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Abstract—123 With the ever-increasing demand for higher 
bandwidth and processing capacity of today’s space 
exploration, space science, and defense missions, the ability 
to efficiently apply commercial-off-the-shelf (COTS) 
processors for on-board computing is now a critical need.  
In response to this need, NASA’s New Millennium Program 
office has commissioned the development of Dependable 
Multiprocessor (DM) technology for use in payload and 
robotic missions. The Dependable Multiprocessor 
technology is a COTS-based, power-efficient, high-
performance, highly dependable, fault-tolerant cluster 
computer. To date, Honeywell has successfully 
demonstrated a TRL4 prototype of the Dependable 
Multiprocessor [1], and is now working on the development 
of a TRL5 prototype. For the present effort Honeywell has 
teamed up with the University of Florida via its High- 
performance Computing and Simulation (HCS) Research 
Laboratory, and together the team has demonstrated major 
elements of the Dependable Multiprocessor TRL5 system. 
This paper provides a detailed description of the basic 
Dependable Multiprocessor technology, and the TRL5 
technology prototype currently under development. 
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1. Introduction 
 
NASA has a long and relatively productive history of space 
exploration as exemplified by recent rover missions to Mars. 

                                                 
1 0-7803-9546-8/06/$20.00© 2006 IEEE; This paper has not been 
published elsewhere and is offered for exclusive publication except that 
Honeywell reserves the  right to reproduce the material in whole or in part 
for its own use and, where Honeywell is obligated by contract. 
2 Paper 1511 
3 The project formerly was known as the Environmentally-Adaptive Fault-
Tolerant Computing (EAFTC) project. 

Traditionally, space exploration missions have essentially 
been remote-control platforms with all major decisions 
made by operators located in control centers on Earth.  The 
onboard computers in these remote systems have contained 
minimal functionality, partially in order to satisfy design 
size and power constraints, but also to minimize complexity 
as a means of coping with high-dependability requirements. 
Hence, these traditional space computers have been capable 
of doing little more than executing small sets of real-time 
spacecraft control procedures, with little or no processing 
bandwidth left over for instrument data processing. This 
approach has worked reasonably well until now, as 
instruments have consisted of low-complexity imagers, with 
compressible output streams transmittable to ground stations 
for post-processing knowledge extraction. As the 
capabilities of instruments on exploration platforms 
increase, more processing and autonomy will be necessary 
onboard to fully exploit their vast output data streams [2]. 
Autonomous spacecraft will further increase knowledge 
returns through opportunistic explorations conducted 
outside the Earth-bound operator control loop.  In response, 
NASA has initiated several projects to develop technologies 
that address the onboard processing gap.  One such program 
is the NASA New Millennium Program’s ST8 Project [3]. 
 
The vision of the New Millennium Program’s Dependable 
Multiprocessor experiment is to migrate COTS-based 
computers to space, thereby enabling new classes of science 
[4].  In support of this vision, the Honeywell and University 
of Florida team is developing the Dependable 
Multiprocessor (DM) technology.  This technology 
combines a set of innovative solutions to enable efficient 
use of high-performance COTS processors in the harsh 
space environment, while maintaining the required system 
reliability and availability.  Dependable Multiprocessor is a 
sophisticated technology composed of four chief 
components [5]. 
 
First, Dependable Multiprocessor is an architecture and 
methodology enabling the use, in space, of COTS-based, 
high-performance, scalable, multi-computer systems. A 
distinguishing feature of the architecture, critical to 
achieving high performance and efficiency, is the use of 
reconfigurable FPGA co-processors. Furthermore, through 



 

 
Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006  

 

2

accommodation for upgrades to future COTS parts, the 
Dependable Multiprocessor architecture can evolve along 
side commercial technologies thereby ensuring its longevity. 
 
Second, Dependable Multiprocessor is a parallel processing 
environment for science codes that incorporates an 
application development and runtime environment familiar 
to science application developers. By adopting these 
standard environments, the Dependable Multiprocessor can 
significantly reduce the cost and schedule associated with 
porting of applications from the laboratory to the spacecraft 
payload data processor. 
 
Third, Dependable Multiprocessor is a set of algorithms for 
system and fault tolerance management. These algorithms 
allow systems to dynamically manage resources in response 
to environment, application criticality, and system mode, in 
order to maintain mission required dependability and 
maximal system efficiency. 
 
Lastly, Dependable Multiprocessor is a methodology and 
associated tools that allow developers of Dependable 
Multiprocessor systems to predict their implementation’s 
behavior in the target environment, including: predictions of 
availability, dependability, fault rates/types, and system-
level performance. 

2. RELATED WORK 

Dependable Multiprocessor builds on earlier projects at JPL, 
Honeywell and Raytheon, which were sponsored by NASA, 
DARPA, and USAF. 
 
The Advanced Onboard Signal Processor (AOSP), 
developed by Raytheon Corporation, for the USAF in the 
late 70s and mid 80s made significant breakthroughs in 
understanding the effects of natural and man-made radiation 
on computing systems and components and in developing 
architectural, hardware, and software techniques for 
detection, isolation, and mitigation of these effects.  AOSP, 
though never flown, was instrumental in developing the 
fundamental concepts, modeling, and testing techniques 
behind much of the current work in fault-tolerant, high-
performance distributed computing.  
 
Advanced Architecture Onboard Processor (AAOP), a 
follow-on effort to AOSP, also developed at Raytheon 
Corporation, engineered alternative concepts and new 
approaches to spacecraft onboard data processing. The 
AAOP architecture found its way into both commercial and 
military platforms, but was never commercialized or 
popularized as it was, in large measure, overkill for most 
applications. 
 
The DARPA-sponsored Space Touchstone computer, 
developed at Honeywell, was ground-breaking in its goal of 
using COTS components and a COTS system architecture in 

high-performance, highly reliable, airborne and spaceborne 
computing. 
 
NASA’s Remote Exploration and Experimentation (REE) 
project [6], at JPL, extended fault-tolerant computing to the 
world of parallel and cluster processing. Among other 
advances, REE addressed, in a general manner, the issue of 
low cost and tailored fault tolerance. The REE project 
developed fault-tolerant middleware for cluster computers, 
methods and tools for test and characterization of 
components and systems, and Software-Implemented Fault 
Tolerance (SIFT) techniques and libraries. The project led to 
fundamental concepts upon which to develop fault-tolerant, 
high-performance parallel processing and, more specifically, 
fault-tolerant, low-cost, high-performance, power-ratio, 
embedded clusters. 

3. OVERALL SYSTEM ARCHITECTURE 

Figure 1 depicts the Dependable Multiprocessor hardware 
architecture, which is based upon Honeywell’s Integrated 
Payload concept [7]. The Dependable Multiprocessor is 
essentially a reconfigurable cluster computer with 
centralized control.  The essential hardware elements of the 
system are a redundant radiation-hardened System 
Controller, a cluster of COTS-based reconfigurable Data 
Processors, redundant COTS-based Packet Switched 
networks, and a radiation-hardened Mass Data Store. 
Additional peripherals or custom modules may be added to 
the network to extend the system’s capability; however, 
these peripherals are outside of the scope of the base 
architecture.  To increase system reliability it is possible to 
employ redundancy of the System Controller and network 
as depicted in the block diagram.  Likewise, N-of-M sparing 
of Data Processors may be used for added reliability. 
Redundancy, however, may not be affordable or necessary 
for all missions, and therefore it is not a required 
architectural element. Command and Telemetry is 
exchanged directly between the active System Controller 
and the Spacecraft Control Computer via direct 1553 
spacecraft interfaces.  The primary dataflow in the system is 
from instrument to Mass Data Store, through the cluster, 
back to the Mass Data Store, and finally to the ground via 
the spacecraft’s Communication Subsystem.  
 
The primary mechanism for hardware scalability provided 
by the architecture is the number of Data Processors inserted 
into the network. First adopters are expected to need up to 
30 nodes in their clusters, a node count that is well within 
the capabilities of Gigabit Ethernet for selected applications. 
Alternative approaches to scalability include forming a 
cluster-of-clusters. This alternative may be more suitable for 
eventual product development, since standard cluster 
configurations can be developed as fully integrated 
products, and later combined to form a larger machine as 
required by a particular mission. 
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Figure 1. System Hardware Architecture of the Dependable Multiprocessor. 
 
3.1. System Controller 

All central control software for the cluster executes on the 
System Controller node.  Due to the critical nature of 
centralized control we have selected the Honeywell 
Radiation-Hardened PPC (RHPPC) Single-Board Computer 
(SBC) for implementation of the System Controller.  By 
implementing the System Controller in highly reliable and 
radiation-hardened electronics, we reduce the likelihood of 
experiencing major system control faults due to single-event 
upsets (SEUs). The RHPCC SBC is based upon the 
Motorola PowerPC 603e microprocessor technology; its key 
features are summarized in Table 1 [8]. 
 
3.2. Data Processors and FPGAs 

The core processing elements of the cluster are the Data 
Processors. As depicted in Figure 2, the Data Processor’s 
architecture is similar to a standard SBC, with the exception 
of the FPGA co-processing element. In support of our 
COTS goal, the Data Processor employs a COTS IBM 
PowerPC 750FX microprocessor [9], a Xilinx VirtexII 6000 
FPGA co-processor [10], and their associated standard 
support chips (e.g., COTS bridge, and I/O chips, clocks, and 
memories). 
 
The reconfigurable FPGA co-processor is a key to achieving 
high-performance and efficiency in the cluster.  The FPGA 
provides a capability for implementing algorithms directly 
in hardware, thereby exploiting algorithmic parallelism. 
This approach typically results in speedup of 10-to-100x 
with significant reductions in power [11]. Additionally, 

FPGAs make the cluster a highly flexible platform, allowing 
on-demand configuration of hardware. Via FPGA 
reconfiguration, the Data Processor can support a variety of 
application-specific modules such as digital signal 
processing (DSP) cores, data compression, and vector 
processors.  This overall flexibility allows application 
designers to adapt the cluster hardware for a variety of 
mission-level requirements. For DSP and other algorithm-
intensive applications, greater efficiency and performance 
may be achieved by using custom hardware modules in the 
FPGAs. Then again, for applications that are logic-
intensive, microprocessors are more suitable targets.  Some 
key features of the Data Processor are listed in Table 2. 
 

Table 1. Key Features of the RHPPC SBC  
 

3.3V and 5.0 V Power 
RHPPC delivering 100 MIPS 
Peripheral Enhancement Component support chip 
4MB EEPROM with Single Error Correction and Double 
Error Detection 
512KB EEPROM 
128 MB DRAM with SuperEDAC 
6U x 220mm Euro Card Form Factor 
Max Power Draw 15W 
Mass >3lbs 
Redundant 1553 (interface to spacecraft computer) 
32-bit 33MHz PCI (interface to cluster and MIB 
electronics) 
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Figure 2. Hardware Architecture of the Data Processor. 
 
 

Table 2. Key Features of the Data Processor  
 

COTS Based 
750 fx @ 650 MHz Delivering 1300 MIPS 
VirtexII 6000 FPGA co-processor 
PCI 32-bit 33 MHz 
Gigabit Ethernet  
1 GB DRAM with ECC 
12MB EEPROM with SECDED EDAC 
256 MB Flash 
JTAG test interface 
UART interface for development 
6U x 220 mm Euro Card Form Factor 
Mass <3 lbs 
Max Power Draw 20W 

 
3.3. Network Interconnect 

Gigabit Ethernet (GigE) [12] is the prevalent networking 
system for cluster architectures.  GigE is a low-cost packet 
switched network that offers bandwidths up to 1 Gb/s. 
Additionally, GigE has a promising growth path to 10 GigE, 
a new standard that will support bandwidths up to 10 Gb/s. 
GigE offers many network topology options allowing 
system-level architectural optimization. Furthermore, many 
COTS microprocessors and peripherals include GigE 
network interfaces, allowing for direct connection to a GigE 
network without additional hardware. 
 
In the Dependable Multiprocessor, GigE is the data 
exchange medium. Sideband, low-bandwidth, low-latency 
buses can be used for control. This method allows for 
optimization of the GigE network to address the high 

throughput needs of the parallel-processing science 
applications. 
 
3.4. Mission Interface 

The last hardware element of the system that we will discuss 
herein is the Mission Interface.  In general terms, the 
Mission Interface is the clusters port to the instruments and 
communication system.  Its functions include providing the 
primary cluster data input/output interface, and isolating the 
cluster from other spacecraft subsystems.  As with the 
System Controller, the Mission Interface should be 
radiation-hardened. This approach minimizes the likelihood 
that data will be corrupted by faults, ensuring reliable input 
and output of data from the system.  By making the Mission 
Interface an independent cluster component we reduce the 
impact of porting the cluster computer to new instruments, 
communication systems, and missions. 
 
3.5. TRL5 Testbed Architecture 

The focus of the current project phase is the development of 
a TRL5 system prototype, including hardware and software. 
As depicted in Figure 3, the TRL5 prototype hardware 
consists of a cluster computer, a development workstation, 
reset controller, and power supply. 
 
The cluster computer is implemented using seven Orion 
Technologies Inc CPC7510 SBCs in a CompactPCI chassis 
interconnected over redundant Gigabit Ethernet switches 
[13].  Four of the SBCs are configured as Data Processors, 
two as redundant System Controllers, and one as a Mass 
Data Store. 
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Figure 3. System Configuration of the TRL5 Prototype Testbed. 

 
The CPC7510 is a hot swappable, high-performance, IBM 
750fx PowerPC SBC designed for high-availability 
applications. The CPC7510 is extremely versatile with two 
PMC slots, variable operating frequencies between 650 
MHz and 1 GHz, and support for chassis controller or 
peripheral slot placement. Other key features of the 
CPC7510 are summarized in Table 3. 
 
As a System Controller in our testbed, the CPC7510 has 
been outfitted, via the PMC, with a third Ethernet Network 
Interface for experimental control interfacing from the 
development workstation.  As a Data Processor, the 
standard CPC7510 includes an ADM-XRC-II PMC. The 
ADM-XRC-II is a high-performance FPGA co-processing 
PMC from Alpha Data Parallel Systems [14], and is 
representative of the flight FPGA co-processor.  The final 
configuration of the CPC7510 includes a hard drive PMC to 
emulate the storage capacity of a Mass Data Store. 
 

Table 3. Key Features of the CPC7510  
 

Orion Technologies (OTI) Linux Kernel 
PowerPC 750FX v2.3 @ 600MHz 
64/32 bit Sentinel64 universal-mode PCI-to-PCI bridge 
Marvell Discovery II (MV64360) system controller 
133MHz front side host interface 
128 MB high-speed DDR SDRAM 
Dual Gigabit Ethernet interfaces 
Dual PMC slots (64-bit 133MHz, 32-bit 66MHz) 
Dual serial RS-232 interfaces 
6U x 220 mm Euro Card Form Factor 

Software development, experiment control, instrumentation 
data collection, and Spacecraft Control Computer emulation 
are achieved with the development workstation. The 
development workstation is a standard Dell PC configured 
with a 3 GHz Xeon CPU running the Fedora Core 4 Linux 
OS. The basic configuration has been altered to include 
support for 8 serial ports using an Axxon Serial Port Mux 8 
I/O board, and expanded the network interface count from 
one to three GigE ports with an Intel Dual Gigabit Ethernet 
NIC. 
 
Additional elements of the testbed include a software-
controlled, instrumented power supply, which is used to 
take detail measurements of power usage, and a reset 
control device, integrated by Tandel Systems, which 
provides the ability for the software on either the 
development workstation or the active System Controller to 
reset each node in the system individually. 
 

4. MIDDLEWARE ARCHITECTURE 

A top-level overview of the Dependable Multiprocessor 
software architecture is illustrated in Figure 4.  The system 
is composed of three primary layers: mission layer, 
middleware layer, and platform layer. A key feature of this 
architecture is the integration of generic software fault-
tolerant techniques implemented in the middleware 
framework. The Dependable Multiprocessor framework is 
independent of and transparent to the specific mission 
application, and independent of and transparent to the 
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underlying platform.  This transparency is achieved at the 
interface to the mission layer through well-defined, high-
level, Application Programming Interfaces (APIs), and at 
the platform layer through a System Abstraction Layer 
(SAL) which isolates the middleware from the underlying 
platform. This isolation and encapsulation makes the 
middleware services available to future mission applications 
by facilitating its porting to new platforms. 

The lowest layer of the system is the platform layer, which 
includes a COTS operating system, hardware-specific 
software such as network drivers, and the hardware 

elements.  The basic platform software is implemented 
using MontaVista’s version of the Linux Operating System, 
and is common to all of the processors in the cluster.  Other 
Operating Systems may also be used, but Linux facilitates 
leverage of many existing software tools.  The central 
component of the system is the middleware layer, which 
contains the essential Dependable Multiprocessor system 
services that provide the fault tolerance, job management, 
and other applications services detailed in the following 
sections. 

 

Network and sideband signals

System Controller Data Processor with FPGA Co-Processor

Linux OS, and Drivers Linux OS, and Drivers

DMS, CMS, and AMS DMS, CMS, and AMS

JM FTM

JM – Job Manager
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Figure 4. System Software Architecture of the Dependable Multiprocessor. 

4.1. High-Availability Middleware 

The High-Availability (HA) Middleware, the foundation 
component for the Dependable Multiprocessor Middleware, 
is composed of numerous services. For Dependable 
Multiprocessor, we focus on Availability Management, 
Distributed Messaging, and Cluster Management.  In the 
Dependable Multiprocessor design, the functionality of 
these basic elements is extended and augmented by system-
specific components to be covered in subsequent sections of 
this paper.  The primary functions of the HA Middleware 
are resource monitoring, fault detection, fault diagnosis, 
fault recovery, fault reporting, cluster configuration, event 
logging, and distributed messaging. High Availability is 
based on a small, reliable, cross-platform kernel that 
provides the foundation for all standard services, and its 
extensions.  The kernel also provides a portability layer 
limiting user dependencies on the underlying operating 
system and hardware. 
Availability Management Service (AMS) provides the core 
availability management framework and is hosted on the 

cluster computer’s System Controller.  Managed AMS 
resources can include applications, operating system, 
chassis, I/O cards, redundant CPUs, networks, peripherals, 
clusters, and other middleware. These system resources and 
their relationships are abstractly represented in AMS and 
shared with the Fault-Tolerance Manager, which in turn 
uses it to assess the system’s health. 
 
The Distributed Messaging Service (DMS) is a vital service 
offered by the HA Middleware.  Its function is to provide a 
reliable messaging layer for communications in the 
Dependable Multiprocessor cluster.  Distributed messaging 
is designed to address the need for intra- and inter-process 
communications between system elements for numerous 
application needs such as checkpointing, client/server 
communications, event notification, fault management, and 
time-critical communications.  The messaging service 
provides an effective and uniform way for distributed 
messaging components to efficiently communicate and 
coordinate their activities. 
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Communication using DMS begins when an application 
opens a DMS connection creating a path between interested 
subscribers to the data. When an application opens a 
connection, it specifies a desired channel allowing DMS to 
segment connections into smaller logical networks. The 
application can then transmit a message to the registered 
subscribers on that channel. Instead of managing 
communications within a network at the lower socket and 
address level that requires the developer to build headers, 
DMS enables application developers to group similar 
information together into logical classifications. This 
approach is unlike sockets for which APIs must be provided 
with the exact IP addresses and ports for all communicating 
machines.  By contrast, by classifying messages into 
families and types, DMS can route data to intended 
destinations without having to explicitly address each 
message. Machines “register” to receive messages of 
specific families and types, and on specific channels, so the 
sending machine does not need to know the destination.  
This architecture also facilitates the implementation of 
network failover that is transparent to the application.  DMS 
identifies, classifies, and manages the addresses in order to 
streamline message delivery.  The message publisher can 
select between two types of connections, standard or direct. 
These connections can be to another application, an 
extension, or a server pool. 
 
The Cluster Management Service (CMS) interacts with, and 
is dependent upon, other HA Middleware services.  CMS 
manages the physical nodes or instances of HA Middleware, 
while AMS manages the logical representation of these and 
other resources in the availability system model.  CMS is 
responsible for discovering, incorporating, and monitoring 
the nodes within the cluster along with their associated 
network interfaces.  The addition or failure of nodes and 
their network interfaces is communicated to AMS, and the 
FT Manager through the DMS. CMS also works in 
conjunction with AMS to provide manager node 
redundancy, thus eliminating the manager node as a possible 
single point of failure. 
 
HA Middleware provides some additional minor services 
such as database management, logging services, and tracing.  
The in-memory management database is a high-
performance, distributed, replicated database for 
configuration, data storage, and retrieval. The database 
supports distributed architectures and offers portable and 
extensible database architecture.  It includes facilities such 
as table creation, row insertion, reading and deleting, and 
search with indexed retrieval.  The HA Middleware Logging 
Services are used to capture the activity of the system for 
later download.  Logs are used to help perform fault analysis 
and root cause determination.  Any service and application 
code can use the Logging Services, which provide a variety 
of features, including multiple and fixed-size circular 
(automatic overwrite) logs.  Developers use the trace facility 
primarily during the engineering process as well as for 
capturing system behavior during operation.  It sends output 
to a file or other output device. 

Extension components have been developed allow the Fault-
Tolerance Manager (FTM) component of the Dependable 
Multiprocessor, described in Section 4.3, to interface with 
HA Middleware.  In particular, the extensions allow the 
FTM to detect when a service or application (including the 
HA Middleware itself), has initialized correctly or failed.  
Also, one of the HA Middleware extensions is the 
mechanism by which the FTM starts other middleware 
services in a fault-tolerant manner. 
 
4.2. Control Process 

The Control Process (CP) provides a unified view of the 
embedded cluster to the spacecraft control computer and the 
ground-based station user.  It directly communicates to an 
independent process running on the active system controller 
via a communication link to the embedded cluster.  This 
process, residing on the system controller, translates the 
commands from the CP into DMS messages that can be 
interpreted by the other Dependable Multiprocessor system 
components, and relays the status and other information 
from the embedded cluster to the CP.  The CP monitors the 
system health via a system-wide heartbeat, generated by the 
FTM as described in Section 4.3. This heartbeat is 
employed by the CP to detect system-level failures, to 
which the CP responds by performing required diagnostics 
and failing over to the standby system controller after a 
system-wide reboot. In addition to monitoring system status, 
the CP also presents a mechanism to remotely initiate and 
monitor diagnostic features provided by the Dependable 
Multiprocessor middleware. 
 
4.3 Fault-Tolerance Manger and Agents 

The Fault-Tolerance Manager (FTM) is the central fault 
recovery function for the Dependable Multiprocessor 
system. The FTM works closely with the HA Middleware’s 
AMS to detect and recover from system and application 
faults.  Each resource in the system is abstracted in AMS 
service.  If a resource’s health state transitions, the FTM is 
updated, thus triggering an appropriate recovery action.  At 
runtime, the FTM refers to a set of recovery policies from 
soft reboot to power off for various system and application 
failures.  For application recovery, the user can define a 
number of recovery modes based on runtime conditions.  
This configurability is particularly important when 
executing parallel applications with FEMPI (discussed in 
further detail in Section 4.5).  The job manager frequently 
directs the recovery policies in the case of application 
failures. Additional information is provided on the 
interactions between the FTM and the Job Manager in the 
next section. 
 
In addition to the HA middleware, the central FTM relies on 
distributed software agents to gather system and application 
liveliness information.  The distributed nature of the agents 
ensures that the central FTM does not become a monitoring 
bottleneck, especially since the FTM and other central 
Dependable Multiprocessor software core components 
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execute on a relatively low-performance, radiation-hardened 
processor.  Numerous mechanisms are in place to ensure the 
integrity of remote agents running on non-radiation 
protected data processors as described in Section 4.1.  In 
addition to implementing recovery policies, the FTM also 
maintains a fault history of various metrics for use in the 
diagnosis and recovery process.  This information is also 
used to make decisions about system configuration and 
application scheduling, and thus, to ensure maximum 
availability. Also, the FTM is the central software 
component through which the embedded system sends 
heartbeats to the spacecraft. 
 
4.4. Job Manager and Agents 

The Job Manager (JM) primarily functions to provide 
application scheduling, resource allocation, process 
dispatching, and directing application recovery based upon 
user-defined policies.  The JM employs an opportunistic 
load balancing scheduler, which receives frequent system 
status updates from the FTM in order to maximize system 
availability.  Jobs are registered and tracked in the system 
by the JM via tables detailing the state of all jobs, be they 
pending, currently executing, or suspected as failed and 
under recovery.  These various job buffers are frequently 
checkpointed to the Mass Data Store to enable seamless 
recovery of the JM and all outstanding jobs.  Should an 
unrecoverable failure of the control processor occur, the JM 
on the backup controller will load the checkpointed tables 
upon reboot and continue job scheduling from the last 
checkpoint.  A more detailed explanation of the 
checkpointing mechanisms is provided in Section 4.7.  To 
ensure the manager’s integrity, the JM heartbeats to the 
FTM via the HA Middleware. 
 
Much like the FTM, the centralized JM employs distributed 
software agents to gather system and application liveliness 
information.  The JM also relies upon the agents to fork the 
execution of jobs, including forwarding information 
required by applications at runtime such as the job’s 
identification number, which is used to uniquely identify 
checkpointing files.  The distributed nature of the agents 
ensures that the central JM does not become a bottleneck, 
especially since the JM and other central Dependable 
Multiprocessor core software components execute on a 
relatively slow radiation-hardened processor.  Numerous 
mechanisms are in place to ensure the integrity of remote 
agents running on non-radiation-protected data processors 
as described in Section 4.1. 
 
In the event of an application failure, the JM refers to a set 
of user-defined policies to direct the recovery process.  In 
the event one or more processes fail in a parallel application 
(i.e. one spanning multiple coordinating data processors), 
then special recovery actions must be taken as dictated by 
the particular algorithm.  Several recovery options exist for 
parallel jobs including blank mode (i.e. continue with other 

processors assuming the extra workload), rebuild mode (i.e. 
the JM either migrates the failed processes to healthy 
processors or instructs the FTM to recover the faulty 
components in order to reconstruct the system as before), 
and shrink mode (i.e. the remaining processes continue by 
evenly dividing the remaining workload amongst 
themselves).  As mentioned, the ability of a job to recover in 
any of these modes is dictated by the underlying application.  
A more detailed discussion of these recovery modes is 
provided in the next section. 
 
An additional feature that the JM provides is the ability to 
schedule traditional-processor-only and FPGA-accelerated 
jobs seamlessly.  Portions of the JM have been borrowed 
from the CARMA runtime job management service 
framework and middleware [16] developed at Florida, but 
with improved fault-tolerance capabilities.  Also, custom 
components have been developed to interface with the HA 
Middleware and other Dependable Multiprocessor services. 
 
4.5. FEMPI 

Fault tolerance is a critical factor for HPC systems in space, 
and is required to meet the emerging high-availability and 
high-reliability requirements.  Recovery from failure needs 
to be fast and automatic, while the impact of failures on the 
system as a whole should be minimal.  The impact of 
failures can be minimized through several indirect 
approaches (i.e. through mechanisms that do not address 
direct recovery from faults).  The indirect approaches 
certainly avoid computation loss but, in order to enable 
applications to meet high-availability and high-reliability 
requirements, we need to consider other options.  Some of 
the options include: incorporating fault-tolerant features 
directly into the applications; developing specialized 
hardware subsystems that are fault-tolerant; making use of 
and enhancing the fault-tolerant features of the operating 
system; and developing application-independent 
middleware that would provide fault-tolerant capabilities.  
Among these options, developing application-independent 
middleware has the minimal intrusion in the system and can 
support any general application including legacy 
applications that fall into the umbrella of the corresponding 
middleware model.  In our system, we design and develop 
an application-independent, fault-tolerant, message-passing 
middleware called FEMPI (Fault-tolerant Embedded 
Message Passing Interface).  With FEMPI, we take a direct 
approach to providing fault tolerance and improving the 
availability of the HPC system in space.  FEMPI is a light-
weight, fault-tolerant design and implementation of the 
common Message Passing Interface (MPI) standard. 
 
Because of its widespread usage, MPI [17] has emerged as 
the de-facto standard for development and execution of 
high-performance parallel applications.  By its nature as a 
library that facilitates user-level communication and 
synchronization amongst a group of processes, the MPI  
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library needs to maintain global awareness of the processes 
that collectively constitute a parallel application.  An MPI 
library consequently emerges as a logical and suitable place 
to incorporate certain fault-tolerant features in order to 
enable legacy and new applications to meet the emerging 
high-availability and high-reliability requirements of HPC 
systems in space.  Freeware implementations are also 
underway, but significantly lag commercial efforts, and both 
forms are generally too heavy and laden with overhead for 
embedded systems.  Fault tolerance is absent in both the 
MPI (MPI-1 and MPI-2) standards, and to our knowledge 
no satisfactory products or research results offer an effective 
path to providing scalable embedded computing 
applications with effective fault tolerance.  FEMPI is a 
fault-tolerant MPI design and implementation that provides 
process-level fault tolerance at the MPI API level. 
 
Fault tolerance and recovery is provided through three 
stages including detection of a fault, notification of the fault, 
and recovery from the fault.  As with other Dependable 
Multiprocessor software components, FEMPI is built on top 
of the HA Middleware.  The services of the HA Middleware 
in conjunction with the FTM and JM are used to provide 
detection and notification capabilities.  The HA Middleware 
allows processes to heartbeat through fault handlers, and 
hence has the potential to detect the failure of processes and 
nodes.  The notification service is developed as an extension 
to this middleware.  The HA Middleware also guarantees 
reliable communication between the nodes in the system 
through DMS as described in Section 4.1. 
 
With MPI applications, failures can be broadly classified as 
process failures (individual processes of MPI application 
crashes) and network failures (communication failure 
between two MPI processes).  FEMPI ensures reliable 
communication (reducing the chances of network failures) 
with all low-level communication through DMS.  As far as 
process failures are concerned, the entire application fails or 
crashes on the failure of any process in regular fault-
intolerant MPI designs.  By contrast, FEMPI prevents the 
entire application from crashing on individual process 
failures.  MPI Restore, a component of FEMPI, resides in 
the System Controller and communicates with the FTM to 
update the status of nodes.  On a failure, MPI Restore 
informs all the MPI processes regarding the failure.  The 

status of senders and receivers (of messages) are checked in 
FEMPI before communication to avoid attempts to establish 
communication with failed processes.  If the communication 
partner (sender or receiver) fails after the status check and 
before communication, then a timeout-based recovery is 
used to recover out of the MPI function call. 
 
FEMPI survives the crash of n-1 processes in an n-process 
job, and, if required, can re-spawn/restart them.  However, it 
is still the responsibility of the HA Middleware to execute a 
recovery scheme (i.e. recover the data structures and the 
data on the crashed processes). A program written in 
conventional MPI can execute over FEMPI with little or no 
alteration. 
 
4.6. FPGA Co-Processor Services 

Using FPGAs for reconfigurable computing to accelerate 
scientific applications is still an emerging discipline within 
computer engineering.  Until recently it has been confined 
to relatively few outside the computer science and 
engineering fields due to the complexity of the intrinsic 
hardware design. The RC discipline is fractured and 
populated with proprietary solutions.  Universal standards 
that power the software industry, compile-time libraries, a 
universal run-time environment and reliable middleware, 
etc. all do not as yet exist.  Several vendors such as 
Nallatech and SRC provide top-down solutions for FPGA 
development, but these are based around proprietary 
interfaces and closed-source APIs.  Often, a specific RC 
platform must be targeted before application development 
can begin.  This method is intolerable in the software 
industry where code written to language standards (e.g. 
ANSI-C) can be ported to multiple operating systems and 
instruction set architectures.  Porting an application to 
another vendor’s RC platform is often a major task, as 
substantial portions of the hardware and software need to be 
rewritten. 
 
The USURP framework is being developed by researchers 
at the University of Florida as a unified solution for multi-
platform FPGA development.  A compile-time interface 
between software and hardware and a run-time 
communication standard have been developed to support the 
framework (Fig. 6).  As described in [18], the compile-time 
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Figure 5. Interfaces for FEMPI and Related Software Components of the Dependable Multiprocessor. 
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hardware/software interface is responsible for unifying 
vendor software APIs, standardizing the hardware interface 
to external components and the communications bus, 
organizing data for the hardware-accelerated kernels, and 
exposing the developer to common FPGA resources.  The 
run-time communication standard handles determining 
whether the resources meet the application's requirements, 
configuring the FPGA, detecting and handling hardware 
faults and interrupts, and transferring data between the host 
PC and FPGA. 
 

 
 

Figure 6. Hardware/Software Interface of USURP. 
 
The Hardware Abstraction API [19] abstracts the FPGA 
from the application developer; the reconfigurable hardware 
becomes just another computing resource.  To accomplish 
this goal, the USURP hardware/software interface and run-
time communication standard are encapsulated in a familiar 
library of linear algebra and signal processing kernels.  The 
Hardware Abstraction API is based on the GNU Scientific 
Library (GSL).  GSL is an open-source library of numerical 
routines for scientific computing and remains popular in the 
science and engineering community due to its highly 
portable nature.  RCGSL, our hardware-accelerated version 
of GSL, uses the same structures and syntax as GSL to 
provide the user with a familiar programming environment. 
 
4.7. Checkpoint Interface 

The checkpointing service provides a user-level, 
uncoordinated protocol for storing and recovering system 
state, application data, and any data transferred to or from 
Mass Data Store (MDS). The service comprises a server 
process that runs on the MDS and an API for the 
applications that want to communicate data. 

The main server process facilitates all data operations 
between the applications and radiation hardened mass 
memory.  DMS is used to reliably transfer data, using its 
many-to-one and one-to-one communication capabilities.  
Checkpoint and data requests are serviced on the Mass Data 
Store in parallel to allow for multiple simultaneous 
checkpoint or data accesses. 
 
The application-side API consists of a basic set of functions 
that allow data to be transferred to the MDS in a fully 
transparent fashion.  These functions are similar to C-type 
interfaces and provide a method to write, read, rename, and 
remove stored checkpoints and other data files.  The API 
also includes a function that assigns each application with a 
unique name that is used for storing checkpoints for that 
particular application.  This name is generated based upon 
the name of the application and a unique job identifier and 
process identifier defined by the central JM when the job is 
scheduled.  Upon failover or restart of an application, the 
application may check the MDS for the presence of specific 
checkpoint data, use the data if it is available, and complete 
the interrupted processing.  Checkpoint content and 
frequency is determined by the process that chooses to 
checkpoint. 
 
4.8. Algorithm-based Fault Tolerance (ABFT) Library 

The Algorithm-Based Fault Tolerance (ABFT) library is a 
collection of mathematical routines that can detect and in 
some cases correct data faults.  Data faults are faults that 
allow an application to complete, but may produce an 
incorrect result. The seminal work in ABFT was done in 
1984 by Huang and Abraham [20].  Subsequently, the JPL-
led REE project developed a parallel processing ABFT 
library.  The BLAS-3, ABFT-enabled library from JPL 
includes functions such as matrix multiply, LU 
decomposition, QR decomposition, single-value 
decompositions (SVD) and fast Fourier transform (FFT). 
This library is being ported to the Dependable 
Multiprocessor for use by application developers as a fault-
detection mechanism. ABFT operations function by 
checking on linear algebraic computations by adding check-
sum values in extra rows and columns of the original 
matrices and then checking these values at the end of the 
computation. The mathematical relationships of these 
checksum values to the matrix data is preserved over linear 
operations. An error is detected by re-computing the 
checksums and comparing the new values to those in the 
rows and columns added to the original matrix.  If an error 
is detected, an error code is returned to the calling 
application. The appeal of ABFT over simple replication is 
that the additional work that must be done to check 
operations is of a lower order of magnitude than the 
operations themselves.  For example, the check of an FFT is 
O(n), whereas the FFT itself is O(nlogn). 
 
In Dependable Multiprocessor, ABFT-enabled functions 
will be used by the application developer to perform 
automated, transparent, low-overhead error checking on 



 

 
Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006  

 

11

linear algebraic computations.  In the longer term, it is 
expected that other, non-algebraic algorithms will similarly 
be ABFT-enabled and added to the library.  The user will 
determine, from the returned error code, whether and how to 
address the error.  As part of this effort, we will add 
application-level APIs, which when called will inform the 
Job Management Agent (JMA) that a fault has occurred. 
The JMA will then inform the FTM, and the FTM will 
determine a course of action. A typical response would be to 
stop the application and restart from checkpointed values. 
 
4.9. Replication Services 

Replication and comparison is a well known method to 
detect errors in a system.  One typical replication technique 
is hardware replication, wherein the application is replicated 
on one or more processing resources and the results of the 
computation amongst all the processors are compared. In 
Triple Modular Redundancy (TMR), if two or more results 
agree, that result is taken as correct. If two or more disagree, 
then an uncorrectable fault as been observed and additional 
action is needed. Another technique is process-level 
replication, in which multiple identical processes are 
instantiated on a single processing resource and their results 
compared for consistency 
 
In this NMP experiment, since resources are limited, 
process-level replication is implemented where two 
identical processes are spawned on a single processing 
resource.  The user will insert provided application-level 
API calls at locations in the program where results are 
exchanged.  The results of the application replicas are then 
compared for consistency before forwarding.  In the event 
of a miscompare, an error code is returned to the calling 
application.  The user application will determine, from the 
returned error code, whether and how to address the error.  
Similar to ABFT, the user application will invoke an 
application-level API to inform the JMA that an error has 
occurred and that corrective action is required. 

5. CONCLUSIONS 

NASA’s strategic plans for space exploration present 
significant challenges to space computer developers.  
Traditional methods and architectures fall short of the 
requirements for next-generation missions.  The Dependable 
Multiprocessor (DM) technology addresses this need and 
provides the foundation for future space processors.  The 
Dependable Multiprocessor is an integrated parallel 
computing system that addresses all of the essential 
functions of a cluster computer for spacecraft payload 
processing.  A TRL4 prototype of the technology has been 
demonstrated, and a TRL5 prototype will be completed in 
Spring of 2006.  The next step in the development of 
Dependable Multiprocessor includes a TRL6 prototype, 
scheduled for completion in 2007, followed by a TRL7 
prototype validation flight experiment in 2009 [21]. 
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