
Exploiting Java Through Binary Translation for Low Power
Embedded Reconfigurable Systems

Antonio Carlos S. Beck, Victor F. Gomes, Luigi Carro
Universidade Federal do Rio Grande do Sul

Instituto de Informatica - Av. Bento Gon9alves, 9500
Campus do Vale - Porto Alegre, Brasil

{caco, vfgomes, carro}@inf.ufrgs.br

ABSTRACT
In this paper we present- a Binary Translation algorithm to detect,
completely at run-time, sequences of instructions to be executed
in a reconfigurable array, which in turn is coupled to an embedded
Java processor. By translating any sequence of operations into a
combinational circuit performing the same computation, one can
speed up the system and reduce energy consumption, at the
obvious price of extra area. We show what are the costs to
implement this translation algorithm in hardware, and what are the
performance and energy gains when using such technique.
Furthermore, we demonstrate that this translation algorithm is
particularly easy to be implemented in a stack machine, because
of its particular computational method. Algorithms used in the
embedded systems domain were accelerated 4.6 times in the
mean, while spending almost 11 times less energy.

Categories and Subject Descriptors
C. 1.3 [Processor Architectures]: Other Architecture Styles -
adaptable architectures

General Terms
Performance, Design

Keywords
Java, Reconfigurable Processors, Binary Translation, Power
Consumption

1. INTRODUCTION
The diffusion of embedded systems devices seems to be far

from ending. While new products like PDAs, smart cellular
phones and mp3 players keep arriving on the market, traditional
consumer electronics like televisions, VCRs and game consoles
are providing new capabilities [1]. Nevertheless, the continuous
growing demand for more functional, more portable and more
complex appliances also poses great challenges to the design of
embedded systems, since these systems must have enough
processing power to handle these tasks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific perrnission and/or a fee.
SBCCI'05, September 4-7, 2005, Florian6polis, Brazil.
Copyright 2005 ACM 1-59593-174-0/05/0009...$5.00.

In the same way, Java is becoming increasingly popular in
embedded environments. Recent surveys reveal that. Java is
present in devices such as consumer electronics (digital TV,
mobile phones, home networking) as well as industrial automation
(manufacturing controls, dedicated hand held devices). It is
estimated that more then 721 million devices will be shipping
with Java by this year [2]. Furthermore, it is predicted that 80% of
mobile phones will support Java by 2006 [3], but even today most
of the commercialized devices already provide support to the
language. This means that current design goals might include a
careful look on embedded Java architectures, and their
performance versus power tradeoffs must be taken into account.

Therefore, while still sustaining great performance, present
days embedded systems must also have low power dissipation and
support a huge software library to cope with stringent design
times. Consequently, there is a clear need for architectures that
can support all the software development effort currently required.

The reconfigurable fabric is one of these potential platforms,
and has been shown to speed up critical parts of several data
stream programs. By translating a sequence of operations into a
combinational circuit performing the same computation, one
could speed up the system and reduce energy consumption, at the
obvious price of extra area. Using a reconfigurable array, one is
able to have exactly this kind of hardware substitution.
Nevertheless, its wide spread use is still withhold by the need of
special tools and compilers, which clearly preclude software
portability. To handle these problems, recent works have already
proposed dynamic analysis of the code to reconfigure the array at
run-time [4][5]. However, in these approaches, just critical parts
of the software, like the most executed loops, with some
restrictions, can benefit from using the reconfigurable array.

On the other hand, in a previous work [6] we have already
shown the potential of a Java software compliant architecture
supporting a reconfigurable array. Coupling a coarse-grain array
with dynamic binary translation (BT) [7], which is used to detect
potential sequences of instructions at run time to be executed in
the array, we could significantly increase the performance of any
kind of software as well as reduce the energy consumption, not
being limited to just DSP-like or loop centered applications.

This is a very usefuil characteristic, since the amount of
parallelism during the execution of complex programs usually
varies [8]. Furthermore, even if one considers perfect conditions
and uses a large range of techniques such as trace scheduling,
branch prediction and loop unrolling, the parallelism is limited
[9]. With the BT mechanism we could assure software
compatibility in any level of the design cycle, without requiring

92

Authorized licensed use limited to: University of Florida. Downloaded on January 22, 2010 at 16:12 from IEEE Xplore. Restrictions apply.

any tools for the hardware/software partitioning or special
compilers, with high performance and low-power execution of
Java applications.

This work shows the details on how this binary translation
works, and reveals that such system can be easily implemented if
one considers the nature of stack machines such as the Java
architecture. Moreover, we evaluate the costs of this analysis and
present the area overhead, performance improvements and energy
consumption due to the use of this technique, for several real
world examples.

This paper is organized as follows. Section 2 discusses related
work in the field of dynamic binary translation for performance
improving. Section 3 presents the Java processor and the
reconfigurable array. Section 4 demonstrates details of the BT
algorithm and the advantages of using a Java processor as target
architecture. Section 5 presents the simulation environment and
the results regarding the use of this technique. Finally, the last
section draws conclusions and introduces future work.

2. RELATED WORK
The Binary Translation technique was first proposed for

translating at run-time the assembly code of an application (i.e. its
binary code) from an old (legacy) machine to an equivalent code
for a newer machine. However, new advantages were found in its
use. Although counterintuitive, BT has been used to achieve high
performance allied to low energy dissipation [10- 1]. One
approach consists in monitoring of the program binary execution,
detecting frequently executed software kemels and optimizing
them. Existing optimizations include dynamic recompilation and
caching of previous BT results.

Conceming recent BT examples, the HP Dynamo is based on
software that analyzes the application at runtime in order to find
the best parts of the software for the binary translation [10]. The
Transmeta Crusoe is based on a VLIW processor that uses binary
translation at runtime to better exploit the ILP of the application,
where the source machine is the x86 instruction set [11]. One of
the advantages of using this technique is that the partitioning
process is transparent, requiring no extra designer effort, and
causing no disruption to the standard tool flow.

Another technique for performance increasing is the use of
reconfigurable systems, implementing some parts of the software
in a hardware reconfigurable logic. Huge software speedups [12]
as well as a system energy reduction have been achieved [13].
Processors like Chimaera [14] and ConCISe [15], have a tightly
coupled reconfigurable array in the processor core, limited to
combinational logic. The array is, in fact, an additional functional
unit in the processor pipeline, sharing the same resources as the
other ones. This makes the control logic simpler, diminishing the
overhead required in the communication between the
reconfigurable array and the rest of the system. However, the use
of reconfigurable arrays is always limited to some kind of static
analysis of the code. This means that there is no total software
compatibility and special tools are needed in the design cycle.

In [4], Stitt, Lysecky and Vahid presented the first studies
about the benefits and feasibility of dynamic partitioning using
reconfigurable logic, combining these both techniques cited
before. In [5], a modified place and route algorithm is used,
supporting a larger range of benchmarks and requiring less
computation time and memory resources, with the same objective:
optimize the execution by dynamically moving critical software
kemels to configurable logic at runtime, a process called warp

processing. However, these works use a fine-grain array, which
brings a huge control overhead that increases the complexity of
dynamic detection, and also increases reconfiguration time, thus
requiring a large cache size to keep the array configurations. As a
consequence, this technique is limited to critical parts of the
software, as some loops.

On the other hand, we use a tightly coupled coarse grain
reconfigurable array, which has four main advantages: it allows a
quick reconfiguration; the huge power dissipation and control
overhead of a fine grain architecture is avoided; the overhead of
the communication between the system and the array is minimal,
consequently saving power; and finally, a relative small amount of
memory for keeping the configurations of the array is necessary.

Adding to this last advantage, the hardware to implement the
Binary Translation, used to detect at run-time the sequence of
instructions to be executed in the array in a Java processor,
becomes simpler, thanks to its stack machine nature, as we will
explain in details later. This two main characteristics, simple
combinational logic and small amount ofmemory required, allows
the construction of a machine to detect and optimize all sequences
of instructions at real time of a software executing in a Java
processor. As a consequence, one can explore every part of the
algorithm, even in those which do not present a high level of
parallelism, since this technique can explore vertical sequences of
instructions, which are not necessarily data independent. In order
to demonstrate that, we compare the processor coupled with the
reconfigurable array with VLIW versions with the same
instruction set.

Furthermore, using binary translation and Java, we ensure at
the same time software compatibility and no extra efforts or tools
at design time, which means that the underlying hardware can be
changed without the need for recompilation or to write a new
compiler.

3. JAVA ARCHITECTURES AND THE
RECONFIGURABLE ARRAY

The architecture used is a Java processor [16], which has a
five stages pipeline: instruction fetch, instruction decoding,
operand fetch, execution, and write back, as shown in figure 1.
One of the main characteristics of this architecture is the presence
of registers playing the role of operand stack and local variable
storage (used to keep values of the local variables of a method),
instead of using the main memory for this purpose, as done in
other published stack machines.

IF ID OF VEX WB
Figure 1. Pipelined Java Processor [161

The used reconfigurable array is tightly coupled to the
processor. It is implemented as an ordinary functional unit in the
execution stage, using the same approach as Chimaera, cited
before. The array is divided in blocks, called cells. The operand
block (a sequence of Java bytecodes) previously detected is fitted
in one ore more of these cells in the array. The cell can be
observed in Figure 2. The initial part of the cell is composed by
three functional units (ALU, shifter, ld/st). After the first part, six
identical parts follow in sequence. Each cell of the array has just

93

Authorized licensed use limited to: University of Florida. Downloaded on January 22, 2010 at 16:12 from IEEE Xplore. Restrictions apply.

one multiplier and takes exactly one processor cycle to complete
execution, being limited to its critical path, bringing no delay
overhead in the processor pipeline.

For each cell in the array, 327 reconfiguration bits are needed.
Consequently, if the array is formed by 3 cells, 971 bits in the
reconfiguration cache are necessary. To these reconfiguration bits
one must add 58 extra bits of additional information, such as how
many cycles the execution takes and what is the initial ROM
address that this sequence is located, totalizing 1029 bits for each
configuration of the array.

A separated unit is responsible for dynamic analysis (Binary
Translation) of the instructions in order to find the sequences that
can be executed in the array. This is done concurrently while the
main processor fetches valid instructions. When this unit realizes
that there is a certain number of instructions which are worth
being executed in the array, the configuration for this sequence is
saved in a reconfiguration cache. The next time this sequence is
found, the array will execute it instead of the normal execution in
the processor.

I
. MUJl'.

MuWiplier .,
- N x Basic

-4-SF., .. ._....

meaningful, since less access to program memory and less
iterations on the datapath are required.

The search for the sequence of instructions in the Java
program is done at the bytecode level, classifying sequence of
instructions that depend on each other in an operand block. The
detection operation to find these blocks is very simple: when the
stack pointer retums to the start address previously saved, an
operand block is found.

In the sequence of instructions, observed in figure 3a, the first
imul instruction will consume the operands pushed previously, by
the instructions bipush 10 and bipush 5. After that, the ishl
instruction will consume two more operands produced before by
the previous bipush. The iadd instruction will consume the results
of imul and ishl. Finally, the istore will save the result of the iadd
in the local variable pool. After that, there are two more bipush
instructions, which operands will be used by the last imul.
However, they do not use any result of the set of instruction
previously executed. In other words, their operand stacks are
independent, forming two operand blocks (Figure 3b). Hence,
their operation can occur in the reconfigurable array, and will be
saved in the reconfiguration cache (figure 3c).

When an operand block is found, a write command for the
reconfigurable cache is sent. This command saves the content of
the buffer to this cache. The content of the buffer is the list of the
decoded instructions of the operand block. This list is made in
real time, as the instructions are fetched from memory. When a
basic block limit is found, as well as the end of an operand block,
this buffer is cleaned waiting for a new operand block. The size of
the buffer is of 20 eight-bit registers long, since this number is
enough to keep each array configuration.

(

Figure 2. A cell of the reconfigurable array

For performance comparisons we have used a VLIW version
of the same Java processor [17], which is an extension of the
pipelined one. Basically it has its functional units and instruction
decoders replicated. The VLIW packet has a variable size,
avoiding unnecessary memory accesses and the search for ILP in
the Java program is done at the bytecode level.

4. THE BT ALGORITHM
By transforming any sequence of bytecodes into a single

combinational instruction in the array using BT, one can achieve
great gains. Although the delay for the reconfiguration might be
higher, if the sequence of instructions is going to be repeated a
certain number of times, performance and energy gains are

,ipush 10
Bipush 5
Imul I

ooBoipUsh 3
Bipush 4^

,9^ Ishl $-
ladd?
Istore Q

,Bipush 7

K IPmul $

Bipush 10
Bipush 5

Imul
Bipush 3
Bipush 4

Ishi
ladd
lstore

Bipush 6
Bipush 7

Imul

(k\

(Cobwation Reconflguration (

Operand 2
Block 1 3

I.-4

Figure 3. The process of building an operand block

Additionally, when an operand block is found, besides its list
of instructions, a Program Counter (PC) value must also be saved.
This is how the detector will know when a sequence of
instructions will be configured to execute in the array with the
configuration previously saved in the cache. The PCs are saved in
a bitmap list. This way, both write and read are fast, and as just
one bit for address is necessary, no large amounts of memory are
needed.

The organization of the reconfiguration cache is fully
associative, so any address can go to any place in the cache. In
this first approach, we are always considering that we have
enough space in the cache memory to save all configurations. In
the future, however, we can use traditional replacement cache
techniques to manage the cache.

As explained before, the detection can be done at run time.
The main advantage of the run-time analysis is that next time that
the sequence of instructions is detected it can already be executed
in the array. If this work was not done at real time, some cycles

94

Authorized licensed use limited to: University of Florida. Downloaded on January 22, 2010 at 16:12 from IEEE Xplore. Restrictions apply.

could be lost for the detection of sequences, and as consequence,
the sequence that is being processed could be executed again, and
it would not be configured in the array.

5. RESULTS
Our experiments are supported by simulation, where different

versions of the Java Processor execute algorithms used in the
domain of embedded systems, as presented before. The tool
utilized to provide data on the energy consumption, memory
usage and performance is a configurable compiled-code cycle-
accurate simulator [18].

Different types of algorithms were implemented and simulated
over the architectures described in Section 3, from simple ones to
a complex full MP3 player, as can be seen in Table 1. In the
IMDCT (Inverse Modified Discrete Cosine Transformation)
example we have also developed three unrolled versions, in order
to expose the parallelism. We also use a library to emulate sums
of floating point numbers, since the Java processors can be
configured without a floating point unit in order to save area. As a
more complex example, we have a complete MP3 player that
executes 4 frames of 40kbit, 22050Hz, joint stereo.

Initially, in Table 1 we evaluate the performance of all our
benchmark set in the Low Power architecture and in the different
versions of the VLIW version, and compare those to the Java
processor coupled to the reconfigurable array. As can be observed
in this table, for the VLIW processor better results are found when
unrolled versions are used (IMDCT ul, IMDCT u2 and IMDCT
u3). The reason for this is that there are less conditional branches,
which reduces the number of cycles lost because of braches miss
predictions, and mainly because there is more parallelism
exposed. On the other hand, algorithms like the floating point
sums emulation do not show performance improvements when the

number of instructions available per packet in the VLIW grows.
This occurs because there is no more parallelism available in the
application to be explored, so increasing the size of the VLIW
packet does not matter. In the same table, in the column
Reconfigurable Array, we show the greatest advantage of using an
array with BT to explore every part of the algorithm. Even in
algorithms that do not present a high level of parallelism to be
explored like the floating point sums emulation, or in the sort or
search ones, great gains are achieved. Furthermore, in algorithms
which show a good performance in the VLIW architecture
because of the high level of parallelism available, like the unrolled
versions of IMDCT, the array presents even better results. A good
example of how the array with BT can be better exploited is in the
sort family of algorithms. When we ran the versions that sort 100
elements, more array configurations are reused, bringing an even
better result with no area overhead (the number of different
reconfigurations and cells in the array do not increase). In the
second part of this table we present data concerning the
reconfigurable array coupled to the Java architecture. In the first
column of this second part we show how many different
configurations of the array were used more than once, or, in other
words, how many instruction sequences were saved to the cache
and were reused in the array. In the second column we
demonstrate the amount of reuse obtained for these sequences.
The next column shows the maximum number of cycles that were
necessary to reconfigure the different configurations of the array
from the cache. The forth column exhibits the maximum number
of cells that these sequences occupied in the array.

Table 1. Performance (number of cycles) of the architectures and data about the reconfigurable array

Number ofcycles Data about the array__

Algorithm Low- VLIW (instructions Rec. #dif #Seq #max #max

Power 2 erpacke 8 Array rec. reused rec. seq.
2 48 ~~~~~~~~~~~~~~~~~cells

Sin 7S Q599 SQ2 5R3 323 X 64 3 2
BubbleSort 10 2424 2013 1923 1923 712 7 177 3 4
SelectSort 10 1930 1689 1689 1689 532 8 182 3 3
QuickSort 10 1516 1246 1246 1246 496 13 132 3 2
BuubleSort 100 339797 268610 268610 268610 61541 7 22458 3 4
SelectSort 100 134090 127466 127533 127533 30700 8 15280 3 3
QuickSort 100 13239 10649 10649 10649 5007 13 2804 3 2
Binary Search 403 369 365 365 176 5 33 3 2
Seq. Search 1997 1776 1774 1774 658 2 253 3 2
IMDCT 40306 33128 33071 32994 9399 7 2407 4 10
IMDCTul 31500 18062 12191 9604 7624 16 825 4 10
IMDCT u2 30372 17329 11546 9114 6972 13 804 4 10
IMDCTu3 18858 11230 9838 7807 2852 7 745 3 4
F. Point Sums 14531 12475 12314 12296 6760 37 660 4 3
MP3 part I 242153 210818 200721 183818 103549 140 12317 5 4
MP3 part 2 109396 92735 92735 92735 65010 11 8138 3 3
MP3 part 3 64488 49346 49346 49346 45525 22 9190 3 2
MP3 part 4 41587 33860 34471 31436 22097 5 2876 4 3
MP3 part 5 35895 34405 15905 8959 9016 5 1212 3 3
MP3 part 6 159017 103441 73482 51124 36405 53 6005 7 11

95

Authorized licensed use limited to: University of Florida. Downloaded on January 22, 2010 at 16:12 from IEEE Xplore. Restrictions apply.

Rec.
Array
ROMC
Rec. =i

Array e
RAM

In Figure 4 we compare the energy consumption in the ROM
and RAM of the Low-Power version with and without the array
with the 4 instruction/packet VLIW version, since the values of
energy spent in RAM and ROM accesses in this architecture are
very similar to the 2 and 8 instructions/packet ones. Because of
space restrictions, we grouped the algorithms in categories. We
present the total sum of energy of all algorithms in each group.

OMP3

O F. Point Sums
. IMDCT
Search
lsort 100

sort -lO

R4M=~~~.VLW4~4 Z~ 2

Power -- .E _

ROM

Low- 1 1 1 1 ~~.Power~

RAM

0 5,00E+09 1 ,OOE+1 0 1 ,50E+1 0 2,00E+10 2,50E+10 3,OOE+10

CG

3,50E+1 0
Figure 4. Energy consumption in RAM and ROM of the Java

processor with and without the reconfigurable array

As can be observed, the array saves energy in ROM accesses,
since instructions that would be fetched from the memory are
executed in the array, because the dataflow equivalent of this
sequence is saved in the reconfiguration cache. In the same way,
power consumed in the RAM memory and in the register bank is
saved, because now there is a specific cache for loads of static
values and the bypass of operands inside the array. Regarding the
energy spent in the core, presented in Figure 5, even with the
increment of the additional logic of BT to detect the sequence and
the reconfiguration cache on it, there are still gains in terms of
energy consumption in some algorithms. Even with more power
being consumed by the additional cache, savings are achieved
from the great number of instructions that would normally use all
five processor pipeline stages and its sequential logic, and are now
being executed in the array.

-1 F- -T -

consumption in all algorithms, proving the effectiveness of the
proposed technique.

W8 Il llI

_~~~~~~~~~~~~~~F PonIS.umIs

. IMDCT

Search

wer
Sort 100E s | f 1CG

O,OOE+00 2,OOE+10 4,OOE+10 6,OOE+10 8,00E+10 1,00E+11 1,20E+11
Figure 6. Total energy consumption of the architectures

Table 2 shows the area occupied by the Low Power and
VLIW versions of our Java processors, and the area occupied by
the Low-Power version with different configurations of the
reconfigurable array (the maximum number of reconfigurations
allowed versus the total number of cells available in the array).
Table 2 also shows the cache and the BT logic responsible for the
detection of the sequences of instructions and to make the
reconfiguration. As can be observed in this table 3, the
reconfigurable array, when coupled to the Java processor, even in
its simpler version, brings area overhead when compared to the 8
instructions/packet VLIW architecture. However, this was

expected, since reconfigurable arrays are very area-intensive due
to their great number of functional units. The area was evaluated
using Leonardo Spectrum for Windows [19]. The area taken by
the processors was computed in number of gates, after synthesis
of the VHDL versions of these processors.

Table 2. Area occupied by the architectures
Processor Low-Power VLIW

(instructions per packet)
2 4 8

Area 131215 213850 367675 675395

Ii

IOMP3
F. Paint Sums
IMDCT

| Search
O Sort - 100 CG
I* Sort 10

0 5,OOE+08 1,OOE+09 1,50E+09 2,OOE+09 2,50E+09 3,OOE+09
Figure 5. Energy spent in the cores by the different

architectures
Finally, in Figure 6, we show the total energy consumption of

the system considering the RAM, ROM, the core and the
additional logic that makes the dynamic code analysis. It is
important to note that great gains were achieved in energy

Table 3. Area occupied by the Java processor and the array
logic

l/s 2 3 4 7 10

5 723141 960049 1196957 1907680 2618403
10 1005681 1372351 1739021 2839031 3939040
15 1288222 1784654 2281086 3770382 5259678
20 1570762 2196956 2823150 4701733 6580315

40 1186286
2700923 3846166 4991408 8427137 5

Huge energy savings are achieved when compared to any
architecture (almost 11 times less energy against the low-power
version), and there are meaningful performance gains even when

96

Rec.
Armyr

VLIW4

Low-

Power ._ _ ---i------ --
I T I'

.: riSS s;; l;

I_
---- --.I

.-I
.. .- ""

.- - -- -

---- ----- - ---- ---

Authorized licensed use limited to: University of Florida. Downloaded on January 22, 2010 at 16:12 from IEEE Xplore. Restrictions apply.

comparing to the 8 instructions/packet VLIW version (2.77 times
faster in the mean).

6. CONCLUSIONS AND FUTURE WORK
We showed in this paper the costs of implementing binary

translation to work with a coarse-grain array in a native Java
processor in order to boost performance and reduce energy
consumption. The use of such technique is totally transparent for
the software designer, since the search of the potential sequence
of instructions is done at run-time. Furthermore, we demonstrated
that there is no need for huge available parallelism in the
application, such as it is in VLIW and superscalar architectures, to
achieve good results. Moreover, the implementation of this
technique in a Java processor shows great advantages because of
the specific stack-like architecture.

For future work, more algorithms conceming the embedded
system domain and optimizations aimed at the reconfigurable
arrays will be evaluated. Furthermore, starting a Chip-
Multiprocessing approach, we will use another Java processor for
the analysis of instructions instead of a dedicated hardware, and
we will evaluate the costs and real-time constraints of using such
technique.

7. REFERENCES
[1] Nokia N-GAGE Home Page, available at http://www.n-

gage.com

[2] Takahashi, D. Java Chips Make a Comeback. In Red
Herring, 2001

[3] Lawton, G. Moving Java into Mobile Phones. In Computer,
vol. 35, n. 6, 2002, 17-20

[4] Stitt, G., Lysecky, R., Vahid, F., "Dynamic
Hardware/Software Partitioning: A First Approach". In
Design Automation Conference (DAC), 2003

[5] Lysecky, R., Vahid, F., "A Configurable Logic Architecture
for Dynamic Hardware/Software Partitioning". In Design
Automation And Test in Europe Conference (DATE), 2004

[6] Gschwind, M., Altman, E., Sathaye, P., Ledak, Appenzeller,
D., "Dynamic and Transparent Binary Translation". In IEEE
Computer, vol. 3 n. 33, 2000, 54-59

[7] Beck, A. C. S.., Carro, L. "Dynamic Reconfiguration with
Binary Translation: Breaking the ILP Barrier with Software
Compatibility". In Design Automation Conference (DAC),
2005

[8] Bingxiong Xu, Albonesi, D., "Runtime Reconfiguration
Techniques for Efficient General-Purpose Computation". In
Design & Test ofComputers, vol. 17, n. 1, Jan.-Mar. 2000,
42 - 52

[9] Wall, D. W. "Limits of Instruction-Level Parallelism". In
Proceedings ofthe Fourth International Conference on
Architectural Supportfor Programming Languages and
Operating Systems, 1991, 176 - 189

[10] Bala, V., Duesterwald, E., Banerjia, S., "Dynamo: A
Transparent Dynamic Optimization System". In Conf: on
Programming Language Design and Implementation, 2000

[11] Klaiber, A., "The Technology Behind Crusoe Processors". In
Transmeta Corporation White Paper, 2000.

[12] Gupta, R. K., Micheli, G. D., "Hardware-software co-
synthesis for digital systems". In IEEE Design and Test of
Computers, Vol. 10, N. 3, 1993, 29-41.

[13] Stitt, G., Vahid F., "The Energy Advantages of
Microprocessor Platforms with On-Chip Configurable
Logic". In IEEE Design and Test ofComputers (2002)

[14] Hauck, S., Fry, T., Hosler, M., Kao, J., "The Chimaera
reconfigurable functional unit". In Proc. IEEE Symp. FPGAs
for Custom Computing Machines, Napa Valley, CA, 1997,
87-96.

[15] Kastrup, B., Bink, A., Hoogerbrugge, J., "ConCISe: a
compiler-driven CPLD-based instruction set accelerator". In
Proc. 7th Annu. IEEE Symp Field-Programmable Custom
Computing Machines, Napa Valley, CA, 1999, 92-100.

[16] Beck, A.C.S., Carro, L. Low Power Java Processor for
Embedded Applications. In: IFIP 12th Intemational
Conference on Very Large Scale Integration, Germany,
December (2003)

[17] Beck, A.C.S., Carro, L. "A VLIW Low Power Java
Processor for Embedded Applications". In 17th Brazilian
Symp. Integrated Circuit Design (SBCCI 2004), Sep. 2004

[18] Beck, A.C.S., Mattos, J.C.B., Wagner, F.R., Carro, L.
CACO-PS: A General Purpose Cycle-Accurate Configurable
Power-Simulator. In 16th Brazilian Symp. Integrated Circuit
Design (SBCCI 2003), Sep. 2003

[19] Leonardo Spectrum, available at homepage:
http://www.mentor.com/synthesis

97
Authorized licensed use limited to: University of Florida. Downloaded on January 22, 2010 at 16:12 from IEEE Xplore. Restrictions apply.

