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Abstract  
New airplanes must meet rigorous requirements 

of aviation safety, operational reliability, high 
performance and energy efficiency at a low cost. To 
meet this challenge, we should optimize current 
system and take advantage of available technology 
for the next decade.  

This work is aiming at proposing some 
evolutions for Flight Control System (FCS) and to 
build alternative FCS low-cost and safe architectures 
for the next decade with less hardware and software 
resources. 

The main contribution of this paper is twofold. 
First, we will provide an incremental methodology to 
give guidelines for architecture optimization. Second, 
we will present a full distributed reconfigurable 
architecture for FCS based on smart actuators and 
digital communication network where all system 
functions are distributed to simplex Flight Control 
Computer (FCC) nodes and remote actuator 
electronics nodes (FCRM). Communication between 
FCC and FCRM will be based on Airbus embedded 
communication network (ADCN, Advanced Data 
Communication Network) [1] and a 1553 bus. We 
will use ALTARICA language to perform 
dependability evaluation at architectural level in 
order to check the effects and benefits of the new 
architecture on the dependability of FCS.  

Introduction  
Airplane performance and business pressures 

related to cost have been the main drivers to change 
flight control system from mechanical to digital Fly-
By-Wire (FBW) design [2]. Technical improvements 
considered for the future, such as smart 
actuators/sensors with remote electronics and digital 
communication, will change drastically avionics 
architectures design for future commercial and 

military programs [3,4]. A FBW control system has 
several advantages over a mechanical system but 
equipments and architectures proposed for FBW 
critical systems such as FCS must meet stringent 
safety and availability requirements before they can 
be certified. For FCS, the probability of losing an 
aircraft critical function or of an occurrence of a 
critical failure must be less than 10-9 per flight hour.  

Traditionally [5], FCS has used a centralized 
/federated architecture where a specific fault tolerant 
computer has performed all processing and authority. 
This architecture is inherently robust, because it is 
based on a high level of software and hardware 
redundancy. However, it can be very costly in terms 
of space, weight and power, and also wiring 
requirements between the elements of the system 
especially for large airplane. This also increases all 
continuous monitoring of “non-intelligent” 
components like actuators and sensors that the 
computers are performing at the present.  

Given the high level of redundancy practiced, it 
seems interesting to try to propose alternative 
architectures with less hardware and software 
resources and to take advantage of technical 
improvements. 

In this context, there is a great motivation for 
future programs to change current flight control 
architectures to more distributed and better optimized 
architectures as shown in Figure 1. 

FCS architectures will be based on digital 
technologies and intelligent subsystems and offer 
many improvements on centralized architectures. 
They can help to reduce redundancy and the 
complexity of principal computing elements in FCS 
through the migration of some functions out of the 
FCC and the integration of smart subsystems. 
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Figure 1. Full Distributed FCS Architecture  

In this paper we propose a conceptual fully 
decentralized and reconfigurable architecture for FCS 
with architecture optimization and control 
distribution, where it is possible to use systems 
resources and new technologies better.  

FCS is a very critical system and consequently 
must be carefully designed and exhaustively checked. 
We validate the proposed architecture through 
simulation using ALTARICA language (a high level 
formal description language) and SDT (System 
Design Tool) for system safety and reliability 
assessments. 

The paper is organized as follows. This first 
section has presented flight control systems 
evolutions. The second section analyzes the state of 
the art of current FCS architectures. The third section 
gives an overview of an incremental methodology for 
architecture optimization. The fourth and fifth 
sections describe and analyze massive voting 
architecture, and illustrate the use of ALTARICA for 
dependability evaluation. 

State Of The Art Of Current FCS And 
Their Requirements 

Traditionally, FCSs have used a centralized and 
federate architecture where a specific computer has 
performed all processing and authority. In the context 
of our work we have analyzed a set of FCS 
architectures. The first subsection presents the Airbus 
and Boeing design. The second subsection presents a 

short analysis of redundancy, and the last subsection 
presents the system requirements identified. 

Airbus And Boeing Design 
The Airbus flight control system is based on 

many self-checking flight control computers [6]. 
Each FCC is composed of two software variants or 
units (command and monitoring unit) [7] whose 
results are compared. The command unit and the 
monitor unit are separated channels within a single 
computer.  

Each channel has separate hardware and 
different software. If the results of the channels don’t 
correspond (as checked by a comparing function) or 
are not produced at the same time then an error is 
assumed and system control switches to another 
computer. Computers communicate with each other 
through point-to-point digital communication in order 
to manage FCS redundancy taking into account 
different failure cases. 

The Boeing PFCS (Primary Flight Control 
System) [8] comprises three Primary Flight 
Computers (PFCs), each of identical design and 
construction and four analog computers ACE 
(Actuator Control Electronic). 

The PFCs compute control-surface position 
commands and transmit position commands to ACE 
via ARINC buses. The ACEs position the control 
surfaces using actuator systems. The ACE units act as 
an intermediate stage between the PFC and the pilot 
and actuators. Each PFC is identified as a channel 
and is composed of three dissimilar computing lanes 
[9]. Primary flight control system lines have all the 
same input signals and are all active. Their outputs 
are connected to a voter that compares these signals. 
Majority voting then chooses the correct signals. 2-
out-of-3 voting can mask the faulty module. Each 
actuator is controlled by a single ACE and each ACE 
can receive orders from all PFCs.  

All Flight Computers in Airbus and Boeing 
design are installed in the avionics bay and are 
connected directly by individual wires to all relevant 
sensors/actuators through point-to-point links. The 
relations between flight computer and actuators are 
arranged so that different computers control each 
actuator with priority order, so loss of a single 
computer will not mean loss of control of that 
surface. 
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System Analysis 
The analysis of current flight control 

architectures shows that the design and 
implementation of such a safe system are realized 
through the combined use of redundancy and 
diversity (software redundancy) to minimize the 
probability of common mode failure between 
redundant units. It also shows that level of 
redundancy is very important.  

This “over-redundancy” is justified by the need 
for a demonstration of safety and operational 
reliability especially for commercial airplane, which 
is guided by regulation authority and economic 
pressure.  

However, given the high level of redundancy 
practiced, it seems interesting to try to propose 
alternative architectures on less hardware and 
software resources. To conduct this exercise, we first 
have to identify and classify all requirements to be 
met by flight control system architecture. 

System Requirements 
Safety And Civil Aviation Regulations 

Fail-safe design concepts [10] are required by 
civil aviation regulations. The system has to meet the 
FAR/JAR 25 (Joint Aviation Authority/Federal 
Aviation Regulations) requirements for certification 
[11, 12]. It means that for a planned or existing 
system it must imperatively be possible to 
demonstrate its level of safety in order to be accepted 
by the authorities. This is to show that the system is 
robust against any considerable failure or 
combination of failures [13, 14].  

The flight control system usually has two types 
of dependability requirements: 

• Integrity: the system must not output 
erroneous signals. In particular, Flight 
Computer should not send incorrect 
information to the actuators. 

• Availability: the system must have a high 
level of availability.  

Economic Requirements 
Operational reliability is very important for 

airlines to stay competitive. FCS must have sufficient 
redundancy of software and hardware components so 
that a failure will not disrupt the availability of the 
system services. The availability objective of flight 

control systems is to be able to dispatch the aircraft 
with one or more components failure, so aircraft may 
take off with one defective equipment. The airplane 
will have a large operational availability and 
relatively few maintenance hours, to enable airlines 
to organize easy maintenance for their fleet. It is 
required that the FCS be still usable with the 
expected level of safety, even if an equipment failure 
could not be repaired for several days (ie. before 
returning for maintenance). The number of 
successive flights under such conditions is limited. 

Radiation Environment 
Electromagnetic radiation should also be 

considered. The radiation must not affect data 
communication associated with the Fly-By-Wire 
system. Particularly, the system must be especially 
protected against over voltages and under voltages, 
electromagnetic aggressions, and indirect effects of 
lightning.  

 Manufacturing Faults 
The choice of technological components and 

process development strategies [15] (quality control, 
rules for equipment design) are important factors to 
control reliability. Despite the precautions taken, a 
decline in production quality may occur in several 
defective components (less reliable). Thanks to the 
inclusion of additional redundancy, FCS provides 
sufficient margins to tolerate this kind of fault [16].  

Incremental Methodology  
Analysis of existing FCS architectures, and their 

requirements, lead us to introduce a brief overview of 
an incremental methodology to build a new 
architecture based on progressive requirements 
injection and distribution of the function of the 
system [17]. The question we are trying to solve is: 
what level of redundancy has to be achieved? 

Flight control systems are complex. There are 
several subsystems (flight control computer nodes, 
actuator nodes, communication network,) with 
functional and structural dependency. Each 
subsystem has different timing and dependability 
requirements with different levels of criticality. For 
these reasons, a structured approach is necessary for 
architecture optimization. It is more natural to 
proceed in a gradual manner by building and 
validating the architecture step by step, this is the 
objective of the incremental methodology: starting 
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with a basic block architecture and then taking into 
account each requirement, which results in 
duplication of hardware or/and software or function 
migration. This approach allows us to analyze the 
real needs and justify each additional hardware and 
software cost. 

The steps in the incremental methodology 
process are: 

• Step 1: identification of all subsystem 
boundaries and requirements. At the start, 
we advise to define all principal 
subsystems without looking for their 
dependency. 

• Step 2: allocation of tasks (system 
functions) under an optimizing criterion of 
the central control because FCCs are 
complex, big and expensive. 

• Step 3: definition of safety objective per 
subsystem. Safety objective is the 
probability of system failure due to a 
subsystem failure. 

• Step 4: choice of basic block architecture 
to meet functionality. Firstly, only 
necessary functional capabilities must be 
realized. A single component should be 
sufficient (one computer, one actuator or 
one switch…). 

• Step 5: classification of requirements 
based on their criticality.  

• Step 6: injection of the first requirement. 
• Step 7: assessment of quantitative 

reliability and preliminary evaluation of  
the objective of the probability (we can use 
assumptions for calculation formula). 

• Step8: use of hardware/software 
replication, function migration or 
reconfiguration to meet the probability 
objective with the first requirement. 

• Step 9: iteration over all requirements. 
• Step 10: iteration over all sub-functions. 
 

This approach is part of a complete safety 
process methodology that allows us to define a new 
safe architecture for a complex real time safety-
critical system.  

Example 
In this subsection we apply our approach on the 

most critical subsystem of the FCS: the flight control 
computer system where a single simplex FCC can 
handle all system processing and monitoring. But 
FCS must be designed to continuously provide 
service despite failure, so we need redundancy. 

Flight control computer primary architecture is 
given by the necessary basic simplex node and 
software required for system functionality (laws 
computation). Extra hardware is then added to the 
architecture as hardware and software replication or 
dynamic software reconfiguration in order to meet 
the safety and availability requirements due to 
permanent and transient faults. In our approach, it is 
possible to reconfigure one or more FCC to meet 
dissimilarity requirement. 

Dynamic software reconfiguration is a useful 
mechanism to adapt and maintain systems 
dissimilarity without need of other forms of 
reliability, such as redundancy. We consider that the 
probability objective is 10-9 per flight hour for the 
flight control computer system and the failure rate of 
one computer does not exceed 10-4 per flight hour. As 
a result, we are in need of additional redundant 
components, so other requirements should be 
injected.  

We use assumptions to simplify the calculations 
of probability formula. The formula for probability 
calculation changes with the number of redundant 
equipments used to build a fault tolerant architecture 
and the MMEL (Master Minimum Equipment List) 
condition: for 3 BFCC primary architecture, and 
taking into account three requirements (integrity, 
availability and operational reliability). The 
probability is calculated as follows:  

10120131 λλλ ××≅ TTP  

Abbreviations And Acronyms 
• BFCC: Basic Flight Control Computer 
• MTBF: Mean Time Before Failure  
• P: Mean Probability per flight hour for the 

system total failure. 
• T1: Maintenance interval or MMEL 

rectification interval: number of flight 
hours performed without maintenance 
action. 
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• T0: Mean flight time  
• λ1: Failure rate of FCC (λ1 = MTBF-1). 
 

The probability of system failure is simply the 
sum of individual BFCC failures probabilities. The 
formula is organized in three parts:  

Initially, 3 active components exist. It is 
accepted to lose one component before or during the 
flight. This can occur during the time limit T1. The 
aircraft may take off with defective equipment. The 
number of successive flights under such conditions is 
limited to ten (T1 = 100 hours: 10 flights of 10 
hours). 

The aircraft performs 10 successive take-offs 
with BFCC 1. During the flight, it is tolerable to lose 
another computer; this can exist during time T0. 

BFCC 1 failure must occur at first, followed by 
BFCC 2, and finally BFCC 3 failure. Last failure 
must occur during the flight to lose the whole system. 

The last failure is catastrophic and should be 
shown to occur at a rate less than or equal to 1x10-9 
per flight hour (combined with former failures) for 
computer flight control systems architecture. System 
failure must occur after triple combination failure 
(loss of three BFCC) without repercussion phase. P1 
must be less than 10-9 per flight hour. 

Under MMEL (Master Minimum Equipment 
List), P2 must be less than 10-8 per flight hour and P3 
must be less than 10-9 per flight hour. 

10122 λλ ×≅ TP  

10121133 λλλ ××≅ TTP  
This example shows that incremental 

methodology allows us to reduce the number of FCC 
nodes in the architecture.  

Future Architecture For FCS 
Currently, smart element (actuator and sensor) 

on current flight control system is capable of pre-
processing data in digital form. Smart actuator comes 
with their own computational elements and will be 
equipped by flight control remote modules (FCRM). 
FCRM is typically an Application-Specific Integrated 
Circuit (ASIC) or a Field Programmable Gate Array 
(FPGA). But for commercial flight control system, 

overall critical function and authority is still retained 
within the primary flight computer. In other words, 
the FCC still makes all the important (safety critical) 
decisions and the smart subsystems interact 
intelligently with it.  

Distributed architecture offers a number of 
improvements over centralized architectures by re-
hosting data processing and control functionality 
from the primary computational elements into other 
subsystems and making them more and more 
intelligent. Next subsection presents a distributed 
architecture, with migration of some functions from 
FCC to FCRM nodes. Distribution refers to 
distribution of computing power, control and 
monitoring.  

General Description Of The Massive Voting 
Architecture  

With distributed flight control architecture, there 
are several possibilities to allocate the task of control 
laws and logic (monitoring, fault detection and 
handling). Our optimization strategy to build the 
massive voting architecture implies that redundancy 
management or voting and logic should be allocated 
to actuators nodes or shared between computer and 
actuator nodes. This give a high degree of hardware 
fault detection for both actuator and computer fault 
without extra hardware. Most voting algorithms do 
not demand high processing capability, so processing 
in the actuators nodes is not considered a limiting 
factor of a future distributed architecture on flight 
control systems. The massive voting architecture 
benefits from digital communication and new 
technology for smart actuators: 

• Digital communication provides broadcast 
communication between FCC and actuator 
nodes. 

• Digital communication is rapid responding 
to remote terminal especially for large 
airplane. 

• Electronic for smart actuator can be 
designed with high degree of embedded 
computing capability. 

 

We considered an architecture with N simplex, 
independent computer nodes, grouped into two 
groups (of N/2 elements). In this architecture, we 
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replicate the main hardware unit N times and their 
outputs are constantly voted by a massive voting 
algorithm implemented in M distributed actuator 
nodes. In some cases, there are two actuators per 
surface and one FCRM per actuator. Communication 
between FCC and FCRM will be based on Airbus 
current embedded communication network (ADCN, 
Advanced Data Communication Network) and a 
1553 bus. 

FCC are simplex, but FCRM are duplex 
(command/monitor architecture). Each FCRM has it 
own voter. FCCs have two software variant (S1 and 
S2) and two hardware variant (H1 and H2). Each 
voter on each FCRM needs to collect the output 
orders of all FCC nodes and of the two plane sides as 
shown in Figure 2. 

 

Figure 2. The Massive Voting Architecture 

FCCs are connected to the ADCN network and 
can communicate to all actuator nodes trough a 
multi-master broadcast configuration. All FCC intra- 
communications are removed. Communication 
between flight control computer nodes and actuators 
nodes is organized as follows. 

• Firstly, all FCC nodes calculate flight 
control laws and control-surface position 
commands for all actuators nodes (spoiler, 
elevator…) and then broadcast their 
message on the bus.  

• Each actuator receives N/2 messages from 
each computer group at every application 
cycle (control law computation frequency). 

• Secondly, each FCRM node achieves a 
massive voting to select a good order. In 
absence of fault all correct working voter 
should agree.  

The voter may use different algorithms in the 
voting process of selecting correct order [18, 19]. 

Fault Handling 
In massive voting architecture most fault 

handling is taken care of in actuator nodes. With 
several actuator nodes, each of them providing a 
feedback, a high degree of fault detection and fault 
location can be achieved. 

Because FCC nodes are simplex, this requires a 
fault detection function to detect the faulty situations. 
First simple fault detection mechanism in FCC nodes 
use the output signal for inner consistency checking 
like parity checking or watchdog timers. The second 
fault detection mechanism is based on FCRMs 
feedbacks. If a fault occurs in an actuator node, that 
node will either be fail-silent or broadcast faulty 
command-words since the actuator has a command 
monitoring architecture. The command channel 
ensures the function allocated to the FCRM (voting, 
monitoring). The monitoring channel ensure that the 
command channel operate correctly. 

Simulation  
Up to 80 percent of the total cost of the life cycle 

of an airplane is set during the early design phase, so 
mistakes on architectural decision are expensive. To 
minimize risks, dependability analysis should be 
introduced early in the design process, and decision 
should be based more and more on simulation. 

This section discusses modeling and 
dependability assessment of massive voting 
architecture with ALTARICA language. All 
dependability measures can be evaluated based on 
ALTARICA model but in this paper and for FCS we 
are just interested in safety and availability. We need 
to verify the effect of the massive voting architecture 
on system requirements, and application. 

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 12:28 from IEEE Xplore.  Restrictions apply. 



 6.B.2-7 

ALTARICA Language 
ALTARICA is a formal language developed at 

LaBRI (Laboratoire Bordelais de Recherche en 
Informatique) jointly with French industrial partners 
(especially Dassault Aviation and Airbus) in order to 
model safety critical systems. ALTARICA is used for 
modeling both functional and dysfunctional 
behaviors of systems. ALTARICA is widely used by 
aeronautical industrialists [20]. 

Thanks to the language well defined semantics 
and syntax, safety assessments of ALTARICA 
models can be analyzed by numerous reliability or 
validation tools. Moreover, its capacity to realize 
compositional and hierarchical models is a great 
advantage when complex systems must be modeled 
[21]. An ALTARICA model is composed of several 
components linked together. Each system component 
is modeled by a node. A node is defined by three 
parts: 

• declaration of variables and events 
• definition of transitions 
• definition of assertions 
Most of the events of an ALTARICA model, 

that describe failure propagation in a system, 
represent failure modes of the components of the 
system. These events are mainly stochastic events: 
probability laws can be associated to them and later 
be used to evaluate the enforced quantitative 
requirement. The means of analysis on ALTARICA 
model are: 

Interactive simulation: 

• possible events may be triggered 
• component icons and links color are 

updated 
Automatic generation for a selected output value of:  

• Fault tree 
• Minimal Cut Sets (MCS) 
• Minimal Sequence Sets (MSS) 

Model-Checking: 

• given a requirement, exhaustive 
exploration of reachable states in order to 
find a state where the requirement is not 
fulfilled 

• production of a counter-example if the 
requirement is not fulfilled. 

Application On Your Architecture 
Architecture Modeling  

Using SDT (System Design Tool) workshop of 
Airbus, we designed and implemented, a small 
ALTARICA model of the massive voting 
architecture for experimentation. In our simulation 
scenarios N is equal to six. The simulation model 
includes all systems communication, computing 
nodes (FCC and FCRM), electrical system and 
control surfaces and their failure modes to study 
failure propagation in the model as shown in 
Figure 3.  

Massive voting architecture component has 
several failure modes: 

• total loss 
• detected erroneous functioning 
• undetected erroneous functioning 
• erroneous acquisition of data 
• erroneous transmission on network 

 

Figure 3. An Architectural Altarica Model 

ALTARICA component model is composed of: 

• A textual description (flow and events 
impacting the current state of the 
component) to describe both functional 
and dysfunctional behaviors as shown in 
Figure 4. 
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Figure 4. Altarica Node Textual Description 

•  A graphical representation (flow and icons 
updated to reflect the current state) as 
shown in Figure 5 of FCRM model. 

 

Figure 5. FCRM Node Graphical Representation  

Safety Assessment With ALTARICA 
After having modeled the architecture, we can 

perform dependability evaluation in order to check 
the effects and benefits of the new architecture on the 
dependability of FCS. We check the effect of failure 
occurrences on the system architecture by using SDT 
graphical interactive and automatic simulator.  

Firstly, we use interactive simulation to validate 
each component behavior separately in order to 
verify system behavior and reaction in case of failure 

occurrence (by injection fault). Interactive simulation 
allows us to look at the consequence of each failure 
event in the architecture model (icons or textual 
updated to reflect the current state). 

In test case one, the FCC1 sent a fault command 
to actuator nodes: undetected erroneous functioning 
event is trigged. Simulation shows that FCC1 failure 
has no influence in the surface control since the vote 
masks the faulty value and delivers the correct one 
with an negative acknowledgment to faulty FCC as 
shown in Figure 6.  

 

Figure 6. FCC Textual Simulation Result 

Secondly we use automatic simulation to search 
MSS (minimum size sequence) or MCS (minimum 
cut sets) for event leading to FC for exhaustive 
validation. 

The process for automatic simulation is as 
follows. First, the analyst defines all unsafe situations 
(called Failure Condition: FC) and associate a 
classification (minor, major, hazardous or 
catastrophic) and safety requirements (qualitative and 
quantitative). Then, he models the FC with a specific 
component (called observatory) integrated to the 
architecture model. Finally, SDT tool searches 
automatically all minimal combinations of failures 
leading to a given FC and compute the probability of 
FC. Architecture is valid only if all FC requirements 
are met. The result of automatic simulation for the 
“FC = Loss of both elevator control” must be less 
than 10-9 per flight hour, and it is shown in Figure 7.
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Figure 7. Loss of Both Elevator Control 

Conclusions 
Distributed FBW systems are the last step in the 

evolution of the traditional airplane FCS 
architectures. The evolution of microelectronic and 
communication technologies will continue to have an 
extreme influence on the FCS architecture. 

This paper has shown the way that one could use 
so that using digital communication and smart 
actuators can eliminate the centralized architecture 
and reduce the number of centralized computers to 
achieve low cost that is vital for new aircraft without 
dependability degradation. Digitally distributed FBW 
architectures offer many improvements over 
centralized architecture. They can help to reduce 
redundancy and the complexity of principal 
computing elements in FCS architecture through the 
migration of computation functionality out of the 
FCC and the integration of smart subsystems. The 
processing tasks realized by central flight computers 
are also simplified, so that critical safety computing 
can now be more easily accomplished by low cost 
standard computing resources like IMA [22] or 
COTS (Commercial Off-The-Self) [23]. 
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