IMPORTANCE SAMPLING TO EVALUATE REAL-TIME SYSTEM
RELIABILITY: A CASE STUDY
G. Durairaj, I. Koren, C.M. Krishna
Dept. of Electrical and Computer Engineering
University of Massachusetts, Amherst
gopinathd@yahoo.com; {koren, krishna}@ecs.umass.edu

ABSTRACT

Real-time distributed computers are often used in life-critical applications. How-
ever, the complexity of such systems calls for extensive simulation studies to validate
their performance and reliability before a design can be accepted and a prototype
constructed. A simulator testbed has been built to model a variety of such systems
quickly from a few basic building blocks.

Life-critical applications require reliability levels so high that brute-force simu-
lation to validate these levels would take weeks of computer time. In this paper, we
present studies we have conducted into the use of Importance Sampling in simulat-
ing real-time systems. While many theoretical studies have been published on this
technique, there are practical studies available in the literature. This paper presents
a interesting case-study of the use of Importance Sampling in an increasingly impor-
tant branch of computer engineering.

Importance Sampling may not work for all cases and over all parameter ranges.
In this paper we are interested in finding out whether (and how well) this scheme
works for the case of distributed real-time systems and also the range of failure bias
values for which it works well. Specifically we look at the implementation of two
heuristics called ‘forcing’ and ‘failure biasing’ in the testbed. This was validated
by comparing the reliability estimates with that of normal (very long) simulation.
The effect of the failure bias on the dynamics of the scheme are also investigated to
provide readers with some guidance on choosing appropriate bias values.

® ACKNOWLEDGEMENT: This work was partially supported by the Defense Advanced Projects Agency and the
Navy SPAWAR under contract N0039-94-C-0165. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Projects Agency, SPAWAR, or the US Government.

1 Introduction

Real-time, distributed, fault-tolerant computers are increasingly being used in critical applica-
tions like aircraft control, air traffic control, factory automation etc. Such computers need to
be highly reliable and are expected to deliver critical outputs in a timely fashion, even in the
presence of a few component failures.

Modeling the reliability of such computers is extremely complex. Reliability in real-time
systems is a dynamac, rather than a static, concept [16]. In other words, real-time reliability
translates into the system being able to avoid missing critical deadlines. The ability to meet
deadlines is a complex function of a number of parameters: the hardware, the operating en-
vironment, the interconnection network and communication protocol, the executive software
(including the task assignment and scheduling algorithms), and the fault-tolerance procedures
used. It is practically impossible to obtain an analytical model that models reliability as a func-
tion of all these parameters and their interactions to high degree of accuracy. Thus analytical
models can be used as rough guides of system reliability than definitive predictors. Instead, a
designer has often to turn to simulation for reliability evaluations that are sufficiently accurate
for fine-grain design decisions and prototype-building.

However, simulation has the drawback of requiring very long computation times, even with
today’s high-speed computers. This is especially true when reliability levels of 10~ or lower
must be validated: to obtain confidence intervals that are sufficiently small can require compu-
tational runs lasting many days or weeks. Several methods have been proposed in the simulation
literature to reduce such long runs [23]|. One fairly new method, which has been attracting some
attention, is Importance Sampling.

A good analogy for understanding Importance Sampling is how processor lifetimes are often
obtained experimentally. Since these lifetimes are of the order of thousands of hours, it would
take a long time to obtain sufficient statistics on processor lifetime if we simply ran them
to failure under normal conditions. Instead, one might measure their lifetimes under high
temperature. The way in which failure is accelerated by high ambient temperature is fairly well
known. Hence, we can obtain high-temperature processor lifetimes by experiment, and then use
the computed acceleration factor to determine their lifetimes under room temperature.

Importance Sampling has the same philosophy. Instead of simulating the system under
the specified parameters and then waiting a very long time before enough failure data can be
recorded, we simulate the system under stressful conditions, which increases the rate at which
failures happen. Once sufficient failure data have been recorded, we can then make a theoretical
computation to predict what the failure probability or rate would have been if the system had
been running under the specified parameter set (rather than the “stressed” parameters).

Importance Sampling has great potential for speeding up rare-event simulation. However,
anecdotal evidence suggests that it is a somewhat temperamental technique, which can some-

times do quite badly in reducing the simulation variance. The purpose of this paper is to report
a case study of the use of Importance Sampling to real-time systems.

The framework for our study is RAPIDS (Recovery Policies for Real-time Distributed
Systems), which is a simulator testbed for real-time systems. Our work consisted of doing
the following:

e Implementing Importance Sampling in the RAPIDS simulator.

e Analysing the expected behavior of such a scheme.

e Validating the implementation.

e Investigating the tunable parameters in the scheme and providing guidelines on their use.
We do not make any new theoretical innovations in this paper; rather the contribution of this
paper is in the case-study it provides for the use of Importance Sampling in real-time systems.
Importance Sampling is a somewhat temperamental technique, and the guidance provided in

this paper on the choice of biasing parameters and when to use Importance Sampling is likely
to be of interest to other workers.

2 Technical Background

2.1 The RAPIDS Simulator

RAPIDS [1] is a simulator testbed that has extensive facilities to specify a distributed real-time
system completely and to observe its behavior. The system to be modeled can be viewed as a
collection of computing nodes that are connected by a communication network (see Figure 1).
RAPIDS provides facilities for the user to specify the system by giving detailed information
about the following:

e The computing nodes and their executive software (including the tasks scheduling algo-
rithm and the checkpointing scheme.).

e The real-time tasks that run on the nodes (modeled as periodic, aperiodic or sporadic
tasks).

e The algorithms to be used for task allocation.

e The messages that are exchanged by the nodes as part of the execution or maintenance
(modeled as data and control messages).

e The interconnection network.

External devices Sensors

\ / Console Simulated System

Computing Node Computing Node Computing Node

I

Computing Node Computing Node Computing Node

A Typical Distributed Real-time System Simulator Implementation

Figure 1: A typical distributed real-time system and the RAPIDS Implementation

e The fault recovery policy to be used when a fault is detected on one of the nodes [32].

The simulator models this system by having a set of processes that communicate with each other
by means of a portable message-passing library called PVM [8]. There is a process to model each
of the computing nodes, the network interconnect, the central clock and the console. The console
process controls the entire simulation run and its responsibilities include generating the events
for all the simulation entities (implemented as the ‘Event Generator’) and analyzing the results
of a simulation run (implemented as the ‘Analyzer’). Importance Sampling implementation
will be done in this process. RAPIDS has a graphical user interface showing the status of the
simulated system including:

e Summaries about the tasks meeting or missing their deadlines.

e Run time graphical information about

— Task allocation
— Task scheduling

— Fault occurences

Additional implementationn details of the simulator can be found in [1].

2.2 Importance Sampling

In Importance Sampling, we change the probabilistic dynamics of the system for simulation
purposes. The simulation is biased so that sample paths ending in system failure are generated
disproportionately often. We then make adjustments to the sample outputs to unbias (i.e., to
correct the biasing of) the estimator before computing it. A good reference for the mechanics
of this technique is Hammersley and Handscomb [13]. Generalizations to stochastic systems are
given by Glynn and Iglehart [9]. The heuristic of failure biasing, which we use in this paper,
was first proposed by Lewis and Bohm [19] in the reliability estimation of nuclear reactors. In
Goyal, Heidelberger and Shahabuddin [11] it was adapted to estimating the unavailability of
highly reliable Markovian systems. In Shahabuddin et al. [24], it was used for the estimation of
the MTTF using a regenerative method. Generalizations of these heuristics along with new ones
have been investigated in the unifying paper of Goyal et al. [12]. The reader is directed to these
references for a full description of the theory underlying the Importance Sampling technique.
In the remainder of this section, we provide the minimum background required to understand
our implementation of Importance Sampling in the RAPIDS simulator.

2.2.1 Introduction to Importance Sampling

Suppose X is a random variable with density function p(x). We are interested in estimating the
probability, 0, that X is in the set of failed states, A. This quantity is given by

+00
0= J]{xeA}P(X)dX =k []{XGA}]
—00

where the subscript p denotes sampling from the density p(-) and 1,ca is the indicator of
the set A. If we were using normal (i.e., traditional) simulation, we would draw n samples,
X1,X2,-++,Xn, of X from the density p(x) and compute 6 = (1/n) > i*; Ix,ca. Let o be the
estimate of the standard deviation of these readings. From elementary probability, we have
o= \/m . We can find, for any given « € [0, 1], the 100c% confidence intervals relating
to our estimate of 6. The half-width of these confidence intervals is given by z,,,0/y/n, where
Z4/2 is the 100(1 — o/2) percentile point of the standard normal distribution.

If x =0.9, zy/, = 1.282. If our goal was to keep the confidence interval width to about 10%
of the mean, we would have:

1.2824/0(1—0)/n < 0.10
=>n ~ 100x1.282%x(1/6—1)
n therefore grows very rapidly as 0 decreases: for example, if 8 = 107°, n ~ 108, which would

make for very long simulation runs. It is clear that normal simulation is not always practical
for highly reliable systems.

The idea of importance sampling is to pick another suitable density function p’(x) and then
to write:

I

X

= EpllixeatX)]

where L(x) =p(x)/p’(x) is called the likelthood ratio and the subscript p’ indicates that we are
taking the expectation over the density function p’(-). All this requires only that p/(x) > 0 for
all x € A for which p(x) > 0.

The above equation is the key to the Importance Sampling technique. We pick a density,
p’(x), which has a greater chance of resulting in X € A than the original density, p(x). Then, we
obtain n samples, Xi,--- , Xy, and estimate 0 through the equation 8 = (1/n) > i ; Ix,eaL(Xy).

2.2.2 Implementation Heuristics

Simulation consists of constructing a state model of the system, and deciding when the system
enters a given state when the next state transition will occur, and what the next state will be.
To speed up the simulation, we use two techniques introduced by Lewis and Bohm [19] and
Shahabuddin [25]. The first, called forcing, increases the rate at which state transitions occur.
The second, called balanced failure biasing, biases the system towards more faults. Nakayama
[20] provides a study of this, and a related, biasing technique.

Each of these techniques has a likelihood ratio associated with it. The overall likelihood
ratio associated with using both of them is just the product of the individual ones.

Let us start by considering forced (or accelerated) state transitions. Let f(t/t’,k’) denote
the density function for the transition instant, t, given that in its last state transition, the
system entered state k' at time t’. All times are absolute, global quantities. Forcing consists
of replacing f(-) in the simulation by another density function, f(-), which makes for more state
transitions. We now proceed to make this more concrete.

For each node i in the system, the Poisson fault arrival rate is given by A;. Permanently
failed nodes cannot be repaired; however, if node 1 suffered a transient fault, it does recover and
its recovery time is exponentially distributed with parameter p;. A is the total failure rate out
of the current system state and is equal to the sum of the failure rates of all active, non-faulty,
nodes. u is the total recovery rate out of the current state and is equal to the sum of the recovery
rates of all the nodes currently suffering a transient fault. Finally vy is the total transition rate
out of the current state, i.e., y = A+ 1. As a node goes faulty or gets repaired, the system state
changes and these variables are updated.

Usually the failure rate of the nodes is very small when compared to the transient-failure
recovery rate. Therefore v is small when no failed components are present. In such a case, the
transition rate is boosted by taking

it k)

!
fltle', k) = { Ferte fort'st<T

otherwise

where T is the mission time of the system. This heuristic is applied only when <y is small,
v(T —t') <« 1 and there is only a small chance that an additional transition will take place
before the end of mission time T.

The likelihood ratio associated with forced transitions is then given by

_i(ﬂtl’kl) —1— e Y(T=Y)
f(tlt', k")

The second acceleration technique is failure biasing. As mentioned previously, it consists of
artificially increasing the chance that the system will suffer more node failures.

Define the state-transition probability, 7y x as the probability that if the system is in state
k', its next state will be k. We say that (k’, k) is a failure transition if the failure of some node
results in the system making the transition from k’ to k. Define F as the set of all the failure
transition pairs. Then, in the normal simulation (and in the actual system), the probability
that the system currently in state k' makes a transition associated with a node failure is given
by Ty = Z(k,_k)g Ty x. Failure biasing consists of boosting this transition probability for
each state, k’. To implement failure biasing, pick some suitably large quantity, ¢, and define a
state-transition transition matrix 7t = [t/ i] such that

Z Ttk = ¢.
(k/ k)eF

Clearly, this results in

Y Aer=1-1¢.
(k" k)ZF

The simulator determines which node is struck by a fault by maintaining an ordered list of
all the n eligible nodes and generating a random number i uniformly distributed between 0 and
n — 1. iis the index of the node experiencing the fault. The likelihood ratio associated with
this failure biasing is then given by

T/ k TL?\{L

fwx ¢y

If it is a recovery, the simulator decides which node recovers from a transient by looking at the
repair rates of the nodes currently affected by a transient fault. For this we order the eligible

nodes and determine the particular node i by using the following formula

—¢)
ZM’ 7¢ ZM’

i'=1 i'=1

The likelihood ratio associated with the forcing is then given by

T/ k 1 u
——=(1-0¢) =
T/ k

The overall likelihood ratio associated with both failure biasing and forcing is just the prod-
uct of the individual likelihood ratios for failure biasing and forcing, respectively.

3 Implementation

To implement Importance Sampling in our model (recall Figure 1), we do not alter the simulated
system: we only need to modify the generation of the fault arrival/repair events and the way the
reports are analyzed. We measure the unreliability of the system by repeating the simulations
to get individual samples. The general approach to be followed is summarized in Figure 2.

The logical place to implement Importance Sampling is in the console. To be more precise,
we can implement this in the event generator and the analyzer. The event generator has the

following responsibilities:

e Decide the time of the next system state transition. Implement “forcing” to accelerate the

state changes.

e Decide whether the next transition is a fault arrival or repair. Implement “failure biasing”

to push the system towards more component faults.

e Calculate the likelihood ratio associated with each “change of measure” and store this

value along with the event.

The analyzer has the following responsibilities:

e Receive reports from the simulated system.

e If it corresponds to one of the above mentioned “change of measure”,

simulation weight.

update the current

e If the system fails within the mission time, set the simulation output to the current value

of the likelihood ratio; else set the simulation output to zero.

‘ Start a Simulation Run i

!

Initialize the weight of the Simulation output to 1

¢

"Forcing" and "Failure Biasing". Store the associated
Likelihood Ratios in a central event queue

Generate fault arrival/repair events using the heuristics

|

a’change of measure’ is performed. Thisis done by
multiplying the current weight with the likelihood ratio
associated with the event.

Observe the simulation run and update the weight whenever

|

Check if the simulation run has ended. This can be a’fail
when the critical tasks misstheir deadlines or a’ sucess

when the simulation has finished the simulation run period.

ure

Failure
Output the current value of the
simulation weight Outpu

¢

Success

t zero

Calculate the confidence inteval using the sample results

accumulated so far and check if it fallsinto the desired range.

Terminate the simulation runs and output the results

Figure 2: Flowchart of the implementation

3.1 Expected Behavior of Importance Sampling

Before we carry out the validation of the implementation, it
expected behavior of the Importance Sampling scheme. Th
unreliability values this approach works well. Intuitively we
range of the unreliability values beyond which normal simulati
Sampling.

We will use the Relative Error (RE) defined below as the

mation scheme (normal simulation and Importance Sampling
za/zc
RE =
\/nb

is imperative to understand the
e question is for what regions of
know that there should be some
on will be better than Importance

performance measure of the esti-

).

RE

Normal Simulation

S

Cross Over
/
¢ i
Ideal Importance Sampling
0 i 1
! - Sample Mean

3 Importance Sampling performs poorer

Importance Sampling performs better

Figure 3: RE of Normal Simulation and Importance Sampling

For the case of the normal simulation, this becomes

Zo(/z 9(] — 9)

RE =
/o

for a fixed number of samples, as the failure event becomes rarer (i.e., 8 — 0) the RE ~ z,,,/vn0
becomes unbounded. Therefore, to obtain precise estimates, we need very large n.

In most cases, the failure rates of the system components are very small by comparison
with the transient-failure recovery rate. Let A;nqx > O be the maximum component failure rate
in the system. We call A qx the ‘rarity’ parameter of the system. For Importance Sampling,
Shahabuddin [27] notes that the elements of the modified transition matrix, (7t], should be
independent of the rarity of the failures. This is an ideal Importance Sampling scheme which
will always lead to the bounded RE property. He also proves in this case that RE will have the
form

RE — Za/2 v/ a2 +0(1)
vn (ap +o(1))

where a, and ag are positive constants depending on the implementation.

For a fixed number of samples, we can represent the behavior of RE as shown in Figure 3,
for the cases of normal simulation and Importance Sampling. This ideal Importance Sampling
scheme will be able to estimate the sample mean with a small, fixed number of samples. We also

10

observe that there is a certain region of reliability values beyond which the normal simulation
will be better than the Importance Sampling.

In practice, techniques such as Balanced Failure Biasing approximate the behavior of this
ideal case. They achieve variance reduction (and hence RE reduction) by pushing the system
towards more faults and hence reducing the reliability of the underlying system. They then
unbias the sample output to get the correct value of the sample mean.

The RE offered by such heuristics may not be constant but rather a complicated function
of the bias value and the type of the system under consideration. However, as the reliability of
the system decreases, the bias value has to be kept arbitrarily low in order to maintain the RE
close to that of the normal simulation. Hence beyond a point, Importance Sampling is not very
useful. It is important to experimentally determine this range of values so that the user can
switch to the normal simulation instead of the Importance Sampling scheme.

In the systems that we are interested in simulating, the most obvious failure path is the
one where the system is unable to meet its critical task deadlines. This obviously depends on
a variety of factors such as the number of computing nodes available, average task load on the
computing nodes, the recovery overheads etc. Consider a rather crude example: let a system be
composed of x computing nodes and to meet its critical task deadlines it needs at least y of them.
Increasing the failure bias has the effect of pushing the system towards complete breakdown (in
other words, more of the nodes are pushed towards failure). In many cases this will be overkill
and the likelihood ratio associated with these sample runs will be very low. Thus most of the
sample runs will have a likelihood ratio that is very small and a few of them will have very large
values. This effect causes the RE to blow up in cases where the bias value is very high.

Because of these conflicting effects associated with the bias value, each system might have
a optimal bias value that pushes the system towards the failure path most of the time and still
does not make the RE blow up. Since it is not practical for us to locate this optimal value for
each configuration, it is enough if we are able to guess a bias value that gives good results over
a range of systems.

4 Experimental Results

4.1 Importance Sampling Evaluation

In this section, we consider four distinct and representative system configurations and compare
the system unreliability predicted by (a) normal (i.e., traditional) simulations (without any
bias), and by (b) Importance Sampling. We show that Importance Sampling performs poorest
when the system unreliability is high, i.e., when the events to be captured by simulation are
not very rare, and best when the system is highly reliable. Our experiments suggest that if
the unreliability of the system is of the order of 0.01 or higher, Importance Sampling may give

11

Parameter Configuration 1 | Configuration 2 Configuration 3 Configuration 4
Number of nodes 6 7 8
Network interconnect Token Ring FDDI Rectangular mesh | 3D hypercube
Transient processor failure 5 2 1
rate (per hour)
Permanent processor failure 1 0.2 0.1 0.1
rate (per hour)
Mission time (seconds) 1000 1500 2000 2000
Average node utilization 0.4 0.3 0.25 0.25
Table 1: System Configurations
Configuration Mean | Variance No. of Samples | HW_90 AF
NS IS NS IS NS IS NS IS
1 4.24E —02 | 2.36E—02 || 4.06E—02 | 5.20E—02 || 2,500 | 2,600 || 12.2% | 24.3% || undefined
2 3.20E—03 | 342E—03 || 3.19E—03 | 9.90E —04 || 5,000 | 1,400 || 32.0% | 31.6% 3.57
3 7.00E —04 | 6.46E —04 || 6.99E — 04 | 5.65E — 05 || 20,000 | 1,938 || 34.3% | 33.9% 10.32
4 3.00E—04 | 298E —04 || 2.99E —04 | 1.74E —05 || 40,000 | 2,430 || 37.9% | 36.4% 16.46

NS=Normal simulation; IS=Importance Sampling;
HW _90= half width of confidence interval as percentage of mean

Number of samples under normal simulation
Number of samples under Importance Sampling

Accleration Factor, AF =

Table 2: Normal simulation vs. Importance Sampling with a bias of 0.3

misleading results. On the other hand, when it is of the order of 1073 or lower, the results of
Importance Sampling agree very well with those of traditional simulation.

The four system configurations are shown in Table 1. The output of each simulation was
a single number: O if the system was still functional at the end of the mission duration, and
1 if it failed before the specified mission duration ended. The simulations were repeated until
the width of the 90% confidence interval was about 30% of the sample mean. The results are
shown in Table 2. Apart from the observations we have already made regarding the accuracy of
the sample mean, the difference in the required number of samples (which translates into the
number of simulation runs needed) is striking when the unreliability is of the order of 1073 or
lower. Indeed, the acceleration factor! (defined in Table 2) varies from 3.57 for configuration 2
to over 16 for configuration 4. As the system reliability increases, so too does the acceleration
factor.

!AF is undefined for Configuration 1 because Importance Sampling fails to provide an accurate result.

12

Configuration | Failure Probability Variance when Bias Value =
0.2 0.3 0.4 0.5 0.6
1 4.24F — 02 4.80E—-02 | 5.20E — 02 | 5.50E—02 | 5.86E—02 -
2 3.20E — 03 9240E—04 | 9.90E—04 | 1.02E—03 | 1.37E—03 -
3 7.00E — 04 6.04E—05 | 5.65E—05 | 6.21E—-05 | 6.27E—05 | 7.83E—05
4 3.00E —04 3.20E-05 | 1.74E-05 | 1.69E—-05 | 1.83E—-05 | 2.92E—05
5 2.10E-05 4.70E-07 | 2.30E—07 | 1.90E—07 | 1.98E—07 | 2.53E—07
6 5.02E—07 - 3.07E —09 | 2.93E — 09 | 2.64E—09 | 2.86E—09

Table 3: Sample variance for different failure bias values

4.2 Selecting the Bias Parameter

As mentioned earlier, failure bias is an important parameter that alters the dynamics of the
sample output. If it is too low, we don’t push the system towards additional component failures
fast enough. Because of this only a small percentage of the sample runs result in a system failure
and the sample variance is high. If the failure bias is too high, the distortion that this causes
affects the accuracy of the simulation output, and the sample variance is high. There is usually
some optimal value of the failure bias that pushes the system towards additional faults but is
not too high to result in inaccuracies.

Since the simulator has to work with a large variety of systems with varying unreliabilities,
we want to identify nominal values of failure bias that result in a low sample variance for system
configurations with different ranges of unreliability values. Intuitively, if the sample variance
is low, the estimates converge faster and we need fewer samples to get the desired confidence
intervals.

We expect the user to choose some nominal bias depending on the ‘guessed’ range of system
unreliabilities. This will serve as a starting point and the failure bias can be tuned if repeated
sample runs or experiments are needed.

We want to use the above mentioned system configurations (with varying unreliability values)
and observe how the sample variance changes when we vary the failure bias values. We add
two more system configurations (with decreasing unreliabilities) to extend the range of the
unreliabilities. For this experiment, we vary the failure bias over a range from 0.2 to 0.6 in steps
of 0.1 and observe how the sample variance changes in response. The results are tabulated in
Table 3.

From Table 3, we observe that the optimal bias value (the one that produces the least
sample variance) is different for each configuration and in general, the lower the unreliability of
the system, the higher the value of this optimal bias. This is as expected.

For Configuration 1, the normal simulation is the best choice. For all the failure bias values,

13

Configuration | Fixed Recovery Action | RAMP Algorithm
2 3.42E-03 3.36E—-03
3 6.46E—04 2.84E—-04
4 2.98E—-04 1.74E—04
5 2.10E-05 1.30E—05

Table 4: Comparison of Recovery Policies

the sample variance is substantially above that for the normal simulation. Configuration 2 seems
to have an optimal value around 0.2, Configuration 3 around 0.3, both Configurations 4 and 5
an optimal value around 0.4, and Configuration 6 around 0.5. It seems to stabilize around 0.5
for configurations with higher reliabilities.

A bias value of around 0.4 seems to work well for most of the configurations. If the guessed

unreliability of the system is quite high (on the order of 1073), we are better off by choosing a
bias of around 0.2 —0.3.

4.3 Comparing Recovery Policies
Here, we present a small example of the use of Importance Sampling in selecting suitable recovery
policies in a real-time system.

When a fault is detected on a node, the system has a choice of three basic recovery actions.
They are Retry (Restart execution on the same node using the last checkpoint), Replace (Replace
the faulty node with a spare, if one exists) and Disconnect (Distribute the tasks that were
running on the faulty node among the other active nodes).

RAMP is a dynamic resource management algorithm [31] that suggests the optimal recovery
action to be used whenever there is a fault in the system and a decision has to be made regarding
the choice of the recovery actions. We want to compare the reliability of a system using RAMP
against another that uses a fixed recovery policy. To compare the two, we use simulation,
accelerated by importance sampling.

An intuitive fixed recovery action can be formulated such as the following:

e When the node fails, try a Retry first.
e If the Retry failed, then try to Replace the faulty node by a spare node.

e If a spare does not exist, then as a final resort, Disconnect the faulty node and distribute
its load to the other active nodes.

We used such a fixed recovery action in Configurations 2 to 5.

14

Table 4 also contains the unreliability of the system when the RAMP recovery policy is used.
From this we can quantify the extent to which the RAMP algorithm outperforms the intuitive
fixed recovery action for all of the considered configurations. In cases like these, using normal
simulation would have taken a prohibitively long time to yield the same result.

5 Conclusion

This paper has discussed the implementation of an efficient variance reduction technique called
Importance Sampling in a simulator testbed.

Importance Sampling was successfully implemented on the RAPIDS testbed. It was validated
by running a series of simulations for different configurations and comparing the results with
that of a normal simulation.

We observed the behavior of the scheme and its performance (reduction in sample variance)
by varying the failure bias. Increasing the failure bias causes the sample variance to reduce faster
but only upto a limit. Beyond this limit (which is specific to the system under observation) an
increase in failure bias causes unstability. This knowledge is used to provide some guidelines in
choosing a good failure bias probability for a given system.

Our experiments indicate that Importance Sampling is a powerful mechanism to accelerate
the simulation of highly reliable real-time systems. It must, however, not be used for less reliable
systems.

References

[1] M. Allalouf, J. Chang, G. Durairaj, V.R. Lakamraju, O.S. Unsal, I. Koren and C.M. Kr-
ishna, “RAPIDS: A Simulator Testbed for Fault-Tolerant Real-Time Systems,” Proc. of
HPC’98, Grand Challenges in Computer Stmulation, pp. 191-196, Boston, April 1998.

[2] S. Andradottir, D. Heyman and T. Ott, “On the Choice of Alternative Measures in Im-
portance Sampling with Markov Chains,” Operations Research vol.43, no.3, pp.509-519
1995.

[3] M. Berg and I. Koren, “On Switching Policies for Modular Fault-Tolerant Computing Sys-
tems,” IEEE Trans. Computers, Vol. C-36, pp. 1052-1062, Sept. 1987.

[4] M. Boyd and S. Bavuso, “Simulation Modeling for Long Duration Spacecraft Control Sys-
tems,” 1998 Proc. Annual Reliability and Maintainability Symposium,” pp 106-113
1993.

[6] J. Carrasco, “Failure distance based simulation of repairable fault-tolerant systems,” Proc.
of 5th International Conf. on Modeling Techniques and Tools for Computer Perfor-
mance Evaluation, pp 337-351.

15

[6]

[10]

[11]

[21]
[22]

23]

J. Carrasco, “Efficient Transient Simulation of Failure/Repair Markovian Models,” Proc.
of 10th Symposium on Reliable and Distributed Computing, IEEE Computer Society
Press, pp 152-161.

P. L‘Ecuyer, “Efficiency Improvement and Variance Reduction,” Proc. of the 1994 Winter
Stmulation Conf. pp. 122-132 1994.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM: Parallel
Virtual Machine, MIT Press, 1994.

P. Glynn and D. Iglehart, “Importance Sampling for Stochastic Simulations,” Management
Science, vol. 35, no. 11, pp. 1367-1393, 1989.

A. Goyal and S.S. Lavenberg, “Modeling and analysis of computer system availability,”
IBM J. Res. Develop., vol.31 pp.651-664, 1987.

A. Goyal, P. Heidelberger, P. Shahabuddin, “Measure Specific Dynamic Importance Sam-
pling for Availability Simulations,” 1987 Winter Simulation Conference Proceedings,
IEEE Press 1987.

A. Goyal, P. Shahabuddin, P. Heidelberger, V.F. Nicola and P.W. Glynn, “A Unified Frame-
work for Simulating Markovian Models of Highly Dependable Systems,” IEEE Transac-
tions on Computers, vol.41 no.1 pp. 36-51, 1992.

J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods, Meuthen, London, 1964.

P. Heidelberger, “Fast Simulation of Rare Events in Queueing and Reliability Models,”
ACM Transactions on Modeling and Computer Simulation Vol. 5, No. 1, 1995.

R. Jain, FDDI Handbook, Addison-Wesley, 1994.

C. M. Krishna and K. G. Shin, “Performance Measures for Multiprocessor Controllers,”
Performance ’'83, May 1983.

C.M. Krishna and K.G. Shin, Real-Tvme Systems, McGraw-Hill, 1997.

L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,” Com-
munications of the ACM, Volume 21, 7, 1978.

E.E. Lewis and F. Bohm, “Monte Carlo simulation of Markov unreliability models,” Nu-
clear Engineering and Design, Vol. 77, 1984.

M. Nakayama, “A Characterization of the simple failure biasing method for simulations of
highly reliable Markovian Systems,” ACM Trans. Model. Comput. Simul. vol. 4, no. 1,
pp 52-88, 1994.

M.L. Puterman, Markov Decision Processes, John Wiley & Sons Inc., 1994.

S.M. Ross, Applied Probability Models with Optimization Applications, San Fransisco:
Holden-Day, 1970.

S.M. Ross, Simulation, Academic Press, 1997.

16

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

P. Shahabuddin, V. Nicola, P. Heidelberger, A. Goyal and P. Glynn, “Variance Reduction
in Mean Time to Failure Simulations,” 1988 Winter Stmulation Conference Proceedings,
IEEE Press, 1988.

P. Shahabuddin, “Simulation and Analysis of Highly Reliable Systems,” Ph.D. Thesis,
Department of Operations Research, Stanford University, Palo Alto, California.

P. Shahabuddin and M. Nakayama “Estimation of reliability and its derivatives for large
time horizons in Markovian systems”, 1993 Winter Simulation Conference Proceedings,
IEEE Press, pp 491-499.

P. Shahabuddin, “Simulation of Highly Reliable Markovian Systems,” Management Sci-
ence, vol. 40, pp 333-352, 1994.

W. Stallings, Handbook of Computer-Communications Standards, Howard W. Sams &
Co., 1988.

J.S. Steinman, “Breathing Time Warp,” Proceedings of the 1993 Workshop on Parallel
and Distributed Simulation, 1993.

K.K. Toutireddy, “A Testbed for Fault Tolerant Real-Time Systems,” M.S. Thests, Univ.
of Mass. Amherst, 1996.

K. Yu, “RAMP and the Dynamic Recovery and Reconfiguration of a Distributed Real-Time
System,” Ph.D. Thests, Univ. of Mass. Amherst, 1996.

K. Yu and I. Koren, “Reliability Enhancement of Real-Time Multiprocessor Systems
through Dynamic Reconfiguration,” Fault-Tolerant Parallel and Distributed Systems,
D. Pradhan and D. Avresky (Editors), pp. 161-168, IEEE Computer Society Press, Los
Alamitos, CA, 1995.

17

