

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

1

High-Performance, Dependable Multiprocessor
Jeremy Ramos , John Samson, David Lupia
Honeywell Aerospace, Defense and Space

13350 US Highway 19 North
Clearwater, Florida 33764-7290
jeremy.ramos@honeywell.com
john.r.samson@honywell.com

Ian Troxel, Rajagopal Subramaniyan, Adam Jacobs,
James Greco, Grzegorz Cieslewski, John Curreri,

Michael Fischer, Eric Grobelny, Alan George
HCS Research Lab, University of Florida

Gainesville, Florida 32611-6200
 george@hcs.ufl.edu

Vikas Aggarwal, Minesh Patel

Tandel Systems
mpatel@tandelsys.com

Raphael Some
NASA Jet Propulsion Lab

rsome@jpl.nasa.gov

Abstract—123 With the ever-increasing demand for higher
bandwidth and processing capacity of today’s space
exploration, space science, and defense missions, the ability
to efficiently apply commercial-off-the-shelf (COTS)
processors for on-board computing is now a critical need.
In response to this need, NASA’s New Millennium Program
office has commissioned the development of Dependable
Multiprocessor (DM) technology for use in payload and
robotic missions. The Dependable Multiprocessor
technology is a COTS-based, power-efficient, high-
performance, highly dependable, fault-tolerant cluster
computer. To date, Honeywell has successfully
demonstrated a TRL4 prototype of the Dependable
Multiprocessor [1], and is now working on the development
of a TRL5 prototype. For the present effort Honeywell has
teamed up with the University of Florida via its High-
performance Computing and Simulation (HCS) Research
Laboratory, and together the team has demonstrated major
elements of the Dependable Multiprocessor TRL5 system.
This paper provides a detailed description of the basic
Dependable Multiprocessor technology, and the TRL5
technology prototype currently under development.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. RELATED WORK ...2
3. OVERALL SYSTEM ARCHITECTURE2
4. MIDDLEWARE ARCHITECTURE5
5. CONCLUSIONS ...11
REFERENCES ...11
BIOGRAPHIES ..12

1. Introduction

NASA has a long and relatively productive history of space
exploration as exemplified by recent rover missions to Mars.

1 0-7803-9546-8/06/$20.00© 2006 IEEE; This paper has not been
published elsewhere and is offered for exclusive publication except that
Honeywell reserves the right to reproduce the material in whole or in part
for its own use and, where Honeywell is obligated by contract.
2 Paper 1511
3 The project formerly was known as the Environmentally-Adaptive Fault-
Tolerant Computing (EAFTC) project.

Traditionally, space exploration missions have essentially
been remote-control platforms with all major decisions
made by operators located in control centers on Earth. The
onboard computers in these remote systems have contained
minimal functionality, partially in order to satisfy design
size and power constraints, but also to minimize complexity
as a means of coping with high-dependability requirements.
Hence, these traditional space computers have been capable
of doing little more than executing small sets of real-time
spacecraft control procedures, with little or no processing
bandwidth left over for instrument data processing. This
approach has worked reasonably well until now, as
instruments have consisted of low-complexity imagers, with
compressible output streams transmittable to ground stations
for post-processing knowledge extraction. As the
capabilities of instruments on exploration platforms
increase, more processing and autonomy will be necessary
onboard to fully exploit their vast output data streams [2].
Autonomous spacecraft will further increase knowledge
returns through opportunistic explorations conducted
outside the Earth-bound operator control loop. In response,
NASA has initiated several projects to develop technologies
that address the onboard processing gap. One such program
is the NASA New Millennium Program’s ST8 Project [3].

The vision of the New Millennium Program’s Dependable
Multiprocessor experiment is to migrate COTS-based
computers to space, thereby enabling new classes of science
[4]. In support of this vision, the Honeywell and University
of Florida team is developing the Dependable
Multiprocessor (DM) technology. This technology
combines a set of innovative solutions to enable efficient
use of high-performance COTS processors in the harsh
space environment, while maintaining the required system
reliability and availability. Dependable Multiprocessor is a
sophisticated technology composed of four chief
components [5].

First, Dependable Multiprocessor is an architecture and
methodology enabling the use, in space, of COTS-based,
high-performance, scalable, multi-computer systems. A
distinguishing feature of the architecture, critical to
achieving high performance and efficiency, is the use of
reconfigurable FPGA co-processors. Furthermore, through

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

2

accommodation for upgrades to future COTS parts, the
Dependable Multiprocessor architecture can evolve along
side commercial technologies thereby ensuring its longevity.

Second, Dependable Multiprocessor is a parallel processing
environment for science codes that incorporates an
application development and runtime environment familiar
to science application developers. By adopting these
standard environments, the Dependable Multiprocessor can
significantly reduce the cost and schedule associated with
porting of applications from the laboratory to the spacecraft
payload data processor.

Third, Dependable Multiprocessor is a set of algorithms for
system and fault tolerance management. These algorithms
allow systems to dynamically manage resources in response
to environment, application criticality, and system mode, in
order to maintain mission required dependability and
maximal system efficiency.

Lastly, Dependable Multiprocessor is a methodology and
associated tools that allow developers of Dependable
Multiprocessor systems to predict their implementation’s
behavior in the target environment, including: predictions of
availability, dependability, fault rates/types, and system-
level performance.

2. RELATED WORK

Dependable Multiprocessor builds on earlier projects at JPL,
Honeywell and Raytheon, which were sponsored by NASA,
DARPA, and USAF.

The Advanced Onboard Signal Processor (AOSP),
developed by Raytheon Corporation, for the USAF in the
late 70s and mid 80s made significant breakthroughs in
understanding the effects of natural and man-made radiation
on computing systems and components and in developing
architectural, hardware, and software techniques for
detection, isolation, and mitigation of these effects. AOSP,
though never flown, was instrumental in developing the
fundamental concepts, modeling, and testing techniques
behind much of the current work in fault-tolerant, high-
performance distributed computing.

Advanced Architecture Onboard Processor (AAOP), a
follow-on effort to AOSP, also developed at Raytheon
Corporation, engineered alternative concepts and new
approaches to spacecraft onboard data processing. The
AAOP architecture found its way into both commercial and
military platforms, but was never commercialized or
popularized as it was, in large measure, overkill for most
applications.

The DARPA-sponsored Space Touchstone computer,
developed at Honeywell, was ground-breaking in its goal of
using COTS components and a COTS system architecture in

high-performance, highly reliable, airborne and spaceborne
computing.

NASA’s Remote Exploration and Experimentation (REE)
project [6], at JPL, extended fault-tolerant computing to the
world of parallel and cluster processing. Among other
advances, REE addressed, in a general manner, the issue of
low cost and tailored fault tolerance. The REE project
developed fault-tolerant middleware for cluster computers,
methods and tools for test and characterization of
components and systems, and Software-Implemented Fault
Tolerance (SIFT) techniques and libraries. The project led to
fundamental concepts upon which to develop fault-tolerant,
high-performance parallel processing and, more specifically,
fault-tolerant, low-cost, high-performance, power-ratio,
embedded clusters.

3. OVERALL SYSTEM ARCHITECTURE

Figure 1 depicts the Dependable Multiprocessor hardware
architecture, which is based upon Honeywell’s Integrated
Payload concept [7]. The Dependable Multiprocessor is
essentially a reconfigurable cluster computer with
centralized control. The essential hardware elements of the
system are a redundant radiation-hardened System
Controller, a cluster of COTS-based reconfigurable Data
Processors, redundant COTS-based Packet Switched
networks, and a radiation-hardened Mass Data Store.
Additional peripherals or custom modules may be added to
the network to extend the system’s capability; however,
these peripherals are outside of the scope of the base
architecture. To increase system reliability it is possible to
employ redundancy of the System Controller and network
as depicted in the block diagram. Likewise, N-of-M sparing
of Data Processors may be used for added reliability.
Redundancy, however, may not be affordable or necessary
for all missions, and therefore it is not a required
architectural element. Command and Telemetry is
exchanged directly between the active System Controller
and the Spacecraft Control Computer via direct 1553
spacecraft interfaces. The primary dataflow in the system is
from instrument to Mass Data Store, through the cluster,
back to the Mass Data Store, and finally to the ground via
the spacecraft’s Communication Subsystem.

The primary mechanism for hardware scalability provided
by the architecture is the number of Data Processors inserted
into the network. First adopters are expected to need up to
30 nodes in their clusters, a node count that is well within
the capabilities of Gigabit Ethernet for selected applications.
Alternative approaches to scalability include forming a
cluster-of-clusters. This alternative may be more suitable for
eventual product development, since standard cluster
configurations can be developed as fully integrated
products, and later combined to form a larger machine as
required by a particular mission.

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

3

System
Controller

B

Data
Processor

1

Data
Processor

N

Mission
Interface

. . .
Instrument

SC
C

 IF SC
C

 IF

Gigabit Ethernet B

System
Controller

A

Data

Spacecraft
I/F

SC
Communications

Subsystem

Spacecraft
Control

Computer

Gigabit Ethernet A

COTS

Radiation
Hardened

Figure 1. System Hardware Architecture of the Dependable Multiprocessor.

3.1. System Controller

All central control software for the cluster executes on the
System Controller node. Due to the critical nature of
centralized control we have selected the Honeywell
Radiation-Hardened PPC (RHPPC) Single-Board Computer
(SBC) for implementation of the System Controller. By
implementing the System Controller in highly reliable and
radiation-hardened electronics, we reduce the likelihood of
experiencing major system control faults due to single-event
upsets (SEUs). The RHPCC SBC is based upon the
Motorola PowerPC 603e microprocessor technology; its key
features are summarized in Table 1 [8].

3.2. Data Processors and FPGAs

The core processing elements of the cluster are the Data
Processors. As depicted in Figure 2, the Data Processor’s
architecture is similar to a standard SBC, with the exception
of the FPGA co-processing element. In support of our
COTS goal, the Data Processor employs a COTS IBM
PowerPC 750FX microprocessor [9], a Xilinx VirtexII 6000
FPGA co-processor [10], and their associated standard
support chips (e.g., COTS bridge, and I/O chips, clocks, and
memories).

The reconfigurable FPGA co-processor is a key to achieving
high-performance and efficiency in the cluster. The FPGA
provides a capability for implementing algorithms directly
in hardware, thereby exploiting algorithmic parallelism.
This approach typically results in speedup of 10-to-100x
with significant reductions in power [11]. Additionally,

FPGAs make the cluster a highly flexible platform, allowing
on-demand configuration of hardware. Via FPGA
reconfiguration, the Data Processor can support a variety of
application-specific modules such as digital signal
processing (DSP) cores, data compression, and vector
processors. This overall flexibility allows application
designers to adapt the cluster hardware for a variety of
mission-level requirements. For DSP and other algorithm-
intensive applications, greater efficiency and performance
may be achieved by using custom hardware modules in the
FPGAs. Then again, for applications that are logic-
intensive, microprocessors are more suitable targets. Some
key features of the Data Processor are listed in Table 2.

Table 1. Key Features of the RHPPC SBC

3.3V and 5.0 V Power
RHPPC delivering 100 MIPS
Peripheral Enhancement Component support chip
4MB EEPROM with Single Error Correction and Double
Error Detection
512KB EEPROM
128 MB DRAM with SuperEDAC
6U x 220mm Euro Card Form Factor
Max Power Draw 15W
Mass >3lbs
Redundant 1553 (interface to spacecraft computer)
32-bit 33MHz PCI (interface to cluster and MIB
electronics)

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

4

Processor
Cotnroller

Power
PC
G4

BOOT Memory
TBD KB

Non-volatile
Memory With

EDAC
256MB

RAM
1GB (EDAC with

Scrubbing)

Clock
Generation

Reset
Generation

PWR
Converter

Co-Processor
Virtex2
FPGA

UART
1553

Timer Synch

Current/
Voltage
Sensor

Temperature
Sensor

3 Ports

hearbeat

JTAG Port

3 GigE Ports

External Reset

Notes
1000 MIPS
23 Watts

32 Bit
33 MHz

PCI

Input Power
Output Power

Test Port JTAG Chain

Power on/off

To Top
of Card

To MIB

To MIB

To MIB To MIB

To MIB

To Top
of Card

SERDES
PHY

Figure 2. Hardware Architecture of the Data Processor.

Table 2. Key Features of the Data Processor

COTS Based
750 fx @ 650 MHz Delivering 1300 MIPS
VirtexII 6000 FPGA co-processor
PCI 32-bit 33 MHz
Gigabit Ethernet
1 GB DRAM with ECC
12MB EEPROM with SECDED EDAC
256 MB Flash
JTAG test interface
UART interface for development
6U x 220 mm Euro Card Form Factor
Mass <3 lbs
Max Power Draw 20W

3.3. Network Interconnect

Gigabit Ethernet (GigE) [12] is the prevalent networking
system for cluster architectures. GigE is a low-cost packet
switched network that offers bandwidths up to 1 Gb/s.
Additionally, GigE has a promising growth path to 10 GigE,
a new standard that will support bandwidths up to 10 Gb/s.
GigE offers many network topology options allowing
system-level architectural optimization. Furthermore, many
COTS microprocessors and peripherals include GigE
network interfaces, allowing for direct connection to a GigE
network without additional hardware.

In the Dependable Multiprocessor, GigE is the data
exchange medium. Sideband, low-bandwidth, low-latency
buses can be used for control. This method allows for
optimization of the GigE network to address the high

throughput needs of the parallel-processing science
applications.

3.4. Mission Interface

The last hardware element of the system that we will discuss
herein is the Mission Interface. In general terms, the
Mission Interface is the clusters port to the instruments and
communication system. Its functions include providing the
primary cluster data input/output interface, and isolating the
cluster from other spacecraft subsystems. As with the
System Controller, the Mission Interface should be
radiation-hardened. This approach minimizes the likelihood
that data will be corrupted by faults, ensuring reliable input
and output of data from the system. By making the Mission
Interface an independent cluster component we reduce the
impact of porting the cluster computer to new instruments,
communication systems, and missions.

3.5. TRL5 Testbed Architecture

The focus of the current project phase is the development of
a TRL5 system prototype, including hardware and software.
As depicted in Figure 3, the TRL5 prototype hardware
consists of a cluster computer, a development workstation,
reset controller, and power supply.

The cluster computer is implemented using seven Orion
Technologies Inc CPC7510 SBCs in a CompactPCI chassis
interconnected over redundant Gigabit Ethernet switches
[13]. Four of the SBCs are configured as Data Processors,
two as redundant System Controllers, and one as a Mass
Data Store.

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

5

Figure 3. System Configuration of the TRL5 Prototype Testbed.

The CPC7510 is a hot swappable, high-performance, IBM
750fx PowerPC SBC designed for high-availability
applications. The CPC7510 is extremely versatile with two
PMC slots, variable operating frequencies between 650
MHz and 1 GHz, and support for chassis controller or
peripheral slot placement. Other key features of the
CPC7510 are summarized in Table 3.

As a System Controller in our testbed, the CPC7510 has
been outfitted, via the PMC, with a third Ethernet Network
Interface for experimental control interfacing from the
development workstation. As a Data Processor, the
standard CPC7510 includes an ADM-XRC-II PMC. The
ADM-XRC-II is a high-performance FPGA co-processing
PMC from Alpha Data Parallel Systems [14], and is
representative of the flight FPGA co-processor. The final
configuration of the CPC7510 includes a hard drive PMC to
emulate the storage capacity of a Mass Data Store.

Table 3. Key Features of the CPC7510

Orion Technologies (OTI) Linux Kernel
PowerPC 750FX v2.3 @ 600MHz
64/32 bit Sentinel64 universal-mode PCI-to-PCI bridge
Marvell Discovery II (MV64360) system controller
133MHz front side host interface
128 MB high-speed DDR SDRAM
Dual Gigabit Ethernet interfaces
Dual PMC slots (64-bit 133MHz, 32-bit 66MHz)
Dual serial RS-232 interfaces
6U x 220 mm Euro Card Form Factor

Software development, experiment control, instrumentation
data collection, and Spacecraft Control Computer emulation
are achieved with the development workstation. The
development workstation is a standard Dell PC configured
with a 3 GHz Xeon CPU running the Fedora Core 4 Linux
OS. The basic configuration has been altered to include
support for 8 serial ports using an Axxon Serial Port Mux 8
I/O board, and expanded the network interface count from
one to three GigE ports with an Intel Dual Gigabit Ethernet
NIC.

Additional elements of the testbed include a software-
controlled, instrumented power supply, which is used to
take detail measurements of power usage, and a reset
control device, integrated by Tandel Systems, which
provides the ability for the software on either the
development workstation or the active System Controller to
reset each node in the system individually.

4. MIDDLEWARE ARCHITECTURE

A top-level overview of the Dependable Multiprocessor
software architecture is illustrated in Figure 4. The system
is composed of three primary layers: mission layer,
middleware layer, and platform layer. A key feature of this
architecture is the integration of generic software fault-
tolerant techniques implemented in the middleware
framework. The Dependable Multiprocessor framework is
independent of and transparent to the specific mission
application, and independent of and transparent to the

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

6

underlying platform. This transparency is achieved at the
interface to the mission layer through well-defined, high-
level, Application Programming Interfaces (APIs), and at
the platform layer through a System Abstraction Layer
(SAL) which isolates the middleware from the underlying
platform. This isolation and encapsulation makes the
middleware services available to future mission applications
by facilitating its porting to new platforms.

The lowest layer of the system is the platform layer, which
includes a COTS operating system, hardware-specific
software such as network drivers, and the hardware

elements. The basic platform software is implemented
using MontaVista’s version of the Linux Operating System,
and is common to all of the processors in the cluster. Other
Operating Systems may also be used, but Linux facilitates
leverage of many existing software tools. The central
component of the system is the middleware layer, which
contains the essential Dependable Multiprocessor system
services that provide the fault tolerance, job management,
and other applications services detailed in the following
sections.

Network and sideband signals

System Controller Data Processor with FPGA Co-Processor

Linux OS, and Drivers Linux OS, and Drivers

DMS, CMS, and AMS DMS, CMS, and AMS

JM FTM

JM – Job Manager
FTM- Fault Tolerance Manager
FEMPI – Fault Tolerant Embedded
Message Passing Interface
FCPS – FPGA Co-Processor Services

■ Mission Specific Components

■ Dependable Multiprocessor
Specific Components

Mission Specific
Parameters

FEMPIAgent

System Controller Data Processors

RS FCPS

Mass Data Store

Data Processor

Linux OS, and Drivers

DMS, CMS, and AMS

CS

Application Data

CS

MPI Application Process
Spacecraft

Control
Process Instrument

■ HA Middleware

■ Platform Components

■ Application Components

RS – Replication Services
CP – Checkpoint Service and API
CMS – Cluster Management Services
AMS – Availability Management Services
DMS – Distributed Messaging Services

Dependable Multiprocessor

Figure 4. System Software Architecture of the Dependable Multiprocessor.

4.1. High-Availability Middleware

The High-Availability (HA) Middleware, the foundation
component for the Dependable Multiprocessor Middleware,
is composed of numerous services. For Dependable
Multiprocessor, we focus on Availability Management,
Distributed Messaging, and Cluster Management. In the
Dependable Multiprocessor design, the functionality of
these basic elements is extended and augmented by system-
specific components to be covered in subsequent sections of
this paper. The primary functions of the HA Middleware
are resource monitoring, fault detection, fault diagnosis,
fault recovery, fault reporting, cluster configuration, event
logging, and distributed messaging. High Availability is
based on a small, reliable, cross-platform kernel that
provides the foundation for all standard services, and its
extensions. The kernel also provides a portability layer
limiting user dependencies on the underlying operating
system and hardware.
Availability Management Service (AMS) provides the core
availability management framework and is hosted on the

cluster computer’s System Controller. Managed AMS
resources can include applications, operating system,
chassis, I/O cards, redundant CPUs, networks, peripherals,
clusters, and other middleware. These system resources and
their relationships are abstractly represented in AMS and
shared with the Fault-Tolerance Manager, which in turn
uses it to assess the system’s health.

The Distributed Messaging Service (DMS) is a vital service
offered by the HA Middleware. Its function is to provide a
reliable messaging layer for communications in the
Dependable Multiprocessor cluster. Distributed messaging
is designed to address the need for intra- and inter-process
communications between system elements for numerous
application needs such as checkpointing, client/server
communications, event notification, fault management, and
time-critical communications. The messaging service
provides an effective and uniform way for distributed
messaging components to efficiently communicate and
coordinate their activities.

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

7

Communication using DMS begins when an application
opens a DMS connection creating a path between interested
subscribers to the data. When an application opens a
connection, it specifies a desired channel allowing DMS to
segment connections into smaller logical networks. The
application can then transmit a message to the registered
subscribers on that channel. Instead of managing
communications within a network at the lower socket and
address level that requires the developer to build headers,
DMS enables application developers to group similar
information together into logical classifications. This
approach is unlike sockets for which APIs must be provided
with the exact IP addresses and ports for all communicating
machines. By contrast, by classifying messages into
families and types, DMS can route data to intended
destinations without having to explicitly address each
message. Machines “register” to receive messages of
specific families and types, and on specific channels, so the
sending machine does not need to know the destination.
This architecture also facilitates the implementation of
network failover that is transparent to the application. DMS
identifies, classifies, and manages the addresses in order to
streamline message delivery. The message publisher can
select between two types of connections, standard or direct.
These connections can be to another application, an
extension, or a server pool.

The Cluster Management Service (CMS) interacts with, and
is dependent upon, other HA Middleware services. CMS
manages the physical nodes or instances of HA Middleware,
while AMS manages the logical representation of these and
other resources in the availability system model. CMS is
responsible for discovering, incorporating, and monitoring
the nodes within the cluster along with their associated
network interfaces. The addition or failure of nodes and
their network interfaces is communicated to AMS, and the
FT Manager through the DMS. CMS also works in
conjunction with AMS to provide manager node
redundancy, thus eliminating the manager node as a possible
single point of failure.

HA Middleware provides some additional minor services
such as database management, logging services, and tracing.
The in-memory management database is a high-
performance, distributed, replicated database for
configuration, data storage, and retrieval. The database
supports distributed architectures and offers portable and
extensible database architecture. It includes facilities such
as table creation, row insertion, reading and deleting, and
search with indexed retrieval. The HA Middleware Logging
Services are used to capture the activity of the system for
later download. Logs are used to help perform fault analysis
and root cause determination. Any service and application
code can use the Logging Services, which provide a variety
of features, including multiple and fixed-size circular
(automatic overwrite) logs. Developers use the trace facility
primarily during the engineering process as well as for
capturing system behavior during operation. It sends output
to a file or other output device.

Extension components have been developed allow the Fault-
Tolerance Manager (FTM) component of the Dependable
Multiprocessor, described in Section 4.3, to interface with
HA Middleware. In particular, the extensions allow the
FTM to detect when a service or application (including the
HA Middleware itself), has initialized correctly or failed.
Also, one of the HA Middleware extensions is the
mechanism by which the FTM starts other middleware
services in a fault-tolerant manner.

4.2. Control Process

The Control Process (CP) provides a unified view of the
embedded cluster to the spacecraft control computer and the
ground-based station user. It directly communicates to an
independent process running on the active system controller
via a communication link to the embedded cluster. This
process, residing on the system controller, translates the
commands from the CP into DMS messages that can be
interpreted by the other Dependable Multiprocessor system
components, and relays the status and other information
from the embedded cluster to the CP. The CP monitors the
system health via a system-wide heartbeat, generated by the
FTM as described in Section 4.3. This heartbeat is
employed by the CP to detect system-level failures, to
which the CP responds by performing required diagnostics
and failing over to the standby system controller after a
system-wide reboot. In addition to monitoring system status,
the CP also presents a mechanism to remotely initiate and
monitor diagnostic features provided by the Dependable
Multiprocessor middleware.

4.3 Fault-Tolerance Manger and Agents

The Fault-Tolerance Manager (FTM) is the central fault
recovery function for the Dependable Multiprocessor
system. The FTM works closely with the HA Middleware’s
AMS to detect and recover from system and application
faults. Each resource in the system is abstracted in AMS
service. If a resource’s health state transitions, the FTM is
updated, thus triggering an appropriate recovery action. At
runtime, the FTM refers to a set of recovery policies from
soft reboot to power off for various system and application
failures. For application recovery, the user can define a
number of recovery modes based on runtime conditions.
This configurability is particularly important when
executing parallel applications with FEMPI (discussed in
further detail in Section 4.5). The job manager frequently
directs the recovery policies in the case of application
failures. Additional information is provided on the
interactions between the FTM and the Job Manager in the
next section.

In addition to the HA middleware, the central FTM relies on
distributed software agents to gather system and application
liveliness information. The distributed nature of the agents
ensures that the central FTM does not become a monitoring
bottleneck, especially since the FTM and other central
Dependable Multiprocessor software core components

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

8

execute on a relatively low-performance, radiation-hardened
processor. Numerous mechanisms are in place to ensure the
integrity of remote agents running on non-radiation
protected data processors as described in Section 4.1. In
addition to implementing recovery policies, the FTM also
maintains a fault history of various metrics for use in the
diagnosis and recovery process. This information is also
used to make decisions about system configuration and
application scheduling, and thus, to ensure maximum
availability. Also, the FTM is the central software
component through which the embedded system sends
heartbeats to the spacecraft.

4.4. Job Manager and Agents

The Job Manager (JM) primarily functions to provide
application scheduling, resource allocation, process
dispatching, and directing application recovery based upon
user-defined policies. The JM employs an opportunistic
load balancing scheduler, which receives frequent system
status updates from the FTM in order to maximize system
availability. Jobs are registered and tracked in the system
by the JM via tables detailing the state of all jobs, be they
pending, currently executing, or suspected as failed and
under recovery. These various job buffers are frequently
checkpointed to the Mass Data Store to enable seamless
recovery of the JM and all outstanding jobs. Should an
unrecoverable failure of the control processor occur, the JM
on the backup controller will load the checkpointed tables
upon reboot and continue job scheduling from the last
checkpoint. A more detailed explanation of the
checkpointing mechanisms is provided in Section 4.7. To
ensure the manager’s integrity, the JM heartbeats to the
FTM via the HA Middleware.

Much like the FTM, the centralized JM employs distributed
software agents to gather system and application liveliness
information. The JM also relies upon the agents to fork the
execution of jobs, including forwarding information
required by applications at runtime such as the job’s
identification number, which is used to uniquely identify
checkpointing files. The distributed nature of the agents
ensures that the central JM does not become a bottleneck,
especially since the JM and other central Dependable
Multiprocessor core software components execute on a
relatively slow radiation-hardened processor. Numerous
mechanisms are in place to ensure the integrity of remote
agents running on non-radiation-protected data processors
as described in Section 4.1.

In the event of an application failure, the JM refers to a set
of user-defined policies to direct the recovery process. In
the event one or more processes fail in a parallel application
(i.e. one spanning multiple coordinating data processors),
then special recovery actions must be taken as dictated by
the particular algorithm. Several recovery options exist for
parallel jobs including blank mode (i.e. continue with other

processors assuming the extra workload), rebuild mode (i.e.
the JM either migrates the failed processes to healthy
processors or instructs the FTM to recover the faulty
components in order to reconstruct the system as before),
and shrink mode (i.e. the remaining processes continue by
evenly dividing the remaining workload amongst
themselves). As mentioned, the ability of a job to recover in
any of these modes is dictated by the underlying application.
A more detailed discussion of these recovery modes is
provided in the next section.

An additional feature that the JM provides is the ability to
schedule traditional-processor-only and FPGA-accelerated
jobs seamlessly. Portions of the JM have been borrowed
from the CARMA runtime job management service
framework and middleware [16] developed at Florida, but
with improved fault-tolerance capabilities. Also, custom
components have been developed to interface with the HA
Middleware and other Dependable Multiprocessor services.

4.5. FEMPI

Fault tolerance is a critical factor for HPC systems in space,
and is required to meet the emerging high-availability and
high-reliability requirements. Recovery from failure needs
to be fast and automatic, while the impact of failures on the
system as a whole should be minimal. The impact of
failures can be minimized through several indirect
approaches (i.e. through mechanisms that do not address
direct recovery from faults). The indirect approaches
certainly avoid computation loss but, in order to enable
applications to meet high-availability and high-reliability
requirements, we need to consider other options. Some of
the options include: incorporating fault-tolerant features
directly into the applications; developing specialized
hardware subsystems that are fault-tolerant; making use of
and enhancing the fault-tolerant features of the operating
system; and developing application-independent
middleware that would provide fault-tolerant capabilities.
Among these options, developing application-independent
middleware has the minimal intrusion in the system and can
support any general application including legacy
applications that fall into the umbrella of the corresponding
middleware model. In our system, we design and develop
an application-independent, fault-tolerant, message-passing
middleware called FEMPI (Fault-tolerant Embedded
Message Passing Interface). With FEMPI, we take a direct
approach to providing fault tolerance and improving the
availability of the HPC system in space. FEMPI is a light-
weight, fault-tolerant design and implementation of the
common Message Passing Interface (MPI) standard.

Because of its widespread usage, MPI [17] has emerged as
the de-facto standard for development and execution of
high-performance parallel applications. By its nature as a
library that facilitates user-level communication and
synchronization amongst a group of processes, the MPI

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

9

library needs to maintain global awareness of the processes
that collectively constitute a parallel application. An MPI
library consequently emerges as a logical and suitable place
to incorporate certain fault-tolerant features in order to
enable legacy and new applications to meet the emerging
high-availability and high-reliability requirements of HPC
systems in space. Freeware implementations are also
underway, but significantly lag commercial efforts, and both
forms are generally too heavy and laden with overhead for
embedded systems. Fault tolerance is absent in both the
MPI (MPI-1 and MPI-2) standards, and to our knowledge
no satisfactory products or research results offer an effective
path to providing scalable embedded computing
applications with effective fault tolerance. FEMPI is a
fault-tolerant MPI design and implementation that provides
process-level fault tolerance at the MPI API level.

Fault tolerance and recovery is provided through three
stages including detection of a fault, notification of the fault,
and recovery from the fault. As with other Dependable
Multiprocessor software components, FEMPI is built on top
of the HA Middleware. The services of the HA Middleware
in conjunction with the FTM and JM are used to provide
detection and notification capabilities. The HA Middleware
allows processes to heartbeat through fault handlers, and
hence has the potential to detect the failure of processes and
nodes. The notification service is developed as an extension
to this middleware. The HA Middleware also guarantees
reliable communication between the nodes in the system
through DMS as described in Section 4.1.

With MPI applications, failures can be broadly classified as
process failures (individual processes of MPI application
crashes) and network failures (communication failure
between two MPI processes). FEMPI ensures reliable
communication (reducing the chances of network failures)
with all low-level communication through DMS. As far as
process failures are concerned, the entire application fails or
crashes on the failure of any process in regular fault-
intolerant MPI designs. By contrast, FEMPI prevents the
entire application from crashing on individual process
failures. MPI Restore, a component of FEMPI, resides in
the System Controller and communicates with the FTM to
update the status of nodes. On a failure, MPI Restore
informs all the MPI processes regarding the failure. The

status of senders and receivers (of messages) are checked in
FEMPI before communication to avoid attempts to establish
communication with failed processes. If the communication
partner (sender or receiver) fails after the status check and
before communication, then a timeout-based recovery is
used to recover out of the MPI function call.

FEMPI survives the crash of n-1 processes in an n-process
job, and, if required, can re-spawn/restart them. However, it
is still the responsibility of the HA Middleware to execute a
recovery scheme (i.e. recover the data structures and the
data on the crashed processes). A program written in
conventional MPI can execute over FEMPI with little or no
alteration.

4.6. FPGA Co-Processor Services

Using FPGAs for reconfigurable computing to accelerate
scientific applications is still an emerging discipline within
computer engineering. Until recently it has been confined
to relatively few outside the computer science and
engineering fields due to the complexity of the intrinsic
hardware design. The RC discipline is fractured and
populated with proprietary solutions. Universal standards
that power the software industry, compile-time libraries, a
universal run-time environment and reliable middleware,
etc. all do not as yet exist. Several vendors such as
Nallatech and SRC provide top-down solutions for FPGA
development, but these are based around proprietary
interfaces and closed-source APIs. Often, a specific RC
platform must be targeted before application development
can begin. This method is intolerable in the software
industry where code written to language standards (e.g.
ANSI-C) can be ported to multiple operating systems and
instruction set architectures. Porting an application to
another vendor’s RC platform is often a major task, as
substantial portions of the hardware and software need to be
rewritten.

The USURP framework is being developed by researchers
at the University of Florida as a unified solution for multi-
platform FPGA development. A compile-time interface
between software and hardware and a run-time
communication standard have been developed to support the
framework (Fig. 6). As described in [18], the compile-time

Self-Reliant

Application

JMA/FTMA
FEMPI Runtime Environment

Communication Checkpointing Health Status

DMS
(Communication)

AMS+CMS
(Health Monitoring)

Failure
NotificationHealth

InformationSystem Controller

JM

FTM

MPI
Restore

Recovery
Policy

Failure
Intimation

Figure 5. Interfaces for FEMPI and Related Software Components of the Dependable Multiprocessor.

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

10

hardware/software interface is responsible for unifying
vendor software APIs, standardizing the hardware interface
to external components and the communications bus,
organizing data for the hardware-accelerated kernels, and
exposing the developer to common FPGA resources. The
run-time communication standard handles determining
whether the resources meet the application's requirements,
configuring the FPGA, detecting and handling hardware
faults and interrupts, and transferring data between the host
PC and FPGA.

Figure 6. Hardware/Software Interface of USURP.

The Hardware Abstraction API [19] abstracts the FPGA
from the application developer; the reconfigurable hardware
becomes just another computing resource. To accomplish
this goal, the USURP hardware/software interface and run-
time communication standard are encapsulated in a familiar
library of linear algebra and signal processing kernels. The
Hardware Abstraction API is based on the GNU Scientific
Library (GSL). GSL is an open-source library of numerical
routines for scientific computing and remains popular in the
science and engineering community due to its highly
portable nature. RCGSL, our hardware-accelerated version
of GSL, uses the same structures and syntax as GSL to
provide the user with a familiar programming environment.

4.7. Checkpoint Interface

The checkpointing service provides a user-level,
uncoordinated protocol for storing and recovering system
state, application data, and any data transferred to or from
Mass Data Store (MDS). The service comprises a server
process that runs on the MDS and an API for the
applications that want to communicate data.

The main server process facilitates all data operations
between the applications and radiation hardened mass
memory. DMS is used to reliably transfer data, using its
many-to-one and one-to-one communication capabilities.
Checkpoint and data requests are serviced on the Mass Data
Store in parallel to allow for multiple simultaneous
checkpoint or data accesses.

The application-side API consists of a basic set of functions
that allow data to be transferred to the MDS in a fully
transparent fashion. These functions are similar to C-type
interfaces and provide a method to write, read, rename, and
remove stored checkpoints and other data files. The API
also includes a function that assigns each application with a
unique name that is used for storing checkpoints for that
particular application. This name is generated based upon
the name of the application and a unique job identifier and
process identifier defined by the central JM when the job is
scheduled. Upon failover or restart of an application, the
application may check the MDS for the presence of specific
checkpoint data, use the data if it is available, and complete
the interrupted processing. Checkpoint content and
frequency is determined by the process that chooses to
checkpoint.

4.8. Algorithm-based Fault Tolerance (ABFT) Library

The Algorithm-Based Fault Tolerance (ABFT) library is a
collection of mathematical routines that can detect and in
some cases correct data faults. Data faults are faults that
allow an application to complete, but may produce an
incorrect result. The seminal work in ABFT was done in
1984 by Huang and Abraham [20]. Subsequently, the JPL-
led REE project developed a parallel processing ABFT
library. The BLAS-3, ABFT-enabled library from JPL
includes functions such as matrix multiply, LU
decomposition, QR decomposition, single-value
decompositions (SVD) and fast Fourier transform (FFT).
This library is being ported to the Dependable
Multiprocessor for use by application developers as a fault-
detection mechanism. ABFT operations function by
checking on linear algebraic computations by adding check-
sum values in extra rows and columns of the original
matrices and then checking these values at the end of the
computation. The mathematical relationships of these
checksum values to the matrix data is preserved over linear
operations. An error is detected by re-computing the
checksums and comparing the new values to those in the
rows and columns added to the original matrix. If an error
is detected, an error code is returned to the calling
application. The appeal of ABFT over simple replication is
that the additional work that must be done to check
operations is of a lower order of magnitude than the
operations themselves. For example, the check of an FFT is
O(n), whereas the FFT itself is O(nlogn).

In Dependable Multiprocessor, ABFT-enabled functions
will be used by the application developer to perform
automated, transparent, low-overhead error checking on

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

11

linear algebraic computations. In the longer term, it is
expected that other, non-algebraic algorithms will similarly
be ABFT-enabled and added to the library. The user will
determine, from the returned error code, whether and how to
address the error. As part of this effort, we will add
application-level APIs, which when called will inform the
Job Management Agent (JMA) that a fault has occurred.
The JMA will then inform the FTM, and the FTM will
determine a course of action. A typical response would be to
stop the application and restart from checkpointed values.

4.9. Replication Services

Replication and comparison is a well known method to
detect errors in a system. One typical replication technique
is hardware replication, wherein the application is replicated
on one or more processing resources and the results of the
computation amongst all the processors are compared. In
Triple Modular Redundancy (TMR), if two or more results
agree, that result is taken as correct. If two or more disagree,
then an uncorrectable fault as been observed and additional
action is needed. Another technique is process-level
replication, in which multiple identical processes are
instantiated on a single processing resource and their results
compared for consistency

In this NMP experiment, since resources are limited,
process-level replication is implemented where two
identical processes are spawned on a single processing
resource. The user will insert provided application-level
API calls at locations in the program where results are
exchanged. The results of the application replicas are then
compared for consistency before forwarding. In the event
of a miscompare, an error code is returned to the calling
application. The user application will determine, from the
returned error code, whether and how to address the error.
Similar to ABFT, the user application will invoke an
application-level API to inform the JMA that an error has
occurred and that corrective action is required.

5. CONCLUSIONS

NASA’s strategic plans for space exploration present
significant challenges to space computer developers.
Traditional methods and architectures fall short of the
requirements for next-generation missions. The Dependable
Multiprocessor (DM) technology addresses this need and
provides the foundation for future space processors. The
Dependable Multiprocessor is an integrated parallel
computing system that addresses all of the essential
functions of a cluster computer for spacecraft payload
processing. A TRL4 prototype of the technology has been
demonstrated, and a TRL5 prototype will be completed in
Spring of 2006. The next step in the development of
Dependable Multiprocessor includes a TRL6 prototype,
scheduled for completion in 2007, followed by a TRL7
prototype validation flight experiment in 2009 [21].

REFERENCES

[1] J. Ramos, et. al., “Environmentally Adaptive Fault
Tolerant Computing,” IEEE Aerospace Conference, Big
Sky, Montana, March 2005.

[2] “NASA 2003 Strategic Plan,” NP-2003-01-298-HQ.

[3] R. Some and D. Katz, "NASA Advances Robotic Space
Exploration," IEEE Computer, IEEE Press, Volume 36,
Issue 1, Jan. 2003, Pages. 52 to 61.

[4] Home page of the New Millennium Program,
http://nmp.jpl.nasa.gov/.

[5] J. Ramos, R. Sowada, and D. Lupia, "Scientific
Computing in Space Using COTS Processors," Proc.
International Conference on Military and Aerospace
Programmable Logic Devices (MAPLD), Washington, DC,
Sep. 7-9, 2005.

[6] R. Some and D. Ngo, "REE: A COTS-Based Fault
Tolerant Parallel Processing Supercomputer for Spacecraft
Onboard Scientific Data Analysis," Proc. Digital Avionics
Systems Conf., IEEE Press, 1999, pp. 7.B.3-1 to 7.B.3-12.

[7] E. Prado et al., “A Standard Approach to Spaceborne
Payload Data Processing,” IEEE Aerospace Conference,
Big Sky, Montana, March 2001.

[8] G. Brown, “Radiation Hardened PowerPC 603e ™
Based Single Board Computer,” 20th Digital Avionics
Systems, Oct. 2001.

[9] IBM Corporation, “PowerPC 750FX Microprocessor
User’s Manual,” Feb 2003 http://www-
306.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_7
50FX_Microprocessor.

[10] Xilinx Corporation, “QPro Virtex 2.5V Radiation
Hardened FPGA,” Xilinx Web site, http://www.xilinx.com/,
Nov. 2001.

[11] J. Donaldson, “Push the DSP Performance Envelope,”
Xilinx Xcell Journal, Spring 2003.

[12] IEEE Standard 802.3ab, and IEEE Standard802.3z.

[13] Orion Technologies, Inc. CPC7510 Single Board
Computer webpage http://otisolutions.com/cpc7510.html.

[14] Alpha Data Parallel Systems ADM-XRC-II webpage
http://www.alpha-data.com/aDependable Multiprocessor-
xrc-ii.html.

[15] GoAhead web site, http://www.goahead.com/.

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

12

[16] I. Troxel, A. Jacob, A. George, R. Subramaniyan, and
M. Radlinski, "CARMA: A Comprehensive Management
Framework for High-Performance Reconfigurable
Computing," Proc. International Conference on Military and
Aerospace Programmable Logic Devices (MAPLD),
Washington, DC, Sep. 8-10, 2004.

[17] Message Passing Interface Forum, MPI: A Message-
passing Interface Standard, Technical Report CS-94-230,
Computer Science Department, University of Tennessee,
April 1, 1994.

[18] J. Greco, B. Holland, I. Troxel, G. Barfield, V.
Aggarwal, and A. George, "USURP: A Standard for Design
Portability in Reconfigurable Computing,” submitted to
IEEE Symp. on FCCM, Napa Valley, CA, April 24-26,
2006.

[19] J. Greco, G. Cieslewski, A. Jacobs, I. Troxel, and A.
George, “Hardware/software Interface for High-
performance Space Computing with FPGA Coprocessors,”
Proc. IEEE Aerospace Conference, Big Sky, MN, March 4-
11, 2006 (to appear).

[20] K. Huang and J. Abraham, “Algorithm-Based Fault
Tolerance for Matrix Operations”, IEEE Trans. on
Computers, Vol. C-33, No. 6, pp. 518-528, June 1984.

[21] John R. Samson, Jr., et. al., “Technology Validation:
NMP ST8 Dependable Multiprocessor Project,”
Proceedings of the 2006 IEEE Aerospace Conference, Big
Sky, Montana, March 2006.

ACKNOWLEDGEMENTS

The authors would like to thank the following people and
organizations for their contributions to the Dependable
Multiprocessor effort: Brian Heigel, Paul Arons, Gavin
Kavanaugh, and Mike Nitso from GoAhead Software, Inc.
Other members of the team are Dr. Ravishankar Iyer and
Dr. Zbigniew Kalbarcyk from the University of Illinois and
Armored Computing Inc.

The Dependable Multiprocessor effort is funded under
NASA NMP ST-8 contract NMO-710209.

BIOGRAPHIES

Jeremy Ramos earned the B.S. in
Computer Science and Engineering, and is
currently a Ph.D. student at the University
of South Florida. Mr. Ramos has been a
Honeywell Aerospace employee since
1999, and is presently a Technical Director

and Systems Engineer. His most recent assignments at
Honeywell included the Honeywell Reconfigurable Space
Computer (HRSC) project, and the New Millennium Space
Technology 8 Dependable Multiprocessor project. His

numerous technical contributions have resulted in several
patent applications, and a patent award. Prior to his
engineering career Mr. Ramos served for 7+ years with the
United States Army as a Technician in the Army Ordnance
Core. Mr. Ramos’ research interests include computer
architecture, system simulation, and reconfigurable
computing. He is a member of the IEEE.

John Samson is a principal engineering
fellow at Honeywell Aerospace in
Clearwater, Florida. Dr. Samson has 35+
years of experience in onboard processing
for space and airborne applications and has
published more than 40 papers in the area of

onboard processing systems and architectures. He is a
senior member of the IEEE and an associate fellow in the
AIAA.

David Lupia came to Honeywell Inc. in
2005. He has over 10 years of experience in
the design and development of space and
military electronics systems, with his core
expertise in Digital Signal Processing and
Communication Systems. In 1993 he

graduated from Ohio University with Bachelor of Science in
Electrical Engineering, and subsequently joined Raytheon.
He has received 3 patents in the field of satellite
communication systems and advanced waveform
development. He is a Lead Systems Engineer on the
Dependable Multiprocessor project. His research interests
include coding theory, advanced waveform development,
and fault tolerant reconfigurable computing systems

Ian Troxel is a Ph.D. candidate in
Electrical and Computer Engineering at the
University Florida. He is a research
assistant who co-leads the advanced space
computing and the reconfigurable

computing research groups at the High-performance
Computing and Simulation Research Laboratory. His
research interests include reconfigurable and embedded
computing and he is a student member of the IEEE.

Rajagopal Subramaniyan is a Ph.D. student
in Electrical and Computer Engineering at
the University of Florida. He co-leads the
high-performance computing and
communication group and is also a member
of the advanced space computing group at

the High-Performance Computing and Simulation Research
Laboratory. His research interests include high-
performance computing, systems and networks.

Adam Jacobs is a Ph.D. student in Electrical
and Computer Engineering at the University
of Florida. He is a research assistant in the
Advanced Space Computing and
Reconfigurable Computing groups at the
High-Performance Computing and

Reprinted from the Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MN, March 6, 2006

13

Simulation Research Laboratory. His research interests
include fault-tolerant FPGA architectures and high-
performance computing. He is a student member of the
IEEE.

James Greco is a Ph.D. student in the
Electrical & Computer Engineering
Department at the University of Florida.
He is a research assistant and member of
the Advanced Space Computing and

Reconfigurable Computing groups in the High-performance
Computing & Simulation Research Laboratory. His
research interests include reconfigurable computing in HPC
and the hardware acceleration of signal processing
applications. He is a student member of IEEE.

Grzegorz Cieslewski is a graduate student
at the University of Florida where he is
currently pursuing a Ph.D. degree in
Electrical and Computer Engineering. As a
research assistant he is a member of
Advanced Space Computing and

Reconfigurable Computing groups at High-performance
Computing & Simulation Research Laboratory. His
research interests include computer architecture,
reconfigurable, fault-tolerant and distributed computing as
applied to linear algebra problems and signal processing. He
is a student member of IEEE.

John Curreri is a graduate student at the
University of Florida where he is currently
pursuing a Masters degree in Electrical and
Computer Engineering. As a research
assistant he is a member of Advanced
Space Computing group at High-

performance Computing & Simulation Research
Laboratory. His research interests include parallel,
reconfigurable and fault-tolerant computing. He is a student
member of IEEE.

Michael Fischer is pursuing a Master's
Degree in Electrical and Computer
Engineering at the University Florida. He is
a research assistant who is a member of the
advanced space computing group at the

High-performance Computing and Simulation Research
Laboratory. His research interests include fault tolerance
and availability of embedded systems.

Eric Grobelny is a Ph.D. student in
Electrical and Computer Engineering at
the University of Florida. He works as a
research assistant at the High-
performance Computing & Simulation
Research Laboratory. His main focus of

research is in performance prediction of parallel scientific
applications for clustered and embedded systems through
modeling and simulation. He is also the team leader of the
Mission Assurance group which focuses on disaster

recovery and business continuity in high-performance
computing environments.

Alan D. George is Professor of Electrical
and Computer Engineering at the University
of Florida, where he serves as Director and
Founder of the HCS Research Laboratory.
He received the B.S. degree in Computer
Science and the M.S. in Electrical and

Computer Engineering from the University of Central
Florida, and the Ph.D. in Computer Science from the Florida
State University. Dr. George's research interests focus on
high-performance architectures, networks, services, and
systems for parallel, reconfigurable, distributed, and fault-
tolerant computing. He is a senior member of IEEE and
SCS, and can be reached by e-mail at george@hcs.ufl.edu.

Minesh I. Patel is a systems and software
architect and consultant with Tandel
Systems in Clearwater, Florida. He received
his BSEE and BSCpE in electrical and
computer engineering and his MSCpE and
Ph.D. in Computer Science and Engineering

from the University of South Florida. His research and
technical interests include software and system fault
tolerance, artificial intelligence and machine learning,
embedded and real-time systems and high-performance,
parallel and distributed computing. Dr. Patel is Lead
Software Architect for the Dependable Multiprocessor
project.

Vikas Aggarwal is a systems engineer with
Tandel Systems in Clearwater, Florida. He
received his B.Tech. degree in Electronics and
Communications Engineering from G.G.S.
Indraprastha University, Delhi, India. He then
moved over to United States and received his

MS degree in Electrical and Computer Engineering from
University of Florida. His research interests include
reconfigurable and embedded computing and system fault-
tolerance, high-performance, parallel and distributed
computing.

Raphael Some is a program technologist at
JPL for the New Millennium Program. He
has served as Contract Technical Manager
and Leader of the Technology Review
Board for the ST8 Dependable
Multiprocessor project. Prior to his

involvement with the NMP ST8 project, Mr. Some was the
Chief Engineer for the Remote Exploration and
Experimentation Project at the Jet Propulsion Laboratory.
Previously, at JPL, he formulated and managed the Smart
Sensor project. His experience prior to JPL includes the
development of fault tolerant space based supercomputers as
well as a variety of avionics and signal processing systems
for both commercial and military applications. He holds a
BSEE from Rutgers University.

