
978-1-4244-4078-8/09/$25.00 ©2009 IEEE. 6.B.2-1

DISTRIBUTED AND RECONFIGURABLE ARCHITECTURE
FOR FLIGHT CONTROL SYSTEM

Manel Sghairi, Jean-Jacques Aubert, Patrice Brot; Flight Control System Department AIRBUS France
316 route de Bayonne, 31060 Toulouse, France

Agnan de Bonneval, Yves Crouzet, Youssef Laarouchi; CNRS; LAAS; Université de Toulouse; UPS, INSA,
INP, ISA; F-31077 Toulouse, France

Abstract
New airplanes must meet rigorous requirements

of aviation safety, operational reliability, high
performance and energy efficiency at a low cost. To
meet this challenge, we should optimize current
system and take advantage of available technology
for the next decade.

This work is aiming at proposing some
evolutions for Flight Control System (FCS) and to
build alternative FCS low-cost and safe architectures
for the next decade with less hardware and software
resources.

The main contribution of this paper is twofold.
First, we will provide an incremental methodology to
give guidelines for architecture optimization. Second,
we will present a full distributed reconfigurable
architecture for FCS based on smart actuators and
digital communication network where all system
functions are distributed to simplex Flight Control
Computer (FCC) nodes and remote actuator
electronics nodes (FCRM). Communication between
FCC and FCRM will be based on Airbus embedded
communication network (ADCN, Advanced Data
Communication Network) [1] and a 1553 bus. We
will use ALTARICA language to perform
dependability evaluation at architectural level in
order to check the effects and benefits of the new
architecture on the dependability of FCS.

Introduction
Airplane performance and business pressures

related to cost have been the main drivers to change
flight control system from mechanical to digital Fly-
By-Wire (FBW) design [2]. Technical improvements
considered for the future, such as smart
actuators/sensors with remote electronics and digital
communication, will change drastically avionics
architectures design for future commercial and

military programs [3,4]. A FBW control system has
several advantages over a mechanical system but
equipments and architectures proposed for FBW
critical systems such as FCS must meet stringent
safety and availability requirements before they can
be certified. For FCS, the probability of losing an
aircraft critical function or of an occurrence of a
critical failure must be less than 10-9 per flight hour.

Traditionally [5], FCS has used a centralized
/federated architecture where a specific fault tolerant
computer has performed all processing and authority.
This architecture is inherently robust, because it is
based on a high level of software and hardware
redundancy. However, it can be very costly in terms
of space, weight and power, and also wiring
requirements between the elements of the system
especially for large airplane. This also increases all
continuous monitoring of “non-intelligent”
components like actuators and sensors that the
computers are performing at the present.

Given the high level of redundancy practiced, it
seems interesting to try to propose alternative
architectures with less hardware and software
resources and to take advantage of technical
improvements.

In this context, there is a great motivation for
future programs to change current flight control
architectures to more distributed and better optimized
architectures as shown in Figure 1.

FCS architectures will be based on digital
technologies and intelligent subsystems and offer
many improvements on centralized architectures.
They can help to reduce redundancy and the
complexity of principal computing elements in FCS
through the migration of some functions out of the
FCC and the integration of smart subsystems.

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 12:28 from IEEE Xplore. Restrictions apply.

 6.B.2-2

Figure 1. Full Distributed FCS Architecture

In this paper we propose a conceptual fully
decentralized and reconfigurable architecture for FCS
with architecture optimization and control
distribution, where it is possible to use systems
resources and new technologies better.

FCS is a very critical system and consequently
must be carefully designed and exhaustively checked.
We validate the proposed architecture through
simulation using ALTARICA language (a high level
formal description language) and SDT (System
Design Tool) for system safety and reliability
assessments.

The paper is organized as follows. This first
section has presented flight control systems
evolutions. The second section analyzes the state of
the art of current FCS architectures. The third section
gives an overview of an incremental methodology for
architecture optimization. The fourth and fifth
sections describe and analyze massive voting
architecture, and illustrate the use of ALTARICA for
dependability evaluation.

State Of The Art Of Current FCS And
Their Requirements

Traditionally, FCSs have used a centralized and
federate architecture where a specific computer has
performed all processing and authority. In the context
of our work we have analyzed a set of FCS
architectures. The first subsection presents the Airbus
and Boeing design. The second subsection presents a

short analysis of redundancy, and the last subsection
presents the system requirements identified.

Airbus And Boeing Design
The Airbus flight control system is based on

many self-checking flight control computers [6].
Each FCC is composed of two software variants or
units (command and monitoring unit) [7] whose
results are compared. The command unit and the
monitor unit are separated channels within a single
computer.

Each channel has separate hardware and
different software. If the results of the channels don’t
correspond (as checked by a comparing function) or
are not produced at the same time then an error is
assumed and system control switches to another
computer. Computers communicate with each other
through point-to-point digital communication in order
to manage FCS redundancy taking into account
different failure cases.

The Boeing PFCS (Primary Flight Control
System) [8] comprises three Primary Flight
Computers (PFCs), each of identical design and
construction and four analog computers ACE
(Actuator Control Electronic).

The PFCs compute control-surface position
commands and transmit position commands to ACE
via ARINC buses. The ACEs position the control
surfaces using actuator systems. The ACE units act as
an intermediate stage between the PFC and the pilot
and actuators. Each PFC is identified as a channel
and is composed of three dissimilar computing lanes
[9]. Primary flight control system lines have all the
same input signals and are all active. Their outputs
are connected to a voter that compares these signals.
Majority voting then chooses the correct signals. 2-
out-of-3 voting can mask the faulty module. Each
actuator is controlled by a single ACE and each ACE
can receive orders from all PFCs.

All Flight Computers in Airbus and Boeing
design are installed in the avionics bay and are
connected directly by individual wires to all relevant
sensors/actuators through point-to-point links. The
relations between flight computer and actuators are
arranged so that different computers control each
actuator with priority order, so loss of a single
computer will not mean loss of control of that
surface.

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 12:28 from IEEE Xplore. Restrictions apply.

 6.B.2-3

System Analysis
The analysis of current flight control

architectures shows that the design and
implementation of such a safe system are realized
through the combined use of redundancy and
diversity (software redundancy) to minimize the
probability of common mode failure between
redundant units. It also shows that level of
redundancy is very important.

This “over-redundancy” is justified by the need
for a demonstration of safety and operational
reliability especially for commercial airplane, which
is guided by regulation authority and economic
pressure.

However, given the high level of redundancy
practiced, it seems interesting to try to propose
alternative architectures on less hardware and
software resources. To conduct this exercise, we first
have to identify and classify all requirements to be
met by flight control system architecture.

System Requirements
Safety And Civil Aviation Regulations

Fail-safe design concepts [10] are required by
civil aviation regulations. The system has to meet the
FAR/JAR 25 (Joint Aviation Authority/Federal
Aviation Regulations) requirements for certification
[11, 12]. It means that for a planned or existing
system it must imperatively be possible to
demonstrate its level of safety in order to be accepted
by the authorities. This is to show that the system is
robust against any considerable failure or
combination of failures [13, 14].

The flight control system usually has two types
of dependability requirements:

• Integrity: the system must not output
erroneous signals. In particular, Flight
Computer should not send incorrect
information to the actuators.

• Availability: the system must have a high
level of availability.

Economic Requirements
Operational reliability is very important for

airlines to stay competitive. FCS must have sufficient
redundancy of software and hardware components so
that a failure will not disrupt the availability of the
system services. The availability objective of flight

control systems is to be able to dispatch the aircraft
with one or more components failure, so aircraft may
take off with one defective equipment. The airplane
will have a large operational availability and
relatively few maintenance hours, to enable airlines
to organize easy maintenance for their fleet. It is
required that the FCS be still usable with the
expected level of safety, even if an equipment failure
could not be repaired for several days (ie. before
returning for maintenance). The number of
successive flights under such conditions is limited.

Radiation Environment
Electromagnetic radiation should also be

considered. The radiation must not affect data
communication associated with the Fly-By-Wire
system. Particularly, the system must be especially
protected against over voltages and under voltages,
electromagnetic aggressions, and indirect effects of
lightning.

 Manufacturing Faults
The choice of technological components and

process development strategies [15] (quality control,
rules for equipment design) are important factors to
control reliability. Despite the precautions taken, a
decline in production quality may occur in several
defective components (less reliable). Thanks to the
inclusion of additional redundancy, FCS provides
sufficient margins to tolerate this kind of fault [16].

Incremental Methodology
Analysis of existing FCS architectures, and their

requirements, lead us to introduce a brief overview of
an incremental methodology to build a new
architecture based on progressive requirements
injection and distribution of the function of the
system [17]. The question we are trying to solve is:
what level of redundancy has to be achieved?

Flight control systems are complex. There are
several subsystems (flight control computer nodes,
actuator nodes, communication network,) with
functional and structural dependency. Each
subsystem has different timing and dependability
requirements with different levels of criticality. For
these reasons, a structured approach is necessary for
architecture optimization. It is more natural to
proceed in a gradual manner by building and
validating the architecture step by step, this is the
objective of the incremental methodology: starting

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 12:28 from IEEE Xplore. Restrictions apply.

 6.B.2-4

with a basic block architecture and then taking into
account each requirement, which results in
duplication of hardware or/and software or function
migration. This approach allows us to analyze the
real needs and justify each additional hardware and
software cost.

The steps in the incremental methodology
process are:

• Step 1: identification of all subsystem
boundaries and requirements. At the start,
we advise to define all principal
subsystems without looking for their
dependency.

• Step 2: allocation of tasks (system
functions) under an optimizing criterion of
the central control because FCCs are
complex, big and expensive.

• Step 3: definition of safety objective per
subsystem. Safety objective is the
probability of system failure due to a
subsystem failure.

• Step 4: choice of basic block architecture
to meet functionality. Firstly, only
necessary functional capabilities must be
realized. A single component should be
sufficient (one computer, one actuator or
one switch…).

• Step 5: classification of requirements
based on their criticality.

• Step 6: injection of the first requirement.
• Step 7: assessment of quantitative

reliability and preliminary evaluation of
the objective of the probability (we can use
assumptions for calculation formula).

• Step8: use of hardware/software
replication, function migration or
reconfiguration to meet the probability
objective with the first requirement.

• Step 9: iteration over all requirements.
• Step 10: iteration over all sub-functions.

This approach is part of a complete safety
process methodology that allows us to define a new
safe architecture for a complex real time safety-
critical system.

Example
In this subsection we apply our approach on the

most critical subsystem of the FCS: the flight control
computer system where a single simplex FCC can
handle all system processing and monitoring. But
FCS must be designed to continuously provide
service despite failure, so we need redundancy.

Flight control computer primary architecture is
given by the necessary basic simplex node and
software required for system functionality (laws
computation). Extra hardware is then added to the
architecture as hardware and software replication or
dynamic software reconfiguration in order to meet
the safety and availability requirements due to
permanent and transient faults. In our approach, it is
possible to reconfigure one or more FCC to meet
dissimilarity requirement.

Dynamic software reconfiguration is a useful
mechanism to adapt and maintain systems
dissimilarity without need of other forms of
reliability, such as redundancy. We consider that the
probability objective is 10-9 per flight hour for the
flight control computer system and the failure rate of
one computer does not exceed 10-4 per flight hour. As
a result, we are in need of additional redundant
components, so other requirements should be
injected.

We use assumptions to simplify the calculations
of probability formula. The formula for probability
calculation changes with the number of redundant
equipments used to build a fault tolerant architecture
and the MMEL (Master Minimum Equipment List)
condition: for 3 BFCC primary architecture, and
taking into account three requirements (integrity,
availability and operational reliability). The
probability is calculated as follows:

10120131 λλλ ××≅ TTP

Abbreviations And Acronyms
• BFCC: Basic Flight Control Computer
• MTBF: Mean Time Before Failure
• P: Mean Probability per flight hour for the

system total failure.
• T1: Maintenance interval or MMEL

rectification interval: number of flight
hours performed without maintenance
action.

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 12:28 from IEEE Xplore. Restrictions apply.

 6.B.2-5

• T0: Mean flight time
• λ1: Failure rate of FCC (λ1 = MTBF-1).

The probability of system failure is simply the
sum of individual BFCC failures probabilities. The
formula is organized in three parts:

Initially, 3 active components exist. It is
accepted to lose one component before or during the
flight. This can occur during the time limit T1. The
aircraft may take off with defective equipment. The
number of successive flights under such conditions is
limited to ten (T1 = 100 hours: 10 flights of 10
hours).

The aircraft performs 10 successive take-offs
with BFCC 1. During the flight, it is tolerable to lose
another computer; this can exist during time T0.

BFCC 1 failure must occur at first, followed by
BFCC 2, and finally BFCC 3 failure. Last failure
must occur during the flight to lose the whole system.

The last failure is catastrophic and should be
shown to occur at a rate less than or equal to 1x10-9
per flight hour (combined with former failures) for
computer flight control systems architecture. System
failure must occur after triple combination failure
(loss of three BFCC) without repercussion phase. P1
must be less than 10-9 per flight hour.

Under MMEL (Master Minimum Equipment
List), P2 must be less than 10-8 per flight hour and P3
must be less than 10-9 per flight hour.

10122 λλ ×≅ TP

10121133 λλλ ××≅ TTP
This example shows that incremental

methodology allows us to reduce the number of FCC
nodes in the architecture.

Future Architecture For FCS
Currently, smart element (actuator and sensor)

on current flight control system is capable of pre-
processing data in digital form. Smart actuator comes
with their own computational elements and will be
equipped by flight control remote modules (FCRM).
FCRM is typically an Application-Specific Integrated
Circuit (ASIC) or a Field Programmable Gate Array
(FPGA). But for commercial flight control system,

overall critical function and authority is still retained
within the primary flight computer. In other words,
the FCC still makes all the important (safety critical)
decisions and the smart subsystems interact
intelligently with it.

Distributed architecture offers a number of
improvements over centralized architectures by re-
hosting data processing and control functionality
from the primary computational elements into other
subsystems and making them more and more
intelligent. Next subsection presents a distributed
architecture, with migration of some functions from
FCC to FCRM nodes. Distribution refers to
distribution of computing power, control and
monitoring.

General Description Of The Massive Voting
Architecture

With distributed flight control architecture, there
are several possibilities to allocate the task of control
laws and logic (monitoring, fault detection and
handling). Our optimization strategy to build the
massive voting architecture implies that redundancy
management or voting and logic should be allocated
to actuators nodes or shared between computer and
actuator nodes. This give a high degree of hardware
fault detection for both actuator and computer fault
without extra hardware. Most voting algorithms do
not demand high processing capability, so processing
in the actuators nodes is not considered a limiting
factor of a future distributed architecture on flight
control systems. The massive voting architecture
benefits from digital communication and new
technology for smart actuators:

• Digital communication provides broadcast
communication between FCC and actuator
nodes.

• Digital communication is rapid responding
to remote terminal especially for large
airplane.

• Electronic for smart actuator can be
designed with high degree of embedded
computing capability.

We considered an architecture with N simplex,
independent computer nodes, grouped into two
groups (of N/2 elements). In this architecture, we

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 12:28 from IEEE Xplore. Restrictions apply.

 6.B.2-6

replicate the main hardware unit N times and their
outputs are constantly voted by a massive voting
algorithm implemented in M distributed actuator
nodes. In some cases, there are two actuators per
surface and one FCRM per actuator. Communication
between FCC and FCRM will be based on Airbus
current embedded communication network (ADCN,
Advanced Data Communication Network) and a
1553 bus.

FCC are simplex, but FCRM are duplex
(command/monitor architecture). Each FCRM has it
own voter. FCCs have two software variant (S1 and
S2) and two hardware variant (H1 and H2). Each
voter on each FCRM needs to collect the output
orders of all FCC nodes and of the two plane sides as
shown in Figure 2.

Figure 2. The Massive Voting Architecture

FCCs are connected to the ADCN network and
can communicate to all actuator nodes trough a
multi-master broadcast configuration. All FCC intra-
communications are removed. Communication
between flight control computer nodes and actuators
nodes is organized as follows.

• Firstly, all FCC nodes calculate flight
control laws and control-surface position
commands for all actuators nodes (spoiler,
elevator…) and then broadcast their
message on the bus.

• Each actuator receives N/2 messages from
each computer group at every application
cycle (control law computation frequency).

• Secondly, each FCRM node achieves a
massive voting to select a good order. In
absence of fault all correct working voter
should agree.

The voter may use different algorithms in the
voting process of selecting correct order [18, 19].

Fault Handling
In massive voting architecture most fault

handling is taken care of in actuator nodes. With
several actuator nodes, each of them providing a
feedback, a high degree of fault detection and fault
location can be achieved.

Because FCC nodes are simplex, this requires a
fault detection function to detect the faulty situations.
First simple fault detection mechanism in FCC nodes
use the output signal for inner consistency checking
like parity checking or watchdog timers. The second
fault detection mechanism is based on FCRMs
feedbacks. If a fault occurs in an actuator node, that
node will either be fail-silent or broadcast faulty
command-words since the actuator has a command
monitoring architecture. The command channel
ensures the function allocated to the FCRM (voting,
monitoring). The monitoring channel ensure that the
command channel operate correctly.

Simulation
Up to 80 percent of the total cost of the life cycle

of an airplane is set during the early design phase, so
mistakes on architectural decision are expensive. To
minimize risks, dependability analysis should be
introduced early in the design process, and decision
should be based more and more on simulation.

This section discusses modeling and
dependability assessment of massive voting
architecture with ALTARICA language. All
dependability measures can be evaluated based on
ALTARICA model but in this paper and for FCS we
are just interested in safety and availability. We need
to verify the effect of the massive voting architecture
on system requirements, and application.

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 12:28 from IEEE Xplore. Restrictions apply.

 6.B.2-7

ALTARICA Language
ALTARICA is a formal language developed at

LaBRI (Laboratoire Bordelais de Recherche en
Informatique) jointly with French industrial partners
(especially Dassault Aviation and Airbus) in order to
model safety critical systems. ALTARICA is used for
modeling both functional and dysfunctional
behaviors of systems. ALTARICA is widely used by
aeronautical industrialists [20].

Thanks to the language well defined semantics
and syntax, safety assessments of ALTARICA
models can be analyzed by numerous reliability or
validation tools. Moreover, its capacity to realize
compositional and hierarchical models is a great
advantage when complex systems must be modeled
[21]. An ALTARICA model is composed of several
components linked together. Each system component
is modeled by a node. A node is defined by three
parts:

• declaration of variables and events
• definition of transitions
• definition of assertions
Most of the events of an ALTARICA model,

that describe failure propagation in a system,
represent failure modes of the components of the
system. These events are mainly stochastic events:
probability laws can be associated to them and later
be used to evaluate the enforced quantitative
requirement. The means of analysis on ALTARICA
model are:

Interactive simulation:

• possible events may be triggered
• component icons and links color are

updated
Automatic generation for a selected output value of:

• Fault tree
• Minimal Cut Sets (MCS)
• Minimal Sequence Sets (MSS)

Model-Checking:

• given a requirement, exhaustive
exploration of reachable states in order to
find a state where the requirement is not
fulfilled

• production of a counter-example if the
requirement is not fulfilled.

Application On Your Architecture
Architecture Modeling

Using SDT (System Design Tool) workshop of
Airbus, we designed and implemented, a small
ALTARICA model of the massive voting
architecture for experimentation. In our simulation
scenarios N is equal to six. The simulation model
includes all systems communication, computing
nodes (FCC and FCRM), electrical system and
control surfaces and their failure modes to study
failure propagation in the model as shown in
Figure 3.

Massive voting architecture component has
several failure modes:

• total loss
• detected erroneous functioning
• undetected erroneous functioning
• erroneous acquisition of data
• erroneous transmission on network

Figure 3. An Architectural Altarica Model

ALTARICA component model is composed of:

• A textual description (flow and events
impacting the current state of the
component) to describe both functional
and dysfunctional behaviors as shown in
Figure 4.

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 12:28 from IEEE Xplore. Restrictions apply.

 6.B.2-8

Figure 4. Altarica Node Textual Description

• A graphical representation (flow and icons
updated to reflect the current state) as
shown in Figure 5 of FCRM model.

Figure 5. FCRM Node Graphical Representation

Safety Assessment With ALTARICA
After having modeled the architecture, we can

perform dependability evaluation in order to check
the effects and benefits of the new architecture on the
dependability of FCS. We check the effect of failure
occurrences on the system architecture by using SDT
graphical interactive and automatic simulator.

Firstly, we use interactive simulation to validate
each component behavior separately in order to
verify system behavior and reaction in case of failure

occurrence (by injection fault). Interactive simulation
allows us to look at the consequence of each failure
event in the architecture model (icons or textual
updated to reflect the current state).

In test case one, the FCC1 sent a fault command
to actuator nodes: undetected erroneous functioning
event is trigged. Simulation shows that FCC1 failure
has no influence in the surface control since the vote
masks the faulty value and delivers the correct one
with an negative acknowledgment to faulty FCC as
shown in Figure 6.

Figure 6. FCC Textual Simulation Result

Secondly we use automatic simulation to search
MSS (minimum size sequence) or MCS (minimum
cut sets) for event leading to FC for exhaustive
validation.

The process for automatic simulation is as
follows. First, the analyst defines all unsafe situations
(called Failure Condition: FC) and associate a
classification (minor, major, hazardous or
catastrophic) and safety requirements (qualitative and
quantitative). Then, he models the FC with a specific
component (called observatory) integrated to the
architecture model. Finally, SDT tool searches
automatically all minimal combinations of failures
leading to a given FC and compute the probability of
FC. Architecture is valid only if all FC requirements
are met. The result of automatic simulation for the
“FC = Loss of both elevator control” must be less
than 10-9 per flight hour, and it is shown in Figure 7.

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 12:28 from IEEE Xplore. Restrictions apply.

 6.B.2-9

Figure 7. Loss of Both Elevator Control

Conclusions
Distributed FBW systems are the last step in the

evolution of the traditional airplane FCS
architectures. The evolution of microelectronic and
communication technologies will continue to have an
extreme influence on the FCS architecture.

This paper has shown the way that one could use
so that using digital communication and smart
actuators can eliminate the centralized architecture
and reduce the number of centralized computers to
achieve low cost that is vital for new aircraft without
dependability degradation. Digitally distributed FBW
architectures offer many improvements over
centralized architecture. They can help to reduce
redundancy and the complexity of principal
computing elements in FCS architecture through the
migration of computation functionality out of the
FCC and the integration of smart subsystems. The
processing tasks realized by central flight computers
are also simplified, so that critical safety computing
can now be more easily accomplished by low cost
standard computing resources like IMA [22] or
COTS (Commercial Off-The-Self) [23].

References
[1] Brajou, F. and P. Ricco, 2004, The Airbus A380
- An AFDX-Based Flight Test Computer Concept, in
Proceedings of the 2004 IEEE AUTOTESTCON,
San-Antonio, Texas, USA, September 20-23,
pp. 460-465.

[2] Favre, C., 1994, “Fly-By-Wire for Commercial
Aircraft: The Airbus Experience, in International
Journal of Control, vol. 59, issue 1, January, pp. 139-
157.

[3] Godo, E.L., 2002, Flight Control System with
Remote Electronics, in Proceedings of the 21st
Digital Avionics Systems Conference (DASC 2002),
vol. 2, Irvine, California, October 27-31, pp. 13B1-1
- 13B1-7.

[4] Ahlstrom K. and J. Torin, 2002, Future
Architecture of Flight Control Systems, in IEEE
Aerospace and Electronic Systems Magazine, vol.17,
Issue 12, December, pp. 21-27.

[5] Knight, J.C., 2002, Safety Critical Systems:
Challenges and Directions, in Proceedings of the 24th
International Conference on Software Engineering
(ICSE 2002), Orlando, Florida, USA, May 19-25, pp.
557-550.

[6] Traverse, P., I. Lacaze and J. Souyris, 2004,
Airbus Fly-By-Wire: A Total Approach to
Dependability, in Proceedings of the 18th IFIP World
Computer Congress (WCC 2004), Building the
Information Society, Kluwer Academic Publishers,
Toulouse, France, August 22-27, pp. 191-212.

[7] Brière, D. and P. Traverse, 1993, Airbus
A320/A330/A340 Electrical Flight Controls – A
Family of Fault-Tolerant Systems, in Proceedings of
the 23rd IEEE International Symposium on Fault-
Tolerant Computing (FTCS-23), Toulouse, France,
June 22-24, pp. 616-623.

[8] Yeh, Y.C., 1996, Triple-Triple Redundant 777
Primary Flight Computer, in Proceedings of the IEEE
Aerospace Applications Conference, Aspen, CO,
USA, February 3-10, pp. 293-307.

[9] Yeh, Y.C., 2001, Safety Critical Avionics for the
777 Primary Flight Controls System, in Proceedings
of the 20th Conf. on Digital Avionics Systems
(DASC 2001), Daytona Beach, FL, USA, October
14-18, 2001, pp. 1C2/1.1C2/11.

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 12:28 from IEEE Xplore. Restrictions apply.

 6.B.2-10

[10] Avizienis, A., J.C. Laprie, B. Randell and
C. Landwehr, 2004, “Basic Concepts and Taxonomy
of Dependable and Secure computing, in IEEE
Transactions on Dependable and Secure Computing,
vol. 1, issue 1, Jan.-March 2004, pp. 11-33.

[11] ARP-4754/ED-79, 1996-97, Certification
Considerations for Highly-Integrated or Complex
Systems, published by SAE (Society of Automotive
Engineers) no. ARP-4754, November 1996 and
EUROCAE no. ED-79, April 1997.

[12] FAR/JAR 25, Airworthiness Standards:
Transport Category Airplane, published by FAA, title
14, part 25, and Certification Specifications for Large
Aeroplanes, published by EASA (former JAA), CS-
25.

[13] DO-178B/ED-12, 1992, Software
Considerations in Airborne Systems and Equipment
Certification, published by RTCA, no. DO-178B, and
EUROCAE no. ED-12.

[14] FAA (Federal Aviation Administration), 2000,
System Safety Handbook, chapter 3:Principles of
System Safety, December 30, 19 p.

[15] DO-254/ED-80, 2000, Design Assurance
Guidance for Airborne Electronic Hardware,
published by RTCA no. DO-254, and EUROCAE,
no. ED-80, April.

[16] ARP-4671, 1996, Guidelines and Methods for
Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment, published by SAE
(Society of Automotive Engineers), December.

[17] Sghairi, M., A. de Bonneval, Y. Crouzet, J-J.
Aubert and P. Brot, 2009, Challenges in Building
Fault-Tolerant Flight Control System for a Civil
Aircraft, in IAENG International Journal of
Computer Science, vol. 35, n°4, January, pp. 495-
499.

[18] Namazi A. and M. Nourani, 2007, Distributed
Voting for Fault-Tolerant Nanoscale Systems, in
Proceedings of 25th International Conference on
Computer Design (ICCD 2007), Lake Tahoe,
California, USA, October 7-10, 2007, pp. 563-573.

[19] Hardekopf B., K. Kwiat and S. Upadhyaya,
2001, Secure and Fault-Tolerant Voting in
Distributed Systems, in Proceedings of 2001 IEEE
Aerospace Conference (volume 3), Big Sky,
Montana, USA, March 10-17, pp. 3/1117 - 3/1126.

[20] Bernard R., 2009, AltaRica Refinement to
Support Safety
Analyses, http://www.onera.fr/theses/journeesdesthes
es/tis/actes/articles/jdt-tis-2009-article-bernard-
romain.pdf

[21] Bieber P., C. Bougnol, C. Castel, J.-P.
Heckmann, C. Kehren, S. Metge and C. Seguin,
2004, Safety Assessment with AltaRica - Lessons
Learnt Based on Two Aircraft System Studies, in
Proceedings of 18th World Computer Congress
(WCC 2004), Building the Information Society,
Kluwer Academic Publishers, Toulouse, France,
August 22-27, 2004, pp. 505-510.

[22] Prisaznuk, P.J., 1992, Integrated Modular
Avionics, in Proceedings of the IEEE National
Aerospace and Engineering Conference (NAECON
1992), Dayton, Ohio, USA, May 18-22, pp. 39-45.

[23] Arlat, J., J.-P. Blanquart, T. Boyer, Y. Crouzet,
M.-H. Durand, J.-C Fabre, M. Founau, M. Kaaniche,
K. Kanoun, P. Le Meur, C. Mazet, D. Powell,
F. Scheerens, P. Thévenod-Fosse and H. Waeselynck,
2000, Composants logiciels et sûreté de
fonctionnement - Intégration de COTS, Hermès
Science Publications, Paris, 2000, 158 p.

Email Addresses
Manel Sghairi: manel.sghairi@airbus.com
Jean-Jacques Aubert: jean-jacques.aubert@airbus.com
Patrice Brot: patrice.brot@airbus.com
Agnan de Bonneval: agnan.debonneval@laas.fr
Yves Crouzet: yves.crouzet@laas.fr
Youssef Laarouchi: youssef.laarouchi@laas.fr

28th Digital Avionics Systems Conference
October 25-29, 2009

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 12:28 from IEEE Xplore. Restrictions apply.

