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Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-Critical Embedded Systems

Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and Christian Ferdinand

Abstract—Embedded hard real-time systems need reliable
guarantees for the satisfaction of their timing constraints. Expe-
rience with the use of static timing-analysis methods and the tools
based on them in the automotive and the aeronautics industries
is positive. However, both the precision of the results and the
efficiency of the analysis methods are highly dependent on the
predictability of the execution platform. In fact, the architecture
determines whether a static timing analysis is practically feasi-
ble at all and whether the most precise obtainable results are
precise enough. Results contained in this paper also show that
measurement-based methods still used in industry are not useful
for quite commonly used complex processors. This dependence on
the architectural development is of growing concern to the devel-
opers of timing-analysis tools and their customers, the developers
in industry. The problem reaches a new level of severity with the
advent of multicore architectures in the embedded domain. This
paper describes the architectural influence on static timing analy-
sis and gives recommendations as to profitable and unacceptable
architectural features.

Index Terms—Memory hierarchy, pipelines, processor architec-
ture, timing predictability.

I. INTRODUCTION

THIS PAPER is concerned with architectures for embed-
ded systems that are to be used in time-critical applica-

tions. These systems are subject to stringent timing constraints
which are dictated by the surrounding physical environment.
We assume that a real-time system consists of a number of
tasks, which realize the required functionality. A schedulability
analysis for this set of tasks on a given hardware has to be
performed in order to guarantee that the timing constraints of
these tasks will be met (“timing validation”). Existing tech-
niques for schedulability analysis require upper (and lower)
bounds on the execution times of the tasks to be known. These
bounds are called worst-case execution time (WCET) and best-
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case execution time (BCET), respectively. These bounds have
to be safe, i.e., they must never underestimate (overestimate)
the real execution time. Furthermore, they should be tight,
i.e., the overestimation (underestimation) should be as small
as possible. Guarantees can be given by static-analysis-based
methods, even for complex-processor architectures, which ex-
hibit a huge execution-time variability and a strong dependence
of the execution time on the initial execution state. These static
methods are based on abstract architectural models, which are
conservative with respect to timing behavior.

An alternative approach to static timing analysis is based on
measuring execution times [1]–[3], essentially in two different
ways. One way is to measure end-to-end times; the other is
to measure execution times of basic blocks or other basic
components of tasks and combine them to times or distributions
of times for the whole program. However, measurement-based
approaches have drawbacks. For complex processors, execution
times often cannot be measured for all possible initial states and
inputs, neither end-to-end nor piecewise: Only a small subset
of initial states and inputs can usually be covered. Therefore,
measurement is usually not guaranteed to be sound, i.e., to
compute upper bounds on the WCET. It has been observed
that, for complex processors, such estimates are also not really
precise [4], and the combinators for the so-called execution-
time profiles can introduce large pessimism, since they do not
exploit context and flow information [5].

Based on experience with static timing analysis in the
embedded-systems industry [6], [7] and theoretical insights
[8]–[10], we give advice concerning future computer architec-
tures for time-critical systems.

A. Architectural Influence

The efficiency, even the feasibility, and the precision of the
results of timing analysis highly depend on the architecture.
An essential criterion for future target architectures will be
the analyzability of the performance. Architecture without ac-
companying performance-analysis technology should not be
seriously considered for time-critical embedded applications.

The decisive criteria are as follows.
1) Soundness: Without this, no reliable guarantee can be

derived.
2) Obtainable precision, which depends on the predictability

properties of the architecture.
3) Analysis effort to reach this precision, which depends on

the size of the state space to be explored.
Here are some examples concerning precision and efficiency:

A cache with a random-replacement strategy does not allow
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for a cache analysis with good precision. An overly complex
pipeline leads to an explosion in the size of the state space,
which may be too large for any practical application. An out-
of-order pipeline supporting a high degree of parallelism allows
for many different interleavings of a sequential instruction
stream, possibly with different effects on the caches, different
collisions on buses, and, in the end, different execution times.
The design of the internal and external buses, if done wrongly,
leads to hardly analyzable behavior and great loss in precision.
Multicore architectures with shared caches, finally, will create
a space of interleavings of interactions on these caches that will
make sound and precise timing analysis practically infeasible.
Quickly, the search space for such analyses becomes too large
to be completely explored.

Most of the problems posed to timing analysis are caused
by the interference on shared resources. Resources are shared
for cost, energy, and performance reasons. Different users of
a shared resource may often access the resource in a statically
unknown way. Different access sequences may result in differ-
ent states of the resource. The different sequences may already
exhibit different execution times, and the resulting resource
states may again cause differences in the future timing behavior.

Interferences may be of two kinds, inherent and virtual.
These two types of interferences cause two types of nondeter-
minism: Inherent interferences cause real nondeterminism and
virtual interferences cause artificial nondeterminism. Both are
detrimental for predictability.

Inherent interferences on a shared resource observed by one
user of the resource happen at unpredictable times through an
activity of another user of the resource. Examples of shared
resources with inherent interferences are buses and memory:
Buses are used by several masters, which may access the buses
in unpredictable ways. Memory and caches are shared between
several processors or cores. One thread executed on one core
does not know when accesses by another thread on another core
will happen.

Virtual interferences are introduced by the unavoidable
abstraction of the architecture. An out-of-order processor will
execute an instruction stream in one (deterministic) way. Ex-
haustive exploration could, in principle, identify this one way
for each input and initial state; in practice, this is infeasible.
Thus, this order is assumed to be statically unknown. This
forces the analysis to consider all possibilities. Different pos-
sibilities may have different effects on the cache contents.
Hence, inherent interferences occur due to the nondeterminism
in the execution; virtual interferences are caused by the artificial
nondeterminism introduced by abstraction. Limiting both types
of interferences must be a high-priority design goal. One first
principle for architecture design is to strive for a good compro-
mise between cost, performance, and predictability where the
sharing or duplication of resources is concerned.

B. Structure of this Paper

Section II gives an overview of static timing analysis and
presents the main challenges. The remainder of this paper
discusses architectural features and their influence on the pre-
cision and efficiency of timing analysis. Section III describes

adversarial properties of modern pipelines, which make timing
analysis inefficient or imprecise. Section IV describes our re-
sults about the predictability and the sensitivity of caches and
draws consequences for the use of caches in hard real-time
systems. Section V considers the influence of the bus properties
on timing analysis, in particular, the effects of the competition
between several bus masters, of pipelined accesses over the bus,
and of mismatching bus frequencies. Section VI gives an out-
look into future multicore embedded architectures and makes
a proposal of a predictable multicore architecture. Section VIII
finally lists recommendations as to which architectural features
to prefer and which to avoid.

II. STATIC TIMING ANALYSIS

Any software system when executed on a modern high-
performance processor shows a certain variation in execution
time depending on the input data, the initial hardware state, and
the interference with the environment. This paper treats timing
analysis of tasks with uninterrupted execution. In general, the
state space of input data and initial states is too large to exhaus-
tively explore all possible executions in order to determine the
exact WCETs and BCETs. Instead, bounds for the execution
times of basic blocks are determined, from which bounds for
the whole system’s execution time are derived. Some abstrac-
tion of the execution platform is necessary to make a timing
analysis of the system feasible. These abstractions lose infor-
mation and, thus, are in part responsible for the gap between
WCETs and upper bounds and between BCETs and lower
bounds. How much is lost depends both on the methods used for
timing analysis and on system properties, such as the hardware
architecture and the analyzability of the software. The methods
used to determine upper and lower bounds are very similar.

In modern microprocessor architectures, caches, pipelines,
and all kinds of speculation are key features for improving
(average case) performance. Caches are used to bridge the gap
between processor speed and the access time of main memory.
Pipelines enable acceleration by overlapping the executions of
different instructions. The consequence is that the execution
time of individual instructions and, thus, the contribution to
the program’s execution time can vary widely. The interval of
execution times for one instruction is bounded by the execution
times of the following two cases: 1) The instruction goes
“smoothly” through the pipeline; all loads hit the cache, no
pipeline hazard happens, i.e., all operands are ready, no re-
source conflicts with other currently executing instructions ex-
ist. 2) “Everything goes wrong,” i.e., instruction and/or operand
fetches miss the cache, resources needed by the instruction are
occupied, etc.We will call any increase in execution time during
an instruction’s execution a timing accident and the number
of cycles by which it increases as the timing penalty of this
accident. Timing penalties for an instruction can add up to
several hundred processor cycles. Whether the execution of an
instruction encounters a timing accident depends on the execu-
tion state, e.g., the contents of the cache(s) and the occupancy
of other resources, and, thus, on the execution history. It is
therefore obvious that the attempt to predict or exclude timing
accidents needs information about the execution history.
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Fig. 1. Main components of a timing-analysis framework and their
interaction.

A. Timing-Analysis Framework

Over the last several years, a more or less standard archi-
tecture for timing-analysis tools has emerged [11]–[13]. Fig. 1
shows a general view on this architecture. First, one can distin-
guish three major building blocks:

1) control-flow reconstruction and static analyses for control
and data flow;

2) microarchitectural analysis, which computes upper and
lower bounds on execution times of basic blocks;

3) global bound analysis, which computes upper and lower
bounds for the whole program.

The following list presents the individual phases and de-
scribes their objectives and problems. Note that the first four
phases are part of the first building block.

1) Control-flow reconstruction [14] takes a binary exe-
cutable to be analyzed, reconstructs the program’s control
flow, and transforms the program into a suitable interme-
diate representation. Problems encountered are dynami-
cally computed control-flow successors, e.g., stemming
from switch statements, function pointers, etc.

2) Value analysis [15], [16] computes an overapproximation
of the set of possible values in registers and memory loca-
tions by an interval analysis and/or congruence analysis.
This information is, among others, used for a precise data-
cache analysis.

3) Loop bound analysis [17], [18] identifies loops in the
program and tries to determine bounds on the number
of loop iterations, information which is indispensable to
bound the execution time. Problems are the analysis of
arithmetic on loop counters and loop-exit conditions, as
well as dependencies in nested loops.

4) Control-flow analysis [17], [19] narrows down the set
of possible paths through the program by eliminating
infeasible paths or to determine correlations between the

number of executions of different blocks using the results
of value-analysis results. These constraints will tighten
the obtained timing bounds.

5) Microarchitectural analysis [10], [20], [21] determines
bounds on the execution time of basic blocks by per-
forming an abstract interpretation of the program, taking
into account the processor’s pipeline, caches, and spec-
ulation concepts. Static cache analyses determine safe
approximations to the contents of caches at each program
point. Pipeline analysis analyzes how instructions pass
through the pipeline accounting for occupancy of shared
resources like queues, functional units, etc. Ignoring these
average-case-enhancing features would result in impre-
cise bounds.

6) Global bound analysis [22], [23] finally determines
bounds on execution time for the whole program. In-
formation about the execution time of basic blocks is
combined to compute the shortest and the longest paths
through the program. This phase takes into account in-
formation provided by the loop bound and control-flow
analyses.

The commercially available tool aiT by AbsInt, cf.
http://www.absint.de/wcet.htm, implements this architecture.
It is used in the aeronautics and automotive industries and
has been successfully used to determine precise bounds on
execution times of real-time programs [6], [7], [10], [24].

III. PIPELINES

For nonpipelined architectures, one can simply add up the
execution times of individual instructions to obtain a bound
on the execution time of a basic block. Pipelines increase
performance by overlapping the executions of different in-
structions. Hence, a timing analysis cannot consider individual
instructions in isolation. Instead, they have to be considered
collectively—together with their mutual interactions—to obtain
tight timing bounds.

The analysis of a given program for its pipeline behavior is
based on an abstract model of the pipeline. All components
that contribute to the timing of instructions have to be modeled
conservatively. Depending on the employed pipeline features,
the number of states the analysis has to consider varies greatly.

A. Contributions to Complexity

Since most parts of the pipeline state influence timing, the
abstract model needs to closely resemble the concrete hard-
ware. The more performance-enhancing features a pipeline has,
the larger is the search space. Superscalar and out-of-order
executions increase the number of possible interleavings. The
larger the buffers (e.g., fetch buffers, retirement queues, etc.),
the longer the influence of past events lasts. Dynamic branch
prediction, cachelike structures, and branch history tables in-
crease history dependence even more.

All these features influence execution time. To compute a
precise bound on the execution time of a basic block, the analy-
sis needs to exclude as many timing accidents as possible. Such
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Fig. 2. Scheduling anomaly.

Fig. 3. Speculation anomaly. A and B are prefetches. If A hits, B can also be
prefetched and might miss the cache.

accidents are data hazards, branch mispredictions, occupied
functional units, full queues, etc.

Abstract states may lack information about the state of
some processor components, e.g., caches, queues, or predic-
tors. Transitions of the pipeline may depend on such missing
information. This causes the abstract pipeline model to become
nondeterministic, although the concrete pipeline is determin-
istic. When dealing with this nondeterminism, one could be
tempted to design the WCET analysis such that only the locally
most-expensive pipeline transition is chosen. However, in the
presence of timing anomalies [8], [25], this approach is un-
sound. Thus, in general, the analysis has to follow all possible
successor states.

B. Timing Anomalies and Domino Effects

The notion of timing anomalies was introduced by Lundqvist
and Stenström in [25]. In the context of WCET analysis,
Reineke et al. [8] present a formal definition. Intuitively, a
timing anomaly is a situation where the local worst case does
not contribute to the global worst case. For instance, a cache
miss—the local worst case—may result in a globally shorter
execution time than a cache hit because of scheduling effects
(see Fig. 2 for an example). Shortening instruction A leads
to a longer overall schedule, because instruction B can now
block the “more” important instruction C. Analogously, there
are cases where a shortening of an instruction leads to an even
greater decrease in the overall schedule.

Another example occurs with branch prediction. A mispre-
dicted branch results in unnecessary instruction fetches, which
might miss the cache. In case of cache hits, the processor may
fetch more instructions. Fig. 3 shows this.

A system exhibits a domino effect [25] if there are two
hardware states s, t such that the difference in execution time
(of the same program starting in s and t, respectively) may
be arbitrarily high, i.e., cannot be bounded by a constant. For
example, given a program loop, the executions never converge
to the same hardware state, and the difference in execution time
increases in each iteration. The existence of domino effects is
undesirable for timing analysis. Otherwise, one could safely
discard states during the analysis and make up for it by adding
a predetermined constant.

Unfortunately, domino effects show up in real hardware. In
[26], Schneider describes a domino effect in the pipeline of
the PowerPC 755. Another example is given by Berg [27] who
considers the pseudo-least-recently used (PLRU)-replacement
policy of caches. In Section IV, we will present sensitivity
results of replacement policies, which quantify the maximal
extent of domino effects in caches, i.e., by determining the
maximal factor by which the cache performance may vary.

C. Classification of Architectures

Architectures can be classified into three categories, de-
pending on whether they exhibit timing anomalies or domino
effects.

1) Fully timing compositional architectures: The (abstract
model of) an architecture does not exhibit timing anom-
alies. Hence, the analysis can safely follow local worst-
case paths only. One example for this class is the ARM7.
The ARM7 allows for an even simpler timing analysis.
On a timing accident, all components of the pipeline are
stalled until the accident is resolved. Hence, one could
perform analyses for different aspects (e.g., cache, bus
occupancy) separately and simply add all timing penalties
to the BCET.

2) Compositional architectures with constant-bounded
effects: These exhibit timing anomalies but no domino
effects. In general, an analysis has to consider all paths.
To trade precision with efficiency, it would be possible to
safely discard local nonworst-case paths by adding a con-
stant number of cycles to the local worst-case path. The
Infineon TriCore is assumed, but not formally proven, to
belong to this class.

3) Noncompositional architectures: These architectures,
e.g., the PowerPC 755, exhibit domino effects and timing
anomalies. For such architectures, timing analyses always
have to follow all paths, since a local effect may influence
the future execution arbitrarily.

IV. CACHES

Caches are employed to hide the latency gap between
memory and CPU by exploiting locality in memory accesses.
On current architectures, a cache miss may take several hundred
of CPU cycles. Therefore, the cache performance has a strong
influence on a system’s overall performance.

To obtain tight bounds on the execution time of a task,
timing analyses must take into account the cache architecture.
The precision of a cache analysis is strongly dependent on the
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predictability of the cache architecture, particularly on its re-
placement policy. LRU replacement has the best predictability
properties of all replacement policies. It yields more precise
and more efficient timing analysis. Employing other policies,
like PLRU or FIFO, yields less precise WCET bounds, be-
cause fewer memory accesses can be classified as hits. Timing
analyses having to deal with other policies than LRU are also
less efficient: As fewer memory accesses can be classified as
hits or misses, more possibilities have to be explored. If the
architecture features timing anomalies, it is not safe to assume
unclassified memory accesses to be misses.

It has been argued before that the execution time cannot be
measured for all possible initial states and inputs. Therefore,
if worst-case input and initial state are unknown, measurement
is not guaranteed to be sound. We investigate the influence of
the replacement policy on the soundness of measurement-based
timing analysis. Our analysis reveals that measurement-based
methods may strongly underestimate the number of misses for
FIFO and PLRU and, therefore, yield WCET estimates that are
dramatically wrong.

Describing our investigations needs some basic cache
notions.

A. Basic Cache Notions

Caches are very fast but small memories that store a subset of
the main memory’s contents. To reduce traffic and management
overhead, main memory is logically partitioned into a set of
memory blocks B of size b bytes. Memory blocks are cached
as a whole in cache lines of equal size. Usually, b is a power
of two. This way, the block number is determined by the most
significant bits of a memory address.

When the CPU accesses a memory block, the cache logic
has to determine whether the memory block is stored in the
cache (cache hit) or not (cache miss). To enable an efficient
lookup, each memory block can only be stored in a small
number of cache lines. For this purpose, caches are partitioned
into equally sized cache sets. The size of a cache set is called
the associativity k of the cache. The number of such equally
sized cache sets s is usually a power of two, such that the set
number is determined by the least significant bits of the block
number, the index. The remaining bits, known as the tag, are
stored along with the data to finally decide, whether and where
a memory block is cached within a set. One can distinguish
caches by the type of addresses that are being used to index
and to tag the cache. Addresses could either be physical or
virtual. In real-time embedded systems such as the ones we are
considering, there is no virtual memory. Virtual memory would
introduce many additional challenges for timing analysis, like a
TLB analysis.

Since the number of memory blocks that map to a set is
far greater than the associativity of the cache, a so-called
replacement policy must decide which memory block to replace
upon a cache miss. To facilitate useful replacement decisions,
a number of status bits is maintained that store information
about previous accesses. For lack of space, we only consider
here replacement policies that have independent status bits per
cache set. For example, pseudoround-robin cache-replacement

schemes that share the status bits over all sets show very badly
predictable behavior [7].

Let us briefly explain the three commonly used families of
replacement policies under investigation.

LRU replacement conceptually maintains a queue of length
k for each cache set, where k is the associativity of the
cache. If an element (a memory block) is accessed that
is not in cache (a miss), it is placed at the front of the
queue. The last element of the queue, the LRU element,
is then removed if the set is full. At a cache hit, the
element is moved from its position in the queue to the
front, in this respect, treating hits and misses equally.
LRU replacement is used in the FREESCALE PPC603E

core and the MIPS 24 K/34 K.
FIFO cache sets can also be seen as queues: New elements are

inserted at the front, evicting elements at the end of the
queue. In contrast to LRU, hits do not change the queue.
FIFO is used in the INTEL XSCALE and some ARM9-
and ARM11-based processor cells.

PLRU is a tree-based approximation of the LRU policy. It
arranges the cache lines at the leaves of a tree with
k − 1 “tree bits” pointing to the line to be replaced
next (for an in-detail explanation of PLRU, consider
[9], [28]). It is used in the POWERPC 75x and the Intel
PENTIUM II–IV.

Fig. 4 shows domains and notations used throughout this
paper. mP (q, s) computes the number of misses incurred by
replacement policy P conducting access sequence s in state q.
Likewise, hP (q, s) computes the number of hits by replacement
policy P conducting access sequence s in state q. updateP (q, s)
computes the cache state after accessing sequence s starting
from state q. Given a cache-state q, CCP (q) returns the set of
memory blocks contained in q.

B. Limits on the Precision of Static Cache Analysis

An important part of a static timing analysis is its cache
analysis, which tries to classify memory accesses as hits or
misses. Due to the presence of timing anomalies, memory
accesses that cannot be safely classified as a hit or a miss
have to be conservatively accounted for by considering both
possibilities. The more of the cache hits that occur during
program execution can be statically classified as such, the
tighter will be the computed upper bound on the execution time.
Conversely, every statically classified cache miss tightens the
computed lower bound.

To classify memory accesses, cache analyses compute may
and must information.1 May and must caches at a program
point are upper and lower approximations, respectively, to
the contents (sets of tags) of all concrete caches that occur
whenever program execution reaches this program point. Must
information is used to safely classify memory accesses as cache
hits. The complement of the may information is used to safely
predict cache misses.

1Some analyses explicitly represent may and must information. Other cache
analyses do not. Still, they implicitly maintain may and must information in one
way or the other.
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Fig. 4. Domains and notations.

There are several reasons for uncertainty about cache
contents.

1) Static cache analyses usually cannot make any assump-
tions about the initial cache contents. These depend on
previously executed tasks. Even assuming a completely
empty cache may not be conservative as shown in [27]
and by our sensitivity analyses [29], which will be de-
scribed in the following section. To be conservative, the
analysis has to account for all possible cache states.
Therefore, in general, the only safe initial must cache is
the empty set, whereas the only safe initial may cache
must contain every memory block that may be mapped to
the particular cache set.

2) At control-flow joins, analysis information about differ-
ent paths needs to be safely combined. Intuitively, one
must take the intersection of the incoming must infor-
mation and the union of the incoming may information.
A memory block can only be in the must cache if it is
in the must caches of all predecessor control-flow nodes,
correspondingly, for may caches.

3) If the analysis cannot exactly determine the address of
a memory access, it must conservatively account for all
possible addresses. This particularly deteriorates may in-
formation. In instruction cache analysis, these addresses
are obvious. In data cache analysis, it may be very diffi-
cult to precisely determine the accessed memory address.

Since information about the cache state may thus be un-
known or lost, it is important that analyses (re)gain information
quickly to be able to classify memory accesses safely as cache
hits or misses. Fortunately, this is possible for most caches.
However, the speed of this (re)gaining process greatly depends
on the cache-replacement policy employed and influences un-
certainty about cache hits and misses.

We study how quickly may and must information can be
built up from a completely unknown cache state by observing
a sequence of pairwise different memory accesses. This is
sensible because recurring accesses do not contribute additional
information about cache contents.

May and must information available after observing an access
sequence s without knowing the initial set state can be defined
as follows, where CCP and updateP are shown in Fig. 4:

MayP (s) :=
⋃

q∈CP

CCP (updateP (q, s))

MustP (s) :=
⋂

q∈CP

CCP (updateP (q, s)) .

MayP (s) is the set of cache contents that may still be in
the cache set after accessing the sequence s, regardless of
the initial cache state. Analogously, MustP (s) is the set of
cache contents that must be in the cache set after accessing
the sequence s. Since we take into account every initial state,
MustP (s) is always a subset of the contents of the sequence s.

The following two definitions show how much may and must
information is available after observing any access sequence s
of length n if no knowledge of the initial cache state is available

mayP (n) := |MayP (s)| , where s ∈ S �=, |s| = n

mustP (n) := |MustP (s)| , where s ∈ S �=, |s| = n.

Note that mayP (n) and mustP (n) are well defined: For all
sequences s of length n, |MayP (s)| is equal (the same goes
for |MustP (s)|). The sequences contain pairwise different ac-
cesses only and are thus equal up to renaming. Thus, MayP (s1)
equals MayP (s2) also up to renaming.

Results: We have determined may(n) and must(n) for
eight-way associative LRU, FIFO, and PLRU, by exhaustively
generating all successor states of all possible initial cache-set
states, exploiting symmetries. Fig. 5 shows the results.

Under LRU replacement, eight accesses suffice to gain full
knowledge of the cache contents of an eight-way cache set:
mustLRU(8)(8) = mayLRU(8)(8) = 8. This marks a limit for
any replacement policy, as it is impossible to gain full knowl-
edge of the cache set’s contents with less than eight accesses for
an eight-way cache set.

Under PLRU or FIFO replacement, it takes considerably
longer to gain may and must information: For PLRU, it
takes 13 accesses to obtain any may information and another
6 accesses to regain full knowledge of the cache set’s contents.
In the case of FIFO, the situation is even worse: Only after
15 accesses do we obtain any may information and another
8 accesses are necessary for full knowledge. In addition, only
one of the eight cached elements can be classified as such, as
mustFIFO(8)(n) = 1 for n ≤ 16.

One can identify two milestones in the evolution of may and
must information.

1) The point at which may information becomes available.
We call this evictP (k), where P denotes the policy and
k the associativity. At this point, all of the unknown
previous content must have been evicted from the cache.

2) The point at which full may and must information is
obtained, i.e., may(n) = must(n) = k, where k is the
associativity of the cache. We call this fillP (k).
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Fig. 5. Evolution of may and must information of eight-way LRU/PLRU/FIFO cache sets, i.e., mayLRU(8)(n), mustLRU(8)(n), mayFIFO(8)(n),
mustFIFO(8)(n), and mayPLRU(8)(n), mustPLRU(8)(n).

TABLE I
EVICT AND FILL FOR LRU, PLRU, AND FIFO

TABLE II
EVICT(4), FILL(4) AND EVICT(8), FILL(8) FOR LRU, PLRU, AND FIFO

For k = 8, the respective points are shown in Fig. 5. Our tool
to generate may and must curves is limited to fixed associa-
tivities. In [9], we analytically obtained evictP (k) and fillP (k)
formulas in terms of the associativity k for the three policies.
They are shown in Table I. Instantiations of these formulas
for the typical associativities four and eight are shown in
Table II.

It is important to stress that may(n), must(n), evict, and
fill limit the precision of any cache analysis. In particular, they
are independent of whether the analysis is based on approx-
imations of may and must information or not. For example,
no cache miss can be safely predicted after less than evict
memory accesses if the analysis begins with no information.
LRU stands out, delivering the best possible results under
the regarded measures for any possible replacement policy.
Cache analyses of PLRU and in particular FIFO will be able
to classify considerably less accesses as hits or misses than
good analyses of LRU, as [10]. If caches need to be employed,
the best pick is definitely LRU, which is often argued to
be too expensive. Ackland et al. [30] have shown that LRU
replacement can be implemented with a one-cycle update up to
associativity 16.

In general, alternatives to caches, like scratchpad memory,
should be considered in the design of timing-critical sys-

tems. They are advantageous in systems with little change, in
memory-access patterns, e.g., systems without interrupts and
preemptions. Marwedel et al. [31] shows that the performance
of code using scratchpad memory can be predicted with very
high accuracy.

C. Sensitivity to Initial State—Measurement-Based WCET
Analysis in the Presence of Caches

The introduction has briefly described measurement-based
methods for timing analysis. Relatively simple architectures
without any performance-enhancing features like pipelines,
caches, etc., exhibit the same timing independently of the
initial state. For such architectures, measurement-based timing
analysis is sound [3]. Wenzel [3] and Deverge and Puaut [32]
propose to lock the cache contents [33], [34] and to flush the
pipeline at program points where measurement starts. This is
not possible on all architectures, and it also has a detrimental
effect on both the average-case execution times and the WCETs
of tasks. We study whether measurement-based timing analysis
can be performed in the presence of “unlocked” caches. To
this end, we introduce the notion of sensitivity of a cache-
replacement policy.

Sensitivity: Measurement-based approaches to WCET com-
putation execute fragments of the task on a subset of the
possible initial states and inputs. An important part of the initial
state is the initial cache state, i.e., the cache’s contents and status
bits. Depending on the initial cache state, the task will incur
different numbers of misses, resulting in different execution
times.

We have investigated how sensitive the execution time of a
task is toward the initial cache state, i.e., how strongly the initial
cache state may influence the number of hits and misses for a
given replacement policy.

Let mP (q, s) be the number of misses incurred by replace-
ment policy P on access sequence s and initial state q as
previously shown in Fig. 4. Then, we can define the sensitiv-
ity of a replacement policy similarly to competitiveness [35].
In contrast to competitiveness, where a replacement policy
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competes with the optimal offline policy, a policy competes
with itself on different initial states.

Definition 1 (Miss Sensitivity to State): A policy P is k-miss
sensitive with additive constant c, short (k, c)-miss sensitive if

mP (q, s) ≤ k · mP (q′, s) + c

for all access sequences s ∈ S and all states q, q′ ∈ CP .
If policy P is (k, c)-miss sensitive, it will incur at most k

times the number of misses plus a constant c on any access
sequence starting in state q instead of some other state q′.
Assume P is (3, 2)-miss sensitive. If P incurs eight misses on
some access sequence s and state q, it will not incur more than
8 · 3 + 2 = 26 misses on the same access sequence s and any
state q′.

Hit sensitivity can be defined similarly, where hP (q, s) is the
number of hits by replacement policy P on access sequence s
and initial state q.

Definition 2 (Hit Sensitivity to State): A policy P is k-hit sen-
sitive with subtractive constant c, short (k, c)-hit sensitive, if

hP (q, s) ≥ k · hP (q′, s) − c

for all access sequences s ∈ S and all states q, q′ ∈ CP .
Assume P is (1/2, 1)-hit sensitive. If P results in 12 hits on

some access sequence s and state q, it will result in at least
12 · (1/2) − 1 = 5 hits on the same access sequence s and any
state q′.

Notice that the two definitions are not redundant. If policy P
is k-miss sensitive with k > 1, this does not give us any clue
regarding P ’s hit-sensitivity: Rewriting Definition 1 in terms
of hits (hP (q, s) = |s| − mP (q, s)) yields |s| − hP (q, s) ≤ k ·
(|s| − hP (q′, s)) + c. For k > 1, this inequality depends on |s|,
the length of the access sequence.

We sometimes say that a policy is k sensitive without spec-
ifying an appropriate additive (subtractive) constant. In such
cases, we implicitly demand that there is a constant c such
that the policy is (k, c) sensitive. The following definition is
an example of such a case.1

Definition 3 (Sensitive Ratio): The sensitive miss and hit
ratios sm

P and sh
P of P are defined as

sm
P = inf {k | P is k-miss sensitive}

sh
P = sup {k | P is k-hit sensitive}.

Our focus will be on computing these sensitive ratios and
appropriate additive (subtractive) constants. Why are we in-
terested in sensitive ratios? Consider a policy that is k-miss
sensitive. It is also l-miss sensitive for l > k. However, the
former statement is clearly a better characterization of the
policy’s sensitivity. In this sense, the sensitive ratio is the best
characterization of the policy’s sensitivity. In particular, there
are access sequences such that the ratio between the number
of misses (hits) in one state and the number of misses (hits) in
another state approaches the sensitive ratio in the limit. Every
policy is by definition zero-hit sensitive. However, a policy may

Fig. 6. Miss- and hit-sensitivity results. As an example of how this should
be read, PLRU(4) is (1/3, 5/3)-hit sensitive. ∞ indicates that a policy is not
k-miss sensitive for any k. PLRU is only defined for powers of two. (a) Miss-
sensitive ratios k and additive constants c for policies FIFO, PLRU, and LRU.
(b) Hit-sensitive ratios k and subtractive constants c for policies FIFO, PLRU,
and LRU.

not be k-miss sensitive for any k. In that case, we will call it
∞-miss sensitive. For a policy that is ∞-miss sensitive, the
number of misses starting in one state cannot be bounded by
the number of misses starting in another state.

To this end, we have built a tool that takes a concise descrip-
tion of a replacement policy and computes sensitive hit and miss
ratios with according additive constants (details about the tool
can be found in [29]).

Results: Using our tool, we have obtained sensitivity results
for the widely used policies LRU, FIFO, and PLRU at associa-
tivities ranging from two to eight. Note that we have computed
the precise sensitive ratios. For instance, there are arbitrarily
long access sequences and pairs of initial states that exhibit the
computed hit and miss ratios (for a detailed explanation of how
the results have been obtained automatically, see [29]).

Fig. 6(a) shows our results for the miss sensitivity of LRU,
FIFO, and PLRU. LRU is very insensitive to its state. The
difference in misses is bounded by the associativity k. Hence,
there can be no cache domino effects for LRU. No policy can do
better, as the initial states q and q′ may have completely disjoint
contents.

FIFO and PLRU are much more sensitive to their state than
LRU. Depending on its state, FIFO (k) may have up to k times
as many misses. At associativity 2, PLRU and LRU coincide.
For greater associativities, the number of misses incurred by a
sequence s starting in state p cannot be bounded the number
misses incurred by the same sequence s starting in another
state q.

As the number of misses may only differ by a constant for
LRU, the number of hits may only differ by the same constant.
For FIFO, the situation is different: Starting in one state, the
number of hits cannot be bounded by the number of hits starting
in another state, on the same access sequence. The results for
PLRU are only slightly more encouraging than in the miss-
sensitivity case. At associativity eight, a sequence may incur
only 1/11 of the number of hits depending on the starting state
(see Fig. 6(b) for the analysis results).

Summarizing, both FIFO and PLRU may in the worst-case
be heavily influenced by the starting state. LRU is very robust
in that the number of hits and misses is affected in the least
possible way.
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One could argue that it is still safe to assume an empty cache
as the starting state, assuming that an empty cache was worse
than any nonempty cache. This is not true for FIFO and PLRU.
We have performed a second analysis that fixed the reference
starting state (q′ in the definitions) to be empty. The analysis
revealed the same sensitive ratios as in the general case with
slightly smaller additive (subtractive) constants. It has been
observed earlier [27], that the empty cache is not necessar-
ily the worst-case starting state. This paper demonstrates to
which extent it may be better than the real worst-case initial
state.

Impact of Results on Measurement-Based Timing Analysis:
We will try to illustrate on a simplified scenario the impact of
the sensitivity results on measured execution times.

To this end, we adopt a simple model of execution time in
terms of cache performance of Hennessy and Patterson [36]. In
this model, the execution time is the product of the clock cycle
time and the sum of the CPU cycles (the pure processing time)
and the memory stall cycles

Exec. time = (CPU cycles + Mem. stall cycles)

× Clock cycle.

The equation makes the simplifying assumption that the CPU
is stalled during a cache miss. Furthermore, it assumes that the
CPU clock cycles include the time to handle cache hits.

Let CPIhit be the average number of cycles per instruction
if no cache misses occur. Then, the CPU cycles are simply a
product of the number of instructions IC and CPIhit

CPU cycles = IC × CPIhit.

The number of memory stall cycles depends on the number
of instructions IC, the number of misses per instruction, and the
cost per miss, the miss penalty

Mem. stall cycles

= Number of misses × Miss penalty

= IC × Misses
Instruction

× Miss penalty

= IC × Mem. accesses
Instruction

× Miss rate × Miss Pen.

Now, assume we have measured an execution time of Tmeas

in a system with a four-way set-associative FIFO cache. By
which factor may the “real” WCET Twc differ from Tmeas

due to different initial states of the cache? Let the number
of memory accesses per instruction be 1.2,2 and let the miss
penalty be 50. Due to pipeline stalls, let the CPIhit be 1.5.
Further assume that the miss rate Miss ratemeas during the
measurement was 5%. The sensitive miss ratio of FIFO(4)
is four. Neglecting the additive constant, the worst-case miss
rate Miss ratewc could thus be as high as 20%. Plugging

2Each instruction causes one instruction fetch and possibly data fetches.

the earlier assumptions into the equations and simplification
yields

Twc

Tmeas

=
CPIhit+ Mem. accesses

Instruction ×Miss ratewc×Miss Pen.

CPIhit+ Mem. accesses
Instruction ×Miss ratemeas×Miss Pen.

=
1.5+1.2×0.20×50
1.5+1.2×0.05×50

=
13.5
4.5

=3.

Therefore, in the example of a four-way set-associative FIFO
cache, the WCET may be a factor of three higher than the
measured time only due to the influence of the initial cache
state. If PLRU were used as a replacement policy, the difference
could be even greater. As measurement usually does not allow
to determine the miss rate (or simply the number of misses),
it is not even possible to add a conservative overhead to the
measured execution times to account for the sensitivity to the
initial state.

The earlier analysis considers the impact of cache sensitiv-
ity on an individual measurement. Measurement-based timing
analysis as described in the literature [1]–[3], [32] does not
advocate end-to-end measurements. Instead, measurements of
program fragments are performed and later combined to obtain
an estimate of the WCET of the whole program. The earlier
arguments apply to any of the measurements of program frag-
ments. If the measurement of an important fragment like the
body of an inner loop is far off, the estimate for the whole
program will also, as a consequence, be far off.

Conclusion: Sensitivity analysis revealed that, in the case
of PLRU and FIFO, measurement-based WCET approaches
may be dramatically wrong if measurement is initiated with
the wrong initial states. In particular, starting with the empty
cache is not safe in general, the notable exception being
LRU.

D. Further Cache-Related Issues

There are further properties of caches that influence the
precision of timing analysis. Unified caches as opposed to
separated data and instruction caches introduce interference
between instruction and data accesses. A superscalar out-of-
order processor may execute an instruction stream in many
different orders resulting in many different access sequences
and, consequently, in less precise information about cache
contents.

Write-back regimes in combination with replacement
schemes that do not allow precise must and may analyses on
noncompositional architectures may offer considerable prob-
lems. A so-called dirty cache line is only written back to
memory when the line is replaced in the cache. Without may
information, it is not possible to demonstrate the absence of a
replacement of a dirty line. For noncompositional architectures,
this means that a potential replacement must be taken into
account for each potential data-cache miss. This is usually very
pessimistic.
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V. BUSES

A bus is a subsystem for transferring data between different
components inside a computer, between a computer and its
peripheral devices, or between different computers. In contrast
to point-to-point connections, a bus logically connects several
peripherals over the same set of wires using a dedicated
protocol. In general, buses can be classified by the involved
components, e.g., system buses like the 60x-bus [37] on the
PowerPC, memory buses connecting the memory controller
with the memory slots, internal computer buses like Peripheral
Component Interconnect (PCI), and external computer buses
like CAN or FlexRay.

Subsequently, we describe some properties of buses that have
an influence on the system’s timing predictability.

In general, buses are clocked with a lower frequency than the
CPU. For example, the clock ratio of the PCI bus is specified
to 33 MHz in Rev. 2.0 and to 66 MHz in Rev. 2.1 of the
PCI standard. The bus controller as the interface for the CPU
to the various devices allows the increase of the CPU speed
without affecting the bus and the connected resources. Thus, it
is possible to develop the peripherals and the processors in a
decoupled way.

Analyzing timing behavior of memory accesses is special be-
cause these accesses cross the CPU/bus-clock boundary. Thus,
the gap between CPU and bus clock must be modeled within
a microarchitectural analysis, since the time unit for those
analyses is one CPU cycle3; the analysis needs to know when
the next bus cycle begins. If the analysis does not have this
information, it needs to account for all possibilities including
the worst case: The bus cycle has just begun, and the CPU
needs to wait nearly a full bus cycle to perform a bus action.
This pessimism would lead to less-precise WCET bounds.

The number of possible displacements of phase between
CPU- and bus-clock signal is bounded, i.e., at the start of a CPU
cycle, the bus cycle can only be in a finite number of states. For
example, if the CPU operates at fCPU = 100 MHz and the bus
at fBUS = 25 MHz, there are four different states. In general,
the number of states is determined by

bus-clock states :=
fCPU

gcd(fCPU, fBUS)
.

To obtain a more precise WCET bound, the displacement of
phase has to be modeled within a microarchitectural analysis.
Thus, the search space for the analysis is augmented by the
number of different bus-clock states.

The smaller the number of bus-clock states, the more effi-
cient is the microarchitectural analysis. Note that, for integral
ratios of CPU to bus frequency, the formula simplifies to
fCPU/fBUS. It might be beneficial to use integral ratios, even if
a close-by nonintegral ratio would have a higher average-case
performance.

Buses can also be classified as parallel (e.g., SCSI) or bit-
serial (e.g., USB) buses. Parallel buses carry data words in

3The microarchitectural analysis described in Section II-A models how
instructions pass through the processors’ pipeline; thus, the behavior is usually
modeled on a cycle-by-cycle basis.

parallel on multiple wires; bit-serial buses carry data in serial
form. Because of the separation of addresses and data on
parallel buses, the execution of consecutive memory accesses
can be overlapped, i.e., for two accesses, the address phase of
the second access can be overlapped with the data phase of the
first access. This is called bus pipelining. The number of
accesses that can overlap is called the pipeline depth of the bus.
Hence, one distinguishes between pipelined and nonpipelined
buses. The advantage of bus pipelining is better performance
due to reduced idle time. On the other hand, pipelined buses
need to arbitrate the incoming bus requests, e.g., if there is
an instruction fetch and a data access at the same time, the
arbitration logic needs to decide which bus request is issued
first.

Instances that can request access to the bus are called bus
masters. On simple systems, there is only one bus master, since
there is typically one CPU that requests the bus. This scenario
can be modeled because the timing behavior is deterministic.
The more masters a bus has, the more difficult it is to analyze
the traffic on the bus and the less precise will be the bounds
on latencies that can be guaranteed. There are several methods
to handle the arbitration between multiple bus masters; the
most prominent ones, namely, central bus arbiter, time-
division multiple access (TDMA), and carrier-sense multiple
access/collision avoidance (CSMA/CA) will be discussed in
more detail.

A deterministic method for controlling the access order on
the bus is the introduction of a central bus arbiter. Every master
which would like to access the bus must ask the bus arbiter
for admission. For timing analysis, the arbitration logic of this
central instance has to be modeled. The TDMA is an example
for such a deterministic arbitration logic. There are fixed time
slots for each bus requester.

However, there are also nondeterministic arbitration logics,
like CSMA/CA. A device requests the bus and then waits for a
random amount of time before it rechecks whether the bus can
still be requested by it. This method is designed for collision
avoidance, but due to its nondeterministic behavior, its timing
behavior cannot be predicted.

Asynchronous mechanisms such as DMA or DRAM refresh
cannot be analyzed with the methods described so far. A DMA
transmission and a DRAM refresh and their associated costs
cannot be attributed to the execution of an instruction. The costs
of a DRAM refresh must be amortized over time. A similar
approach can be used if the frequency of DMA is statically
known.

In recent research results, Akesson et al. [38] have proposed
the design of a predictable SDRAM memory controller. They
can guarantee a minimum bandwidth and a maximum latency
for each memory access.

VI. MULTICORE TARGET ARCHITECTURES

There is a tendency toward the use of multicore architectures
for their good energy/performance ratio. Under the aspect of
predictability, some existing and upcoming multicore archi-
tectures are unacceptable because of the interference of the
different cores on shared resources such as caches and buses.
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Examples for current automotive multicore architectures are
the Infineon TriCore TC1797, the Freescale MC9S12X, and the
Freescale MPC5516. They consist of a powerful main processor
and less powerful coprocessors. For future automotive multi-
core architectures, we see a design trend toward the use of
identical cores mostly with shared memories.

The shared memories (Flash, RAM) and peripherals are
connected to the cores by shared buses or crossbars. Conflicts
when accessing shared resources are usually resolved by as-
signing fixed priorities. Depending on the architecture, conflicts
on shared resources can be expected to happen frequently.
For example, if the cores have no private RAM, a potential
conflict might occur for each access (typically, 20%–30% of
all executed instructions).

The execution time of a task running on one core typically
depends on the activities on the other cores. Static worst-
case execution-time analysis usually assumes the absence of
interferences. The additional time (or penalty) caused by inter-
ferences must be bounded for a scheduling analysis. For non-
compositional architectures (see Section III-C) with domino
effects and timing anomalies, determining such a bound can
become next to impossible. For a fully timing-compositional
architecture, Schliecker et al. [39] determine upper bounds of
the penalties by computing the number of potential conflicts
when accessing shared memory by counting the number of
memory accesses possibly generated on different cores.

A. Shared Caches

The unconstrained use of shared caches can make a sound
and precise analysis of the cache performance impossible. The
set of potential interleavings of the threads running on the
different cores result in a huge state space to be explored,
resulting in poor precision. There exist first approaches to the
analysis of the cache performance of shared caches in multicore
systems. All approaches implicitly assume fully timing com-
positional architectures (see Section III-C). Some approaches
stem from the analysis of task interference on caches in preemp-
tive scheduling. They compute the cache footprint of preempted
and preempting tasks, determine the intersection, and assume
the rest as being eliminated. This approach is neither context
sensitive nor flow sensitive and, therefore, overly pessimistic. A
recent approach [40] is also flow insensitive but mildly context
sensitive as it considers instructions in loops and not in loops
differently. The obtained precision is not satisfactory.

B. Elimination of Interferences

The principle to be applied in the design of a multicore
architecture with predictable timing behavior is the systematic
elimination of interference on shared resources wherever they
are not absolutely needed for performance.

C. Proposal for a Multicore Architecture

The following multicore architecture offers a good combina-
tion of performance and predictability. It would have private L1
(and L2) caches with LRU replacement strategy.

Several design decisions are derived from characteristics of
the embedded applications foreseen, mainly from automotive
and aeronautics. One observation is that code is rarely shared,
the operating system often being the only exception. Allocating
the code of the different threads into a shared memory would in-
troduce unnecessary interferences with no gain in performance.
Thus, we advocate separate memory hierarchies for code.
However, embedded systems interact on the data space and,
thus, either need shared memory or communication. Embedded
systems used for control often have the characteristic that their
tasks read when an activation is triggered and write when the
task has terminated. This makes it easier to reduce the collision
on shared communication media. In our proposed multicore
architecture, crossbars would be used for the communication
between cores and the shared cache and memory in such a way
that they have deterministic access times despite being global
and shared. This requires careful scheduling and allocation of
tasks to guarantee exclusive access and noninterference. The
approach described in [41] solves this problem by combining
system-level scheduling with timing analysis and a TDMA-
based bus-access policy.

VII. FUTURE WORK

The trend in automotive embedded systems is toward uni-
fying frameworks like AUTOSAR. Such frameworks aim at
managing the increasing functional complexity and allowing
for better reconfigurability and maintainability. Standardized
interfaces allow us to compose components, independently
developed by different suppliers, on ECUs. A runtime envi-
ronment provides basic services, like intra- or inter-ECU com-
munication between components. At a lower level, AUTOSAR
abstracts from the underlying hardware, the actually deployed
ECUs. From a functional point of view, this framework
is appealing because of the gained compositionality. The
AUTOSAR timing model currently being developed is con-
cerned mainly with the integration of scheduling requirements.
The success of scheduling analysis depends on the predictabil-
ity of the execution times of the AUTOSAR—“runnables,”
the basic building blocks of a software component. When
multiple components are mapped to a multicore architecture
where memory and communication buses are shared, execu-
tion times of runnables may vary considerably, and the pos-
sibilities to predict safe and precise execution-time bounds
can be rather limited. This limits the success of the schedul-
ing analysis and counteracts the idea of composing software
components.

The applicability of the AUTOSAR idea depends on avail-
ability of architectures on which software composition does not
lead to unpredictable timing behavior.

In order to be able to benefit from static-performance analy-
sis, one will need the following elements.

1) Hardware architects making designs that enable an inter-
ference free mapping of the application.

2) A good understanding of the architecture by application
developers and software integrators who have to develop
an interference-free mapping.
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3) Tools that support developers in their mapping decisions
like compilation tool chains that automatically make good
use of scratchpad memories.

VIII. CONCLUSION AND RECOMMENDATIONS

We have presented practically relevant theoretical results
and empirical observations about the architectural influence on
timing analysis. These concerned the applicability of methods,
static versus measurement-based, and the precision and the
efficiency of static methods. A list of recommendations is
derived from these results and experiences. The most important
principle is reduce the interference on shared resources.

1) For the memory hierarchy, we suggest: Use
a) caches with LRU replacement policy, and/or scratch-

pad memories;
b) separate L1 instruction and data caches;
c) a flat linear byte-oriented memory model without

paging;
d) nonshared memory where there is little sharing in the

application.
2) For pipelines, we recommend: Use compositional

pipelines, in particular, if the execution time is dominated
by memory-access times, anyway.

There are other recommendations such as the reduction of
speculative features, which would increase the precision and
decrease the complexity of timing analysis and which could not
be treated in detail in this paper.
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