detection, we follow a three stage procedure
(figure 3). The first stage performs skin segmentation on
the image acquired by the image sensor. It is based on the
skin color model proposed in [3]. This color model has
been devised to overcome the sensitivity to illumination
conditions, a problem that is common to color-based skin
detection approaches. This model uses a modified GLHS
space [4]. It converts the Red, Green, Blue (RGB) space to
lightness, hue and saturation components. In [3], the origi-
nal GLHS equations of [4] for the Lightness and Saturation
have been modified in order to make them independent of
the specific illumination conditions. In summary, the com-
putations performed by this model are:

(1) Lightness: l(c) = max(c) + min(c) -2mid(c)
(2) Hue: h(c) = (k(c) + f(c)) x 60
(3) Saturation : s(c) = (R+G+B-3min(c))/3
R,G,B are the red, green and blue values of each image

pixel in the range 0 to 255
min(c) = min(R,G,B)/255, mid(c) = mid(R,G,B)/255,
max(c) = max(R,G,B)/255

k(c) = 0 if R > G ≥ B, 1 if G ≥ R > B
2 if G > B ≥ R, 3 if B ≥ G > R
4 if B > R ≥ G, 5 if R ≥ B > G

 f(c) = (mid(c)–min(c))/(max(c)–min(c)) if k(c) is even
(max(c)–mid(c))/(max(c)–min(c)) if k(c) is odd

Based on the above equations, for a pixel to be classified
as being a skin pixel, the following conditions should be
satisfied:

(4) 0.065 ≤ s(c) ≤ 0.25
(5) -0.15 ≤ l(c) ≤ 0.27

(6) 0.005 ≤ h(c) ≤ 0.12

(7) R ≥ 90
Equations (1) to (7) are implemented in the front-end

stage of our hardware implementation. They are applied to
image pixels directly after the sensor interface. The output
of this stage is a binary image (one bit is used to determine
if a pixel is or is not a skin pixel). This output is used as a
mask to remove the pixels of the original image that do not
belong to skin. The image obtained after this masking is the
input to the eye detection phase.

Eye detection uses an eye template as reference. This
template consists of a rectangle of dark pixels surrounded
by a zone of light ones (the skin surrounding the eye). This
template is searched in all image positions. All positions
that match this template are recorded.

In the third stage we perform face location and verifica-
tion. Every pair of eyes detected in the second stage deter-
mines an image region that potentially belongs to a face.
Before marking this region as an actual face region, a veri-
fication procedure is applied. In an actual face region, we
expect that certain areas, relative to the detected eyes, are
occupied by skin. By using the skin information of the first
stage, we check whether skin is present in these areas. If
these verification criteria are met, we mark the region as a
face region and proceed to check other pairs of eyes.

The second and third stage of the face detection proce-
dure are implemented by software executing in the main
system processor.

Figure 3: Face Detection Procedure

4. Implementation Results

The implementation of our system has been done with
Xilinx FPGAs in a board that hosts one xc3s1000 device of
the SPARTAN3 Family. Synthesis and implementation was
done with Xilinx WebPack version 8.1i. The speed target
of the implementation procedure was 66 MHz in order to

skin color detection

location and size of face

raw RGB image from sensor

eye detection

face region verification

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: University of Florida. Downloaded on January 22, 2010 at 16:26 from IEEE Xplore. Restrictions apply.

match the nominal frequency of the SDRAM. This speed
target was easily obtained with the medium optimization
level of the Xilinx implementation tools. Better results can
be expected by using a part with higher speed grade or
changing the constraints given to the synthesis tool.

Table 1: FPGA Implementation Results

Speed 66 MHz

Block Rams 21

Flip-Flops 3809

4-input LUTs 10339

We also performed synthesis for a 0.18μ Standard Cell
Library (UMCL18U250) provided by Europractice, by us-
ing Synopsys' Design Compiler version 2006.06-SP3. All
experiments used the most pessimistic wire-load model.

To investigate the potential of our implementation we
followed two synthesis strategies. Strategy 1 (area opti-
mized design) performed synthesis in two stages. Initially,
we synthesized the design with area only constraints. The
result which was optimal in terms of gate count was then
constrained for a maximum clock period of 10 ns. Synthe-
sis was reinvoked with input the result of the first stage and
improved timing obtaining a delay close to 10 ns. Strategy
2 targeted the speed optimized implementation with a sin-
gle synthesis pass. Design Compiler was instructed to target
a 6 ns delay.

Further frequency increase can be obtained by using a
more optimistic wire-load model that matches the gate
count of the design. In any case, the results of table 2 are
indicative of the efficiency of the design.

Table 2: ASIC Implementation Results

Strategy 1 Strategy 2

Total Area (equiv. Kilo -gates) 62.2 65.9

Speed (MHz) 98 166

Both FPGA and ASIC implementations required a total
of 42 KBytes of on-chip RAM.

To measure the performance of our face detection sys-
tem, we experimented by defining operation in a region of
512 by 512 pixels. We also restricted the search space of
the third stage of the face detection algorithm to use pairs
of detected eyes that reside close to the horizontal axis in
order to avoid the expensive in terms of computational time
operation of rotation. We are working on implementing
specific hardware blocks for rotation and remove this task
from the system processor. Another limitation inherent to

our search procedure is that we cannot provide detection of
faces when one of the eyes is not visible. We investigate
promising techniques described and referenced in the litera-
ture [6] [7] to overcome this obstacle. With the frequency
of 66 MHz that was used in the FPGA implementation we
have obtained a processing rate of 15 frames per second.

5. Conclusions – Future Work

We have presented the design and implementation of a
real-time system for face detection in images captured from
an FPGA board that implements DMV, an architecture of a
system-on-chip with data-flow processing enhancements.
The set of support HW and SW tools developed and used,
provide a flexible environment of rapid implementation and
evaluation of image and computer vision algorithms. Re-
sults obtained from the implementation in FPGAs, as well
as from synthesizing the design for a standard cell library
indicate that our approach is suitable for both ASIC and
FPGA based implementations of computer vision tasks.

We are currently working in enhancing the performance
of our implementation by designing hardware acceleration
modules to be placed in the front-end section of the DMV
engine. We are also working on eliminating the limitations
regarding the processing of only frontal images with hori-
zontal eye-pair position.

References
[1] Diaplous Home Page, www.diaplous.com

[2] Gaisler Research Home Page, www.gaisler.com

[3] W. Zheng, Z. Lu and X. Xu, “A novel skin clustering Method
for Face Detection”, Proc. of 1st Int. Conf. on Innovative Comput-
ing, Information and Control, Beijing, China, August 2006, pp.
166-169

[4] H. Levkowitz, G. Herman, “GLHS: a generalized lightness,
hue, and saturation color model”, CVGIP: Graphical Models and
Image Processing, Vol 55 , No 4, 1993, pp. 271 – 285

[5] G. Shakhnarovitz, P. Viola, B. Moghaddam “A Unified Learn-
ing Framework for Real Time Face Detection & Classification”,
Mitshubishi Electric Research Laboaratories TR2002-23, May
2002

[6] A. Pnevmatikakis and L. Polymenakos, “An Automatic Face
Detection and Recognition System for Video Streams” 2nd Joint
Workshop on Multi-Modal Interaction and Related Machine
Learning Algorithms, Edinburgh, UK, July 2005.

[7] R. Hota, V. Venkoparao and S. Bedros, “Face Detection by us-
ing Skin Color Model based on One Class Classifier”, Proc. 9th

Int. Conf. on Information Technology, 2006, pp. 15-16

[8] W. Zhao, R. Chellappa, A. Rosenfeld, P.J. Phillips, “Face
Recognition: A Literature Survey”, ACM Computing Surveys,
2003, pp. 399-458

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: University of Florida. Downloaded on January 22, 2010 at 16:26 from IEEE Xplore. Restrictions apply.

