

Dual Core System-on-a-Chip Design to Support Inter-Satellite Communications

Christopher P. Bridges and Tanya Vladimirova

Surrey Space Centre

Department of Electronic Engineering

University of Surrey

Guildford, UK GU2 7XH

Email: {C.P.Bridges, T.Vladimirova}@surrey.ac.uk

Abstract

The next generation of satellites for distributed

satellite missions will exploit the latest computing and

wireless technologies for intersatellite connectivity. These

missions enable opportunities in multiple-point sensing,

greater communications capabilities and spacecraft

redundancy. Requirements for processing and network

capabilities have risen dramatically to meet strict needs

of the end user and overcome various space disturbances

and perturbations once in orbit. One such problem lies

with a ‘cluster’ of satellites that have been deployed from

the same launcher where they will be close together so

ad-hoc technologies allow satellite communication. This

paper addresses the hardware and software requirements

for distributed computing opportunities using

intersatellite connectivity. A system-on-a-chip design is

proposed; including a general purpose processor core

and a dedicated Java processing core to adapt and

reconfigure the topology using real-time software Agent

applications. This will make the network resilient to

various space perturbations and ensure mission longevity.

Integration of these two non-heterogeneous cores in a

picosatellite technology demonstrator testbed and

network topology reconfigurability procedures are also

outlined.

1. Introduction

Distributed satellite systems (DSS) aim at offering a

number of unique mission advantages including

redundancy, lower cost, flexibility, multi-point sensing

and greater communication capabilities [1, 2]. There are

many types of DSS including:

• Formation Flying where a very strict formation is

required to perform a mission, such as that found in

synthetic aperture radar (SAR);

• Clustering Missions where satellites are loosely

coupled around each other to perform a mission;

• Virtual Satellite Missions (also called fractionated

missions) where a satellite has its subsystems divided

onto multiple craft to perform a mission. E.g. one

craft for computing, one craft for imaging, etc.

But these advanced missions have some very

challenging functional requirements including attitude and

orbit control, intersatellite links and flexible on-board

computing.

A distributed satellite mission in low Earth orbit

(LEO) is considered where multiple very small satellites

are deployed at the same time in multiple planes and

orbits to form a cluster of satellites. These satellites can

then form an ad-hoc network for multiple-point sensing of

Earth’s atmosphere; analogous to a ‘wireless sensor

network’ (WSN) [3]. Like a WSN, there is typically one

communications link or ‘sink’ to an end user, in this case,

a groundstation. The need for a cluster of satellites here is

to ensure data can be recorded from multiple payloads at a

specific time at various non-specific local locations. An

example scenario is found in Fig. 1 and can be expanded

to include tens or even hundreds of satellites, as

envisioned by NASA’s ANTs Mission [4].

Figure 1. An example Cluster Scenario

Satellite drift along with other perturbations such as

Earth’s geophysical forces, variations in Earth’s

atmosphere and solar radiation pressure greatly affect the

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.62

191

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.62

191

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.62

191

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:13 from IEEE Xplore. Restrictions apply.

relative distances between the satellites and thus the

network’s connectivity and topology over time. When

initially deployed from the launcher the satellite network

will be close together with good connectivity. A ‘server’

satellite is typically predefined and other ‘client’ satellites

can connect to it. But over many orbits, perturbations will

affect the satellite network’s connectivity by their relative

distances and the network topology so that the server

satellite may not be the most central to the network. At

this point, connectivity to ground can be poor and

intermittent with large periods in a ‘disconnected’

environment. If the server satellite is no longer the optimal

central satellite or if the server satellite is damaged/

cannot perform its role, a new satellite or configuration is

needed. To solve this problem, a dual-core processor with

network reconfigurability functionality is proposed for

distributed computing operations.

The network and distributed computing data requirements

for the chosen cluster scenario can be summarized as

follows:

Node Level Functionality Requirements (individual

satellite level):

• Distributed computing platform

• Storing and forwarding of data using distributed

computing paradigms; including:

o ‘High Data’ or ‘High Priority’ Applications

using a Client/ Server paradigm – Payload data

through the network such as imaging data,

larger science payloads & data aggregation.

o ‘Low Data’ Applications using a Peer-to-Peer

(P2P) paradigm Telemetry, location and

velocity changes such as telemetry, “byte” size

payload data (GPS, science payload

measurements) & network management data.

Network Level Functionality Requirements (multiple

satellite level):

• Ad-hoc intersatellite networking capabilities for

initial formation.

• Adaptable and redundant ground-link

communication schemes, i.e. main ‘sink’ to ground.

• Proactive and reactive topology schemes to mobility.

The development of an effective space network will

also require other characteristics from mobile ad-hoc

networks (MANETs) including network mobility and

scalability.

The latest terrestrial distributed and networked

systems are now using Agent systems to cope with large

scale remotely located services and systems [5]. Relevant

Agents systems are included in groundstations to aid in

image signal processing [6] and on-board satellites for in-

situ autonomous behaviours [7]. Agents are a higher

abstraction of programming to deal with complex

computing problems. By executing behaviorally and

assigning an agent a ‘role’, communication interactions

and autonomous actions become easier to realize. This

allows them to work ‘proactively’ and ‘reactively’ to their

environment and to any given task. They can be proactive

when finding new communications routes in a networked

environment and reactive to disconnections, low

bandwidths or high latencies [8]. Unlike a typical

distributed computing platform that typically has fixed

network characteristics, agents could be employed to

overcome and discover their given network situation. On a

satellite, as few assumptions as possible should be made

for the connection reliability over inter-satellite links

(bandwidth, latencies, number of connections, etc). An

agent could be designed to discover these characteristics

and make the software and network operations more

reliable and robust.

In practical experiments, the Java Agent

DEvelopment framework and the Light Extensible Agent

Platform (JADE-LEAP) [9] is adopted to communicate

over an ad-hoc IEEE 802.11 wireless link using a number

of protocols over multiple laptops. JADE-LEAP is a Java

based Agent Development environment middleware for

embedded devices and other resources constrained

devices using wireless links to develop Agent systems and

novel application areas such as web or service orientated

computing. The JADE-LEAP platform is used here due to

its light-weight footprint, its conformity to the Foundation

of Intelligent and Physical Agents (FIPA) specifications

[10] and a large community of users.

Agent systems are written in Java, which is unsuited to

real-time mission-critical embedded systems due to

problems with large standard libraries, a slow and

undeterminable execution model, and dynamic class

loading execution times; to name a few reasons. However,

in recent years, improvements in library size and memory

technologies have enabled Java on mobile phones and

PDAs (without floating point support and other Java

functionalities). But these tools are still not real-time or

time predictable. To counter this problem, a deterministic

Java processor is targeted to run Agents for real-time

applications.

This paper, carried out under the ESPACENET

project [11], presents a system-on-a-chip (SoC) design

implemented in a field programmable gate array (FPGA)

comprising a general purpose processor and a specific

processor for real-time Java enabled computing; targeting

a picosatellite demonstration mission. Section 2 describes

the picosatellite demonstrator design. Section 3 presents

192192192

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:13 from IEEE Xplore. Restrictions apply.

the dual-core processor design. Section 4 discusses the

integration between the general purpose processor core

and dedicated Java processing core. Section 5 introduces

network topology reconfiguration issues. Section 6

concludes the paper.

2. Picosatellite Demonstrator Design

Embedded hardware technology is now available for

designing, building and launching picosatellites. This

project aims at using the standard picosatellite platform

CubeSat [12]. For fast prototyping, commercial-off-the-

shelf (COTS) components/boards are chosen, to develop a

technology demonstrator testbed. Parts used in the design

include:

• Flight OBC and satellite chassis from Pumpkin [13]

• Power module from Clyde-Space [14]

• SGR-05 GPS module from SSTL [15]

• MHX transceiver from Microhard Systems [16]

• PF5100 Virtex-4 FPGA FX60 Board for SoC [17]

• IEEE 802.11 PC/104 Board from Elcard [18]

Figure 2. CubeSat Platform with Flight Module, IEEE

802.11 Board and FPGA Board

The CubeSat platform is a 10 x 10 x 10 cm standard

bus structure weighing at 1 kg, which is compatible with

the PC104 format. The CubeSat bus also comes in double

(2U) and triple unit (3U) sizes to conform to the P-POD

deployment mechanism. The CubeSat Kit platform

provides a standard COTS solution to develop new

technologies. Research into all current CubeSat missions

shows that reliability and simplicity are key requirements

to ensure success, whilst having more complex systems as

separate payloads. This design follows trends to ensure

that our satellite can achieve multiple objectives: from

successful deployment, establishing communications and

turning on/ off experimental payloads. The current

demonstrator design can be seen in Fig. 2, with the Flight

Module, IEEE 802.11 PC/104 board and FPGA Board

attached on the left, for integration, and the structure on

the right, depicting the final satellite.

The picosatellite nodes must be computationally able

to run code on the satellite to optimize the network’s

ability to perform the mission (e.g. make decisions from

complex algorithms to decide which satellite has the

resources to communicate to ground) using intersatellite

links. This will require additional hardware such as CPU,

storage and RAM memory, along with added software

resources such as an operating system, distributed

computing environment and applications; all constrained

in the CubeSat dimensions.

For a ‘technology demonstration’ mission, the payload

design must include all the necessary components for the

complete distributed computing platform, with

communication capabilities, power systems and payloads.

To ensure reliability in space, a new COTS based satellite

bus architecture is proposed that treats the FPGA board,

the IEEE 802.11 communications board and a camera as

payloads, as shown in Fig. 3.

Figure 3. Demonstrator Satellite Architecture

This new COTS architecture is primarily controlled by

the Flight Module board (FM430 OBC) and uses the SoC

design to act as a hardware and software mediator for

differing payload modes in the mission. These differing

modes can include soft resets or various sleep modes but

also hard resets and on/off switching for varying duty

cycles in orbit. This will ensure that payloads can be

precisely controlled. Due to the COTS nature of the

design, the SoC board is also used to interface between

various buses such as I2C, SPI, PCI and Ethernet for this

demonstrator.

3. Dual-Core Processor Design

The proposed solution for this computing problem is a

dual-core system to provide node level and network level

functionality. The node level functionality is achieved

using the LEON3 processor [19]; a general purpose soft-

core processor from Gaisler Research which is a fully

193193193

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:13 from IEEE Xplore. Restrictions apply.

compliant SPARC V8 architecture with various

functionality through an extensive IP library. The LEON3

processor, adopted by ESA as the main CPU for future

on-board computers since the end of 2006 [20], is used for

typical processing and ‘number crunching’ capabilities

such as image compression. As previously described, to

accommodate an agent computing environment, a Java

Virtual Machine (JVM) or Java Runtime Environment

(JRE) is required to provide a heterogeneous platform on

which to realise a communication medium between

various platforms.

Figure 4. Overview of LEON3 and JOP Design

As ‘Just in Time’ (JIT) compilation at runtime is far

from time deterministic for embedded real-time critical

systems, this work also presents the use of an open-source

Java specific processor called Java Optimised Processor

(or JOP) [21] to enable real-time Java functionality on-

board satellite systems. JOP is chosen as it is the smallest

and fastest Java core to date. JOP is a RISC and stack

based architecture used to execute Java bytecodes using

microcode instructions. By utilizing JOP in an FPGA

along with the LEON3 processor, the benefits include

moving software to hardware (reducing the memory

footprint with increased FPGA utilisation and increased

speedup) and enabling Java applications, such as Agents,

for real-time applications. The system architecture can be

seen in Fig. 4 where JOP is integrated for a

communications co-processor with the LEON3 using the

AMBA bus.

3.1. Design Considerations

In the FPGA, there must be a memory sharing system

between the two cores for access to external RAM. To

reflect the multi-layered software design (see Fig. 5), a

clearly defined inter process communication (IPC) or bus

scheme is also required. In software, caches between the

two cores must retain coherency and in the event of a core

failure, the other must be able to act for a soft recovery or

even reconfigure in the event of a single effect upsets or

latch-ups (SEUs and SELs respectively) [3].

Figure 5. Hardware & Software Layer Design

The systems must have a low memory footprint (with

operating environment and network stack) and still be

real-time. A comparison of the memory footprint and

functionality which looks at previous solutions to this

problem can be found in Table 1, where there are three

options considered:

1. A CORBA Middleware based implementation [22];

2. The standard Java libraries and software runtime

used by PCs;

3. A new hardware/ software co-design where the

standard Java runtime is replaced by hardware with

CLDC and pjava.

Connection Limited Device configuration (CLDC)

[23] and PersonalJava (pjava) are designed for the devices

with intermittent network connections, slow processors

and limited memory such as mobile phones, two-way

pagers and PDAs – making them ideal to run in real-time

on the JOP processor. These devices require either 16-or

32-bit CPUs and a minimum of 128 KB to 512 KB of

RAM for the Java platform implementation and associated

applications. The full JRE 1.4 requires over 15 MB alone

and is a major deterrent for using Java on embedded

devices but dynamic class parsers are now available to

help minimize the application to a very small size. From

Table 1, it can be seen that the third option offers the

smallest memory footprint whilst retaining real-time

functionality. Here, pjava, CLDC 1.0, JADE-LEAP and

designed Agents has been reduced to 1.1 MB.

Table 1. Memory Footprint Comparison

OSI Software Layer Method Size

(MB)

Real-

time

1. Full Software using CORBA

(LEON3 + RTEMS, C++, ORB, 802.11

Driver, TCP/IP, Dyn. Lib.) [22]

1.739 Y

2. Full Software using Java

(LEON3 + RTEMS, JRE 1.4 Std. Lib,

CLDC 1.0)

>16.000 N

3. Hardware/ Software Co-Design

(LEON3 + JOP + pjava, CLDC 1.0 +

JADE-LEAP)

1.106 Y

GR-XC3C-1500 FPGA

LEON3 JOP

RTEMS

JADE-LEAP

CLDC + pjava

Agents

Applications Software Layers

3. Application

2. Network

1. Session

Hardware Layers

194194194

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:13 from IEEE Xplore. Restrictions apply.

3.2. Shared Memory and Caches

Multi-core system designs use shared memory for a

fast form of IPC between the cores. Once the memory has

been mapped, core synchronization is required between

the processes for storing or fetching data to and from

shared memory. The synchronization is implemented

using the open-source AMBA2 Bus from ARM [24]; and

more specifically, the Advanced High-Performance

(AHB) Bus. The AHB Bus acts as the backbone in many

SoC cores and is adopted here to provide connection

between the cores, on-chip memories and off-chip

external memory interfaces from various memory vendors.

The AHB Bus operates bus arbitration to AHB Masters

and Slaves where the core is first requested, addressed,

granted access, and locked for use before finally being

released to the arbiter.

The LEON3 system implements a standard data and

instruction cache but JOP implements a ‘stack’ cache for

data and ‘method’ cache for instructions which is

designed for real-time worst case execution time (WCET)

analysis. JOP’s unique design, a hardware implementation

of a JRE (at v 1.1) implements a simplified garbage

collection (GC) model using the Real-Time Specification

for Java [25] (RTSJ) which schedules a GC thread for

automatic memory management. JOP’s 512 KB cache size

was determined by a previous analysis of JRE 1.1 method

lengths being 98% < 512 KB [26]. The fault tolerant

version of LEON3 has a configurable cache and memory

system designed to be tolerable to SEUs or SELs in the

space environment with protected on-chip memories using

triple modular redundancy (TMR), parity checking or

duplication [27]. As an enhancement to JOP’s

functionality, the existing JRE must be upgraded to a

minimum of version 1.4 to run the JADE-LEAP Agent

environment. To achieve this, new methods of the CLDC

Stack have been added to JOP’s instruction set at a

simulation level to better support networking.

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

0 1000 2000 3000 4000 5000

Probe No. (at entry to JADE-LEAP Method)

R
A

M
 M

e
m

o
ry

 U
s

a
g

e
 (

K
B

)

Figure 6. JADE-LEAP Memory Usage under CDC-1.0

An analysis of JADE-LEAP methods was performed

to check the heap usage, specifically the DRAM allocated

for the application, to show that JADE-LEAP requires

between 750 KB to 2.1 MB of memory as shown in Fig.

6. As this memory size cannot be implemented on-chip,

off-chip solutions are required. The current SoC solution

can be seen in Fig. 7. where the cores implemented and

memories have been determined. The Virtex-4 FPGA

AHB

Arbiter
AMBA2 AHB Bus

LEON3 Core (AHB Master)

D & I Cache

RAM 8 KB

Register

544 B

Mem. Controller

(APB Slave)

10/100 Ethernet

(AHB Master)

SoC / FPGA

Solution
JOP Core (AHB Master)

Stack

Cache 1 KB

Method Cache

1 KB

Stack SRAM

256 B

Debug UART

(AHB Master)

Off-Chip Memory

256 MB

SDRAM

2 MB

ZBT RAM

8 MB

FLASH

Figure 7. System-on-Chip Block Diagram

JTAG Debug

(AHB Master)
AMBA2 APB Bus (Slave)

Generic UART

(APB Slave)

General Purpose

I/O (APB Slave)

195195195

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:13 from IEEE Xplore. Restrictions apply.

FX60 Board is targeted as it is used in the CubeSat

design. Distributing the caches and memory can have two

major benefits: 1) scaling the memory bandwidth and 2) a

reduction in access time to local memory. This method is

typically used to support larger processor counts such as

with multiple LEON3 or Network-on-Chip (NoC) designs.

This fully distributed shared memory approach will

require higher IPC bandwidth where higher latencies will

be found.

4. Dual-Core Processor Implementation

The advantage of using multiple cores on one

configurable device is that a mix of technologies can be

used, making the designs very versatile with differing

memory systems and IP Cores but with high time and

design costs. This is why the JOP core is integrated in

such a way that it can be added to the Gaisler IP Core

Library (or GRLIB) [28]. Integration thus far has included

the JOP processor as an AHB Bus Master wrapped for

interfacing purposes and connections to a reduced LEON3

with only necessary IP cores via the AHB Arbiter and

AHB Bus.

Integration Configuration: The implemented SoC

solution includes the following important cores

implemented in the design:

• LEON3 Central Processing Unit (CPU)

• AMBA Bus: AHB (high speed) & APB (peripheral)

• Debug Support Unit (DSU) & JTAG Debug UART

• JOP Wrapper

• ESA Memory Controller

The LEON3 is used as the main controller in the

FPGA. The AHB Bus provided high speed

communication between internal cores. The APB Bus

provides communication to external peripherals, such as

memory and other I/O. The DSU and debug UART

provide useful debugging information from the FPGA

device. The JOP wrapper has the main JOP core, an AHB

slave to communicate with the LEON3 processor and an

APB slave for memory and I/O communication. The

memory controller allows the synchronization between the

SoC signals and external components.

Timing Results: Current synthesis results give a

maximum frequency of 37.398 MHz, half the usual

operating frequency of LEON3 and JOP. Multiple AHB

clock signals (also called dynamic clock switching) can be

used to allow the processor to reach higher performance.

The three WCET signals were also found in paths

between:

1. LEON3 CPU and AMBA memory controller

(11.392 ns through logic, 22.032 ns through routing)

2. LEON3 CPU and JOP AHB Master interface (5.128

ns through logic, 10.773 ns through routing)

3. JOP Cache and JOP Bytecode Address (2.255 ns

through logic, 4.582 ns through routing)

This result highlights the need for optimizing for speed

rather than area to decrease the heavy routing latencies in

the design. A trade-off between the area and speed of the

SoC design is usually required to control the

communication systems. A system clock speed of 40 MHz

(periodic time of 25 ns), when compared to the IEEE

802.11 MAC schemes measured in milliseconds, will be

sufficient for on-board systems.

Table 2 presents the difference in on-chip logic cell

(LC) utilization between a full LEON3 (with FPU &

MMU), the JOP with an AHB interface and finally the

combined reduced LEON3 and JOP with AHB interfaces

(without FPU & MMU). By making the design application

specific, we can utilize and ensure power efficiency in

FPGAs.

Table 2. Summary of Integration Utilisation on GR-

XC3C-1500 FPGA Board

Component
LCs

Used

Full LEON3 CPU + AMBA Bus System 7546

JOP CPU + AMBA Interface 3252

Reduced LEON3 + JOP + AMBA Bus 8770

Memory Trade-off: There is a trade-off between on and

off chip memory, specifically between speed and power

requirements. SRAM although fast and on-chip will

increase power consumption and logic blocks or cells

required on the FPGA. DRAM will usually require an off-

chip device and is typically 100 times slower that SRAM

(not including bus arbitration latencies) but is a very dense

memory technology. Power consumption of the complete

dual-processor design and the current memory

configuration shown in Fig. 7 is estimated in Xilinx’s

XPower at 2.33 W with 1.76 W used in memory

interfacing. This, again, highlights the need for an

efficient memory system.

Future work includes reading/ writing to the AHB bus

from the JOP core, writing software for the LEON3 under

RTEMS to implement network reconfigurability and

testing the SoC design in the satellite cluster scenario

using a digital interface with a desktop computer to

emulate signals coming to and from the satellite.

196196196

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:13 from IEEE Xplore. Restrictions apply.

5. Network Topology Reconfiguration

Procedure

In this Section, a novel dual-core startup procedure is

presented to deal with situations that require a hard reset,

soft reset and network topology change. Fig. 9 shows an

overview of the flow in which hardware and software

resources are discovered so that network topology can be

best reconfigured by better capable satellites. The stages

are described below:

Stage 1: Startup FPGA Bus System & LEON3: Upon

startup, each AMBA core sends its ‘Plug & Play’ signals

to the AHB controller which then decodes the values and

generates the correct select signals. The LEON3 is started

where core identification and system memory along with

starting tasks (or other existing loads) can be discovered.

Stage 2: Startup JOP & JADE-LEAP: JOP loads the

main memory microcode from Flash and then the Boot()

method is invoked to start running Java programs. The

memory is then measured, GC is performed to clean the

cache and initialize internal data structures. Class methods

are then invoked and the Main() method is then invoked to

start the Java application with argument passing to

configure and optimize JADE-LEAP for satellite’s role in

the network topology and services.

Stage 3: Network Topology Refresh: To initialize,

check or change the network topology, an IPC scheme is

used that can soft-reset JADE-LEAP in differing

configurations with differing services. An Agent can

discover local data and identify services and existing

interfaces or functionalities that the satellite has to offer

the network. This discovery of local node level resources

is defined as the ‘Capability Function’ (CF). It describes

the relationship between total resources and current loads

with a multiplication factor ω associated to the property

and readings taken with regards to time t as follows:

)(5)(4

)(3)(2)(1

tCLtMR

tBPtPPtMEM
CF

×+×

×+×+×
=

ωω

ωωω
 (1)

where, MEM = Memory Available (RAM size), PP =

Processing Power, BP = Battery Power, MR = Mobility

Rating (a function of speed and acceleration), CL =

Computing Load (existing on the satellite).

The “usefulness” value of a satellite node obtained

from equation (1) can be used for a number of satellite

management applications. These include routing

applications, where only “useful” satellites are select when

routing high priority data, or for when topology

reconfiguration is required so that a “useful” and reliable

satellite is selected as the sink to ground.

6. Conclusions

The unique problem presented in this paper is to

overcome ‘disconnected’ and highly mobile space

requirements for distributed computing in satellite

networks for scenarios such as event monitoring, space

vehicle inspection and even deep space exploration. To

enable the latest Agent based distributed computing

systems, a new dual core SoC design is proposed for real-

time Java functionality on board the constrained

picosatellite CubeSat platform. With strict system

requirements of low memory footprint, Java functionality

and hard real-time operation, preliminary results of the

dual-core processor design are presented with general

purpose functions using the LEON3 IP core and Java

specific functions using the JOP IP core. An autonomous

1. LEON Argument Passing

Inputs

Sensors

LEON3 Info

Memory Usage

2. MainWrapper

Compute:

Capability Function

New Topology

Pass arguments:

1. Main Host

2. Backup Hosts

3. Services required

3. Start JADE Platform

Jade.Boot

Services

jade.core.Runtime beginContainer

jade.core.BaseService

jade.core.management.AgentManagement

jade.core.messaging.Messaging

jade.core.mobility.AgentMobility

jade.core.event.Notification

jade.core.messaging.MessagingService

clearCachedSlice

jade.core.AgentContainerImpl joinPlatform

Figure 9. Reconfigurable Network Topology Algorithm Overview

197197197

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:13 from IEEE Xplore. Restrictions apply.

Agent based network topology reconfigurability

procedure is also presented which takes into account the

current state of the satellite cluster at network level and

any local resources or loads at node level for future

distributed satellite management operations.

Acknowledgements

This work is carried out under the ‘ESPACENET Project’

funded by EPSRC (under grant EP/C546318/1).

References

[1] T. Vladimirova, X. Wu, K. Sidibeh, D. Barnhart and A. H.

Jallad, “Enabling Technologies for Distributed Picosatellite

Missions in LEO”, Proceedings of 1st NASA/ESA Conference

on Adaptive Hardware and Systems (AHS 2006), pp. 330-337,

IEEE Computer Society.

[2] D. J. Barnhart, T. Vladimirova, “Very-Small-Satellite

Design for Distributed Space Missions”, AIAA Journal of

Spacecraft and Rockets, Vol. 44, No. 6, November-December

2007.

[3] T. Vladimirova, X. Wu and C. P. Bridges, “Development of

a Satellite Sensor Network for Future Space Missions”,

Proceedings of IEEE Aerospace Conference 2008, Big Sky,

USA (IEEEAC’08).

[4] S. Curtis et al, “ANTS (Autonomous Nano Technology

Swarm): An Artificial Intelligence Approach To Asteroid Belt

Resource Exploration”, Proceedings of 51st International

Astronautical Congress, 2-6 Oct 2000 in Rio de Janeiro, Brazil.

[5] JADE Website, Applications and Business, Website,

http://jade.tilab.com/

[6] S. Chien et al, “The Techsat-21 Autonomous Space Science

Agent”, Proceedings of International Conference on

Autonomous Agents and Multiagent Systems (AAMAS’02), July

15-19, 2002, Bologna, Italy

[7] Lloyd Wood et al, “Saratoga: a Delay-Tolerant Networking

convergence layer with efficient link utilization”, Proceedings of

Third International Workshop on Satellite and Space

Communications, September 2007.

[8] C. P. Bridges and T. Vladimirova, “Autonomous

Software Agents in Wireless Embedded Systems”,

Proceedings of 3rd UK Embedded Forum

(UKEF'07), p. 167, April 2007, Durham, IET

[9] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, “JADE

White Paper”,

http://jade.tilab.com/papers/2003/WhitePaperJADEEXP.pdf

[10] Foundation for Physical Agents Specifications Website,

http://www.fipa.org/

[11] N. Haridas, E. Yang, A. T. Erdogan, T. Arslan, N. Barton,

A. J. Walton, J. S. Thompson, A. Stoica, T. Vladimirova, X.

Wu, K. D. McDonald-Maier, W. G. J. Howells. “ESPACENET:

A Joint Project for Evolvable and Reconfigurable Sensor

Networks with Application toAerospace–Based Monitoring and

Diagnostics”,Proceedings of 6th International Conference on

Recent Advances in Soft Computing (RASC2006), pp. 410-415.

[12] CubeSatKit, http://www.cubesatkit.com

[13] Pumpkin Inc, http://www.pumpkininc.com

[14] Clyde Space, http://www.clydespace.com

[15] SSTL, SSTL SGR-05 series space GPS receivers,

Datasheet,

http://www.sstl.co.uk/documents/Subsys_SGR05_HQ%5B1%5

D.pdf

[16] Microhard MHX-910, Datasheet,

http://www.data-connect.com/Microhard_MHX-910.htm

[17] PF5100 Virtex-4 FPGA FX60, Datasheet,

http://www.derivation.com/products/pf5100.html

[18] IEEE 802.11 PC/104 Board from Elcard, WIB250A67

Series PC/104+ 802.11ag WLAN Module, Datasheet,

http://www.elcard.fi/pdfs/DSWIB250A67-02.pdf

[19] Gaisler Research – Leon 3 Processor, Datasheet,

http://www.gaisler.com/doc/Leon3%20Grlib%20folder.pdf

[20] Andre-Louis Pouponnot, “High-performance LEON

microprocessor prototypes released for evaluation”, ESA, 30

June 2005, http://www.esa.int/techresources/ESTEC-Article-

fullArticle_par-29_1120038112963.html, Last Accessed:

2/5/2008

[21] M. Schoeberl, “A Java Processor Architecture for

Embedded Real-Time Systems”, Journal of Systems

Architecture (2007), Publish date unconfirmed,

http://www.jopdesign.com/doc/rtarch.pdf

[22] T. Vladimirova, X. Wu, A. H. Jallad and C. P. Bridges,

“Distributed Computing in Reconfigurable Picosatellite

Networks”, Proceedings of NASA/ ESA Conference on Adaptive

Hardware and Systems (AHS-2007), pp. 682 – 692

[23] Java ME Website Connected Limited Device Configuration

(CLDC), http://java.sun.com/products/cldc/

[24] “AMBA Specification Rev 2.0”, ARM Website.

[25] Real-time Java Specification Main Website,

http://www.rtsj.org/

[26] M. Schoeberl, “JOP Reference Handbook”, Section 5.1.2.

Method Types and Length, 2007,

http://www.jopdesign.com/doc/handbook.pdf

[27] J. Gaisler and S. Habinc, “FPGA Design Using the

LEON3 Fault Tolerant Processor Core”, in Proceedings of 8th

Military and Aerospace Programmable Logic Devices (MAPLD

‘05), 7-9 September 2005, Washington DC

[28] J.Gaisler, GRLIB IP Library User’s Manual, Datasheet,

http://gaisler.com/products/grlib/grip.pdf

198198198

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:13 from IEEE Xplore. Restrictions apply.

