
Runtime FPGA Partial Reconfiguration
E. J. McDonald

The Aerospace Corporation
P.O. Box 92957

Los Angeles, CA 90009-2957
310-336-0976

Eric.J.McDonald aero.org

Abstract Field-programmable gate arrays (FPGAs) are
now being integrated into many space-based applications.
FPGAs are being used as replacements for application-
specific integrated circuits (ASICs) without considering
new options offered by their reprogrammable nature.
Runtime partial reconfiguration can potentially reduce the
number of devices or the device size, thereby reducing both
size and power consumption. A system that requires either
transmit or receive capabilities at any given time, but not
both, can switch between the two modes in a fraction of a
second using partial reconfiguration. The current approach
requires that both modes be implemented simultaneously,
thereby wasting power and requiring more resources. The
idea of adaptively allocating limited FPGA resources is also
applicable to hardware-accelerated software-defined radios.
The hardware accelerators are loaded into FPGA(s) as they
are needed. Partial reconfiguration allows swapping of
accelerators much faster than is possible with current
methods, and with less disruption to other processes running
in parallel. This technology significantly reduces power
consumption critical for space and portable ground-based
applications of FPGA technology. A software-defined radio
was designed with a reprogrammable forward error
correction (FEC) block supporting multiple FEC codes to
demonstrate one practical use of this technology. This paper
provides an overview of the design flow necessary for
partial reconfiguration and comments on the additional
overhead necessary for creating such a design. In addition,
limitations to this emerging technology are outlined.1 2

Index Terms Software-defined radio, FPGA partial
reconfiguration, FPGA dynamic reconfiguration.

TABLE OF CONTENTS

1. INTRODUCTION...................................... 1
2.SOFTWARE-DEFINED RADIO.................................2

3. PARTIAL RECONFIGURATION IN THE VIRTEx-4 ..2
4. SDR AND PARTIAL RECONFIGURATION...............5
5.CONCLUSIONS...................................... 6
REFERENCES 7
BIOGRAPHY 7

1 1-4244-1488-1/08/$25.00 C 2008 IEEE.
2 IEEEAC paper #1443, Version 4, Updated Dec. 3, 2007

1. INTRODUCTION

Field-programmable gate arrays (FPGAs) are quickly
becoming the usual targeted technology for many
development efforts due to their low cost and rapid
development time. Advances in digital technology provide
the means to make each generation of FPGAs significantly
more attractive and useful than their predecessors. Each
generation introduces additional benefits and utilities
besides the expected larger size and faster speed. Exploring
suitable applications for the latest available products must
be a continuous endeavor because their performance and
abilities improve significantly with each new product
release. Additionally, because each vendor's products have
characteristics and utilities that are not necessarily shared by
the competition and are often unique, evaluating a specific
vendor's product requires significant effort and prevents a
straightforward side-by-side comparison. One advancement
of significant importance is the ability to reconfigure a
portion of an FPGA. This ability is referred to as partial
reconfiguration (PR). The focus of this paper is to evaluate
runtime partial reconfiguration in Xilinx's Virtex-4 FPGAs
as it applies to the field of software-defined radio.

To date, at least three vendors provide products that offer
some degree of partial reconfiguration (Xilinx [1], Atmel
[2], Lattice [3]). The real advantage of partial
reconfiguration occurs when the reconfiguration takes place
dynamically during runtime. Runtime partial
reconfiguration, or dynamic reconfiguration, allows the
reconfiguration of a portion of an FPGA while the
remainder continues to run continuously without losing any
data. Because partial reconfiguration is coupled very closely
to the underlying framework of the FPGA itself, each
vendor's FPGAs will have significant differences that may
appear as disadvantages or advantages for a given
application. Previous work has been done that presents a
summary of the available FPGAs that offer partial
reconfiguration [4]. Due to the rapid advancement of the
field, the information contained in [4] from 2003 has
already become outdated. For example, [4] summarizes the
available options for the original Virtex family (the
XCV1000 specifically), which was upgraded in 2002 with
the Virtex-II family, which was again upgraded in 2005
with the Virtex-4 family, and has presently been upgraded
with the latest Xilinx family, Virtex-5. Each release
includes improvements to the existing products and to
partial reconfiguration specifically. (This paper explores

1

potential uses of the Virtex-4 devices and makes no claims
as to the abilities of future devices from Xilinx or other
vendors.) An in-depth look at partial reconfiguration can be
found in [5], which includes a low-level description of
partial reconfiguration in Xilinx's Virtex-I1 devices as well
as an overview of some of the available tools developed to
assist with partial reconfiguration.

This paper is organized as follows. Section 2 gives a very
brief overview of software-defined radio, followed by a
closer look at partial reconfiguration in Section 3. Section 4
shows how partial reconfiguration fits with software-
defined radio, and Section 5 contains some concluding
remarks.

2. SOFTWARE-DEFINED RADIO

Wireless communication abilities are becoming ubiquitous
in the latest generation of portable electronics. Besides the
large variety of cellular communication standards, cell
phones often come equipped with the capability to connect
to wireless ear buds. The latest generations of cameras are
even starting to become equipped with various wireless
communication options to transfer pictures to and from
select devices. All the while, satellites are being launched
that employ different modulations and methods for forward
error correction. In order to be able to communicate with a
wide array of devices, an overwhelming number of
communication standards must be available at any given
time. Hardware designs that attempt to provide
compatibility with the current standards, if even possible,
will likely become obsolete shortly after their release.
Software-defined radios (SDRs), where the communication
parameters are defined at runtime by software, have become
increasingly attractive. A collection of readings covering
many of the important topics relating to SDRs can be found
in [6]. Advancements in FPGAs have made the realization
of such SDRs possible [7]. A modem software-defined
radio would ideally possess a multitude of function blocks
that are available at any given time and must be able to
handle the bandwidth of the required channel. Creating a
design that contains all possible options at the same time is
not feasible. An FPGA's reconfigurable nature, however,
provides a good foundation for creating a modular design
that can load the desired functions as needed. In particular,
reconfiguring the functionality of a specific block while the
remainder of the design continues to function provides a
unique opportunity to create an extremely flexible and
compact design.

3. PARTIAL RECONFIGURATION IN THE VIRTEX-4

Before exploring the potential uses of partial
reconfiguration, it is important to be aware of the current
performance and limitations of the targeted device. Because

of the widespread use of Xilinx's FPGAs, the Virtex-4
family was chosen as the example FPGA. Of major
importance are reconfiguration speeds and methods, design
hierarchy limitations relating to PR modules (PRMs) and
the number of allowed PR regions, and software support for
generating PR designs.

In order to discuss some of the specifics related to PR, it is
important to understand the general structure of the Xilinx
FPGA and how it is configured. Each device will have
variations to the size and location of various elements, but
the overall structure of a Virtex-4 FPGA can be seen in
Figure 1, where CLBs are configurable logic blocks,
BRAMs are block random access memories, FIFOs are
first-in first-out buffers, DCMs are digital clock managers,
DSP48s are Xilinx's digital signal processing units, and
JOBs are input-output buffers. The FPGA is configured by
writing bits to its configuration memory (CM). The
configuration data is organized into frames that target
specific areas of the FPGA through frame addresses. When
using PR, the partial bitstreams will contain configuration
data for a whole frame if any portion of that frame is to be
reconfigured.

CLBs

1OBs

DCMs
and

Clock Dist.

DSP48s

BRAMs
and

Fl FOs

Figure 1. Layout of a small Virtex-4 FPGA (LX15).

2

1. Reconfiguration Speed

Reconfiguration times will be highly dependent upon the
size and organization of the PR region(s). The Virtex-4's
predecessor, the Virtex-I1, allows for PR of whole columns
only, which potentially requires partial bitstreams to be
significantly larger than necessary. Allowing for arbitrarily
shaped PR regions was a great improvement in the Virtex-4
design. Because design size will impact the reconfiguration
time, the metric of uSec/Frame is used when calculating the
reconfiguration speed.

Frames are composed of 41 32-bit words. The smallest
Virtex-4 device, the LX15, has 3,740 frames, and the largest
device, the FX140, has 41,152 frames [8]. There are four
methods of configuring a device: externally through the
serial configuration port, the JTAG (Boundary Scan) port,
or the SelectMap port, or internally (using an embedded
microcontroller or state machine) through the internal
configuration access port (ICAP). Each of these methods
will have applications where they are the most desirable.
Because reconfiguration using an embedded microcontroller
provides a very flexible and powerful platform for PR
designs, the next subsection will present more details
relating to this topic. A summary of the configuration
speeds is shown in Table 1.

Table 1. Summary of Configuration Options

Port
Serial
JTAG

SelectMap
ICAP

-H

Bus
1 bit
1 bit
8 bits
8 bits3

-H -

Max.

100 MHz
66 MHz
100 MHz
100 MHz

-F

uSec/Frame
13.12
19.88
1.64
1.64

parallel with variable correlation times up to 100,000 chips,
and the fast Fourier transform (FFT) was a Xilinx core with
8192 bins and 12-bit inputs. (It is expected that the
configuration port is the bottleneck in determining the
reconfiguration times.)

Table 2. Example Configuration Sizes and Times to
Configure with JTAG and SelectMAP/ICAP

Design Frames4 JTAG SelectMap/ICAP
TurboEncoder 154 3.061 ms 0.252ms
Turbo Decoder 4092 81.34ms 6.710ms
SSAcquisition 5610 T lims 9.2ms
FFT (8192 bins) 4752 94.47 ms 7.79 ms

2. Reconfiguration Using an Embedded Microcontroller

In addition to supporting an embedded soft processor core
(Xilinx's MicroBlaze) in all Virtex-II and later FPGAs,
Xilinx also provides several FPGA lines that include
embedded IBM PowerPC hard processor cores. The ability
of these cores to process C/C++ code makes them an
extremely flexible option for reconfigurable designs. By
controlling reconfiguration using a processor that is
embedded within the FPGA itself, the need to interface with
an external controller (such as a PC) can be eliminated,
allowing for autonomous operation (depending upon the
embedded software design and desired functionality). One
potential embedded system design is shown in Figure 2.

C/C++

To give an idea of approximate configuration times for
various PR applications, the estimated sizes of some
common blocks and their configuration times are included
in Table 2. Note that a certain amount of overhead is
involved in setting up the addressing for PR and has been
roughly estimated by the author as approximately 10% and
has been ignored in all calculations. Also, multiple frames
with the same configuration can be written at the same time,
thereby shortening the bitstream.

Off-Chip Memory
(Configuration Data)

The values in Table 2 were based on estimates in Xilinx's
PlanAhead software when targeting an approximate PR
region slice utilization of 900o. Actual sizes and times will
be dependent upon design implementation, target device,
region utilization, and resource location. For the examples
in Table 2, the turbo encoder and decoder were purchased
cores from Turbo Concepts [9], the spread-spectrum
(SS)acquisition block was a custom design capable of
checking 300 chip offsets and 10 frequency offsets in

3The ICAP has a 32-bit mode but is believed to function only in the 8-bit
mode at the present time.

Figure 2. PR design using embedded microcontroller.

The example design shown in Figure 2 includes C/C++
code that determines when reconfiguration is necessary.
When needed, the microprocessor loads the desired
configuration data from external memory and reconfigures
the PR region through the ICAP primitive. Reconfiguration
in this example is expected to be triggered by an event on
the FPGA itself, such as acquisition of a PN code, loss of

Configuration of a frame requires 41 32-bit words of configuration data.

3

-Il-rl-rr-

- - --- - - - - -- --

signal lock, detection of an interfering signal, a set timer,
etc., but could also be triggered by an external interrupt.
The external memory could consist of ROM, Flash memory,
or static RAM that is loaded at start-up or even filled by the
FPGA itself (in the case where the FPGA is configured as a
receiver and receives configuration data as the payload of a
transmission). Xilinx provides extensive embedded
microprocessor design support, including reconfiguration
support in the form of source code for software functions
and hardware implementation code for the peripheral bus
interface and necessary processes. The embedded
microcontroller can easily be replaced by a custom state
machine that handles the loading of configuration data when
the overhead of an embedded microcontroller is
undesirable.

3. PR Design Hierarchy

Because the flow from the Hardware Description Language
(HDL) to configuration bitstream is extremely complicated,
limitations on design hierarchy exist to assist the software
tools in creating PR designs. The primary limitation requires
that the top-level module contain submodules that are either
static modules (SMs) or partially reconfigurable modules
(PRMs). All communication (with a few exceptions for
global signals such as clocks) must be explicitly declared
using 8-bit bus macros provided by Xilinx. The current
design flow allows for multiple PRMs in a single design.
An example design with two PRMs is shown in Figure 3.

Rx
FEC

Tx,
FEC

a) Hierarchical view before PR partitioning.

Top Module
bus

Tx

FEC
(PRM)

Static

b) Required design partitioning.

TOP MODULE

Figure 3. Example design showing two PR regions.

The required hierarchy adds a significant amount of effort
when converting an existing static design into one that is
ready for PR. Having all the PRMs at the top level will
often require routing many signals to and from another
module deep within the main static module. For example, a
transceiver with FEC modules embedded deep within both
the transmit and receive portions of the design requires
routing all the necessary signals up and down through the
entire hierarchy in order to have partially reconfigurable
FEC modules. This example is shown in Figure 4, where
the original unpartitioned design is shown in Figure 4a, with
the partitioned design shown in Figure 4b.

Figure 4. Transceiver design with turbo coding and
concatenated convolutional + Reed-Solomon coding

4. PR Software Support

When PR initially became available, there was very little
software support to assist in generating PR designs and
bitstreams. Efforts within the academic community
attempted to ease the burden of designers wishing to
employ PR and accomplished a limited amount of
automation [10, 11]. Recently, Xilinx has released an Early
Access design flow for PR that integrates with their
sophisticated floor-planner tool, PlanAhead, and their
synthesis tool, ISE. Modifications are made to the ISE tool,
making it valid only for PR designs such that PlanAhead
can call the modified functions in an automated command-
line fashion, hiding the user from many of the low-level
details that were previously the responsibility of the user.
When determining the size and location of a PR region,
PlanAhead provides statistics on the required primitives
(DSP48s, BRAMs, etc.), the available resources in the
defined area, and statistics on utilization that greatly help
during the floor-planning stage. PlanAhead also comes with
a design-rule checker that assists in correcting any
violations due to placement. While the PR flow's
integration into PlanAhead continues to become more user

4

iim ..

..

V i.

friendly with each release, the present software support
makes PR designs manageable. As PR becomes
mainstream, it is expected that Xilinx and other FPGA
vendors will more fully support this technology through
improved tools and documentation.

4. SDR AND PARTIAL RECONFIGURATION

Determining whether PR is appropriate for a given
application depends heavily upon the FPGA family, the
application details, and the application environment.
However, partial reconfiguration (PR) has moved beyond
being an emerging technology where the majority of efforts
have been for research only to a viable option for product
development. As such, one field where it can be applied to
great advantage is software-defined radio.

1. Simplex Spread-Spectrum Transceiver with FEC

One potential SDR use would be in a simplex transceiver,
where only transmit or receive capabilities are used at any
given time and are never used at the same time. Assuming
that the waveform requires FEC as well as direct-sequence
spread spectrum (DSSS), the design could be organized as
shown in Figure 5. Two PR regions are declared: one for
either the Tx modulator or the Rx demodulator, one for the
Tx FEC encoder, the Rx DSSS acquisition engine, or the Rx
FEC decoder.

Figure 5. Simplex transceiver with spread spectrum and
FEC.

DSSS acquisition typically requires a lot of resources but is
used only during the acquisition phase. Once the spreading
code has been acquired, those resources can be reconfigured
as the FEC decoder while the Rx demodulator continues to
track the spreading code.

high SNR is detected, reconfiguration could be used to
increase throughput while still maintaining the desired BER.

Figure 6 shows one possible scenario with a transceiver
employing DBRA where the Tx waveform changes from
turbo-coded binary phase shift-keying (BPSK) to Gaussian
minimum shift-keying (GMSK) with a concatenated
convolutional encoder, followed by Reed-Solomon (RS)
encoding. The Rx waveform switches from turbo-coded
BPSK to 8-ary phase shift-keying (8PSK) to the
concatenated Viterbi and Reed-Solomon decoder.

PR
Ctrl

PR
Ctrl

Figure 6. Dynamic bandwidth resource allocation
transceiver.

3. Cognitive Radio

Another example for the use of PR in SDR applications
comes in the field of cognitive radio (CR). A CR receiver
must scan the available spectrum using an FFT, locate
energy, create a channel that attempts to match the spectral
shape, perform modulation recognition, and then try to
demodulate. Because the spectrum must always (or at least
very often) be monitored, the FFT module is left as static,
but use of the modulation recognition and demodulator are
mutually exclusive, providing an opportunity to take
advantage of PR. It is expected that switching between
modulation recognition and demodulation will occur often
as the receiver searches the available signals for the correct
one. If reconfiguration could be achieved quickly enough,
the FFT module could potentially be made reconfigurable as
well. Partitioning for this CR receiver example can be seen
in Figure 7.

2. Dynamic Bandwidth Resource Allocation Transceiver

Systems employing dynamic bandwidth resource allocation
(DBRA) would benefit substantially from the use of PR.
These systems alter the communication waveform
dynamically to match channel conditions. For instance, if
the signal-to-noise ratio (SNR) drops such that an
unacceptable bit-error rate (BER) occurs, a combination of
modulation type, data rate, or FEC configuration changes
may be performed to decrease the BER. Alternately, if a

5

Channelizer

FFT

Channelizer

FFT
Software-
Defined
Radio
on
PC

PR
Ctrl

Fast
External
Memory
(-1 GB)

Memory
Manager

Figure 8. Hardware acceleration of
radio.

Figure 7. Cognitive radio receiver.

4. Hardware Acceleration (Future Work)

While much research has been done in the field of hardware
acceleration, including the application of PR to this field, it
is still worth illustrating how PR can be applied to this
problem. Considering a fully software-defined radio
receiver, it is clear that certain functions exceed the
throughput of even the most powerful general purpose
processor (GPP). Situations where the hardware can greatly
reduce the throughput such as decimation and
despreading have obvious benefits. Additionally, many of
the latest FEC codes are computationally intensive, making
them untenable for software-only receivers.

If some latency is acceptable and enough memory exists, it
is possible to implement a multichannel receiver in software
while buffering data and time-sharing the FPGA as
necessary to process the data when necessary. Using an
embedded microprocessor and a memory manager, portions
of the FPGA could be partially reconfigured (similar to a
context switch) to process one channel's data and then
reconfigured to process another channel's data. Because the
data can be buffered during the reconfiguration, the only
limitation is the average throughput of the FPGA, assuming
that the memory is sufficiently deep to avoid any losses
during reconfiguration and buffering. Figure 8 shows a
block diagram of such a system.

software-defined

5. CONCLUSIONS

Exploring the usefulness of PR in the field of software-
defined radio has shown both its feasibility and benefit.
Several potential uses were detailed to illustrate how one
might take advantage of this emerging technology.
Resource utilization for a select number of function blocks
were shown along with the required reconfiguration times.
The latest software from Xilinx was found to relieve the
user from the burden of following a complex design
methodology when creating PR designs.

The design time overhead involved when creating a PR
design is acceptable but requires progressing through a slow
learning curve before any results can be obtained. Much of
the necessary support will likely come from the PR
community and not necessarily from the vendor. The full
benefits of PR will not be evident until it becomes
commonplace in industry and the vendors place more
resources on supporting the PR design flow and keeping the
tools and documentation up to date. However, the adaptivity
of PR combined with the desire for software-defined radios
makes a strong argument for pursuing partial
reconfiguration.

6

REFERENCES

[1] Xilinx Virtex-4 Users Guide, www.xilinx.com

[2] Atmel AT40KAL Users Guide, www.atmel.com

[3] LatticeXP Family Data Sheet, www.latticesemi.com

[4] S. Donthi and R. L. Haggard, "A survey of dynamically
reconfigurable FPGA devices," in Proc. of the 35th
Southeastern Symposium on System Theory,
Cookeville, TN, March 16-18, 2003.

[5] D. Mesquita, F. Moraes, J. Palma, L. Maller, and N.
Calazans, "Remote and partial reconfiguration of
FPGAs: tools and trends," in Proc. of the International
Parallel and Distributed Processing Symposium, April
22-26, 2003.

[6] Z. Zvonar and J. Mitola, Software Radio Technologies,
May 2001, Wiley-IEEE Press.

Eric McDonald received his B.S.
in electrical engineering

in 1998 from the University of
Pitts~burgh, whe~re he~ studie~d
VLSI design. He continued his
education at Cornell University
and received his Ph.D. in

WOW1 ielectrical and computer
engineering in 2()()4. He focused

on methods for synthesizing low-power analog circuits
usingfloating-gate transistors while also gaining a breadth
of knowledge in networking as well as asynchronous and
synchronous digital design. He joined The Aerospace
Corporation's Digital Communication Implementation
Department in November 2005. Eric is currently working
on software-defined radio and uses ofFPGAs as applied to
digital communications.

[7] E. Grayver and P. Dafesh, "Multi-modulation
programmable transceiver system with turbo coding," in
Proc. of the IEEE Aerospace Conference, Big Sky, MT,
March 5-12, 2005.

[8] Xilinx Virtex-4 Configuration Guide, www.xilinx.com

[9] www.turboconcept.com

[10] P. James-Roxby and S. A. Guccione, "Automated
extraction of run-time parameterisable cores from
programmable device configurations," in Proc. of the
IEEE Symposium on Field-Programmable Custom
Computing Machines, Napa Valley, CA, April 17-19,
2000.

[11] E. Horta, J. W. Lockwood, D. E. Taylor, and D.
Parlour, "Dynamic hardware plugins in an FPGA with
partial run-time reconfiguration," in Proc. of the Design
Automation Conference, June 10-14, 2002.

7

BIOGRAPHY

