
Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

An OBSM Method for Real Time Embedded System

Liu FanlLg, MimgCai, inxianrg Dong.Meirod ge u
Artificiall Intelligence, Zhejiang UJniversity, Halngzhou, China, 310027

thsxcm di, xmr I @cs.z;ju.edu.c

Abstract

The traditional OBSM method in spacecraft and other
real time embedded system is to re-compile the whole
system after source code modification, and then reboot
the target machine with the new version software. This
hurts the availability of the system. Most of the new
methods are based software or hardware redundancy. To
reduce the cost and make the OBSM more conveniently,
we classify OBSM, and patch the target system with
diferent method according to diferent OBSM type, so the
new solution can reduce the cost.

Keywords: OBSM, real time, embedded, availability-
critical

1 Introduction

With recent generations of spacecraft, complex
onboard software has emerged as a key component
between the ground control facilities and the spacecraft
platform and payload being operated, by offering a high
level of spacecraft autonomy and flexibility. This
software can be modified or even redefined during the
mission, whereas most other on-board subsystems are
confined within the limits of pre-defined configurations.
[1] Although instrument on-board software is designed,
developed and tested following strict quality assurance
procedures, experience of past and current missions show
that the capability of reprogramming instrument on-board
software from the ground is an essential requirement
throughout the instrument lifetime. [2]

To ensure safe operations and service continuity, the
On-Board Software Maintenance (OBSM) concept that
will be employed allows in-flight modification of the
running software, through an incremental model based on
patches. New programs are compared to the current
software on board and the differences are converted into
memory-load commands. Four independent versions of
the on-board software will be maintained - one per
spacecraft - with multi- and inter-spacecraft handling for
the common functionalities. [3]

Exclude aerospace, the demand for continuous service
in mission- and availability-critical software applications,

such as Internet infrastructure, telecommunication,
military defense and medical applications, is also
expanding. The evolutionary change of software is
unavoidable due to changes in the environment or in the
application requirements that cannot be completely
predicted during the design phase, or due to bug-
correction or enhancement of functionality. For these
availability-critical applications, it is unacceptable to
shutdown and restarts the system during software upgrade,
but in many real time embedded system, it needs to re-
compile the whole system and then reboot the target
machine with it. The objective of on-board software
maintenance is to be able to add, remove or replace any
relevant components without significantly affecting other
parts of the system.

The remainder of the paper is organized as follows.
Section 2 discusses some related works of other
researchers. Section 3 describes the framework of the
OBSM system. Section 4 describes the implementation of
the system, followed by section 5 presents a prototype of
the system. The final section concludes the effort of our
work.

2. Related work

This section discusses selected approaches to the
problem ofOBSM systems:

Upgrading need system reboot,,
Most of the embedded system applications are

compiled with the embedded operating system, so the
system will reboot after maintenance in the traditional
OBSM solution.
An JunShe and his partners proposed an approach to

reduce the size of the patch and save the time of writing
the patch to flash [4]. In their approach, they allocate
more memory for each module at compiling time. When
maintaining software, the module which need modified is
replaced by the new one, and then system is rebooted. But
it is hard to estimate the extra size that is needed to
allocate for each module, and the memory is wasted.

C. Steiger R. Fumell and J. Morales describe an
approach of using On-board Control Procedures (OBCPs)
to do On-board Software Maintenance (OBSM) activities
in a safer and more efficient manner [5]. An OBCP is a
stand-alone program executed on-board and capable of

1-4244-0165-8/06/$20.00 C 2006 IEEE.

Authorized licensed use limited to: University of Florida. Downloaded on February 12, 2010 at 18:30 from IEEE Xplore. Restrictions apply.

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

interacting with other on-board subsystems, with similar
capabilities to what a ground operator would have, so
problems of the on-board subsystems would not affect the
OBCP. But with their design of OBCP, the system needs
to reboot likewise.

Upgrading needs no system reboot,,
Ann. Tai et al, supported by Jet Propulsion Laboratory,

do a series of researches on OBSM [6-9]. In their solution,
with hardware redundancy, the new version software runs
concurrently with the old version software. The old
version guards the upgrading, and if the new version
works as expected for some time, the system switch to the
new version from old version, else if errors occur when
upgrading, the system rollback to a checkpoint. Their
work avoids or minimizes the unavailability and
performance loss of spacecraft/science functions due to
software upgrading activities and due to system failure
caused by residual faults in an upgraded version, but
needs hardware redundancy.

Component-based dynamic architecture: Darwin,
proposed by Jeff Kramer and Jeff Magee, is a
configuration language for describing dynamic
architecture [10]. It is a declarative language, which is
intended to specify the structure of distributed systems
composed from diverse components using diverse
interaction mechanisms. It separates the description of
structure from that of computation and interaction. C2-
style architecture is another component-based architecture,
which highlights the role of connectors in supporting
runtime change [11] [12]. Connectors are explicit entities
that bind components together and act as mediators
among them. Components communicate by passing
asynchronous messages through connectors. Connectors
provide a mechanism for adding and modifying
component bindings in order to support reconfiguration.

Distributed object-based approach: In CORBA [13]
and COM± [14], client IDL stubs and server IDL
skeletons are generated at the compilation of IDL
interface so that a client object can transparently invoke a
method on a server object across the network. The
method invocation will be handled by a group of objects,
so that if in a distributed application one replica object
fails or is being upgraded, another object is able to
operate normally. This approach requires basic CORBA
architecture, reliable group communication such as totally
ordered protocol, and frequent checkpoint mechanism in
order to maintain the state consistency in the object
replicas during the running ofCORBA applications.

As indicated above, if system reboot is not needed
after upgrading, the primary standby method relies on
redundant hardware and software. In centralized and real
time system, it is a high cost to have hardware or software
redundancy; because the communication and
synchronization between a software component and it's
redundant part is time consuming. Although hardware
redundancy is well employed in spacecraft and other
applications, America, England et al, to save cost, have

developed spacecraft Computer System based on 80386
specially designed for small explorer satellites and built
with minimal hardware redundancy; software system will
reboot after OBSM [15]. Many commercial applications
don't have hardware redundancy for the sake of reducing
cost if safety is not so critical. We have developed an
OBSM tool to make the OBSM more convenience and
enhance the system availability while software upgrading
for small satellites without system reboot, and it is also
useful for commercial applications, especially for real
time embedded system.

3. OBSM system overview

3.1 Frameworks

An OBSM workbench integrated into the operations
environment has to include a compiler and software
development environment (SDE), a software validation
facility (SVF), a generator for patch telecommands, and a
mission database of "memory images". The latter are files
representing, the contents of the target computer memory
(programs and data) at any time during the mission.

SVF for OBSM may be integrated with simulator
already exists, many real time embedded system, such as
VxWorks, QNS, have simulator with SDE. Reference [2,
16] presents a method to simulator the OBSM by
software when design the spacecraft OBSM system. Patch
maker receives source file modification information from
SDE, creates the patch and then sends the patch to SVF, if
errors occur during testing, error information is sent to
SDE. Until SVF says ok, the new version software will be
sent to the target machine, where patch handle task is
waken up and the system is patched.

The framework of the OBSM system is as follows:

-Modification infor-_

-Upload patch----I

Figure 1: Framework

3.2 Classification of OBSM

OBSM can be classified into 3 catalogs, kernel
modification, user application modification, and
parameter modification.

Authorized licensed use limited to: University of Florida. Downloaded on February 12, 2010 at 18:30 from IEEE Xplore. Restrictions apply.

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

Kernel modification: the operating system may also
have bugs since the complexity of the software. In this
situation, if the kernel is preemptible, PC register of each
task may pointer to an instruction that will be modified,
so all the tasks must be stopped except the patch handle
task; if the kernel is non-preemptible, any task that is not
in the ready state needs be restarted.

User application modification: comparing with kernel
modification, it is more common to modify user
application. Different application is designed to different
tasks. When an application needs to be upgraded, its
according task is killed, and according code is updated,
then the task is restarted. The traditional OBSM is to
update the whole software in the Flash or other erasable
storage and then reboot the system.

Parameter medication: it is also common to modify the
parameter. Parameter is referred to global variable or
static variable or a data area in memory. Local variable is
in stack and can't be modified. In some situation,
variables and data can be modified just rewrite the
memory where the data locates; but in other situation, in
the sake of keeping consistency of the data, for part of
data may be in the registers, the tasks which use these
data must be restarted.

The classification of OBSM can minimize
maintenance-caused system unavailability.

4. System Implementation

4.1 Patching information fetching

To code modification, when the user has done the edit,
SDE will tell OBMS to start to fetch the patch
information. OBMS find the source files that were
updated by the modification time of the files. Then
compare the two and remove the functions that have not
changed. The comparison uses the files that have been
precompiled as its input, so the modification of the micro
and the header file will be reflect in the functions. For
global and static variable, if it has already in the file of
the old version, then add an "extern" before the
declarations. Then compile the file to the object file. The
relocation will be illustrated in the section 4.3.

To parameter modification, users can modify the value
of the global variables or static variables. Users input the
variable name and OBSM system would find the address
of the variable by looking up in the symbol table. If there
are more than one variable called that name, then a
warning occurs and the users are asked to specify the
location of the variable. Then users input the value of the
variables. Because there will be byte order (big-endian
and little-endian) problem, we build a temporary source
file for these variables and structures. After users having
done all the inputs, in the temporary source file, we assign
the values to the variables and members of structures, and
output the values byte by byte. For structure, users input

the structure type, and OBSM will find the definition of
the structure type, and then show the members of the
structure. Users may choose the member and input its
value. To get the address of a structure member in target
machine's memory, first we find the address of the
structure in symbol table. Second compute the offset of
the member in the structure, and then add the two to get
the real address. But the offset of the member in the
structure is affected by structure compact that is
depending on the compilers. To make the compilers
transparent to users, we add two macros in the temporary
source file to compute the offset:
/* byte offset of member in structure*/
#define OFFSET (structure, member)
((int) & (((structure *) 0) -> member))
/* size of a member of a structure */
#define MEMBER SIZE (structure, member)
(sizeof (((structure *) 0) -> member))

Using the temporary source file, we can easily avoid
the byte order problem and compact problem which user
must compute carefully according the architecture and
compiler.

4.2 Task dependency analyzing

If a task calls a function (procedure), we say that the
task is depending on the function. Software upgrading
can be divided into functions upgrading and parameters
upgrading. Functions upgrading may result in "Invalid
OPCode" error et al if the task which depending on them
does not be restarted. This can be described more clearly
as follows:

Figure 2* invalid OP Code

Parameter modification needs task to be restarted also.
To resolve this problem, we create a caller graph of

functions for each source file. In the following graph, a
node denotes a function, and a directed edge (such as Fl-
>F2) denotes that function F1 is called by F2. A dashed

Authorized licensed use limited to: University of Florida. Downloaded on February 12, 2010 at 18:30 from IEEE Xplore. Restrictions apply.

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

edge denotes that the caller function is in another file. We
store the graphs in the database one relation per file.

memory for the new function at Z, so it calls Y at Z+X.
This is described as follow figure.

v

Figure 4: re-relocation

Figure 3: Caller Graph

After a source files have been modified, we find
each function has been upgraded, and use the Breadth-
first Traversal to traverse the graph. When arriving a
node Fn, we add it to a set E, if the node is already in
E, it indicates that the sub-graph started at Fn has
already been traversed, so we go back to traverse the
other part of the graph. Finally, we get the all functions,
which are depending on the starting function, and find
the tasks whose entry point is in these functions.

Function pointer makes the problem a little more
complex. A function pointer may pointer to different
function at different time in different conditions. Each
function pointed by the pointer is added to graph; this
would affect the efficiency little for function pointers
are not always used.

Modification of variables and other data can also
lead to task reboot, and its dependency can be
computed in the same way.

4.3 relocation and re-relocation

In order to upgrade the software, target machine may
need to keep a symbol table to do the relocation. But it is
memory cost to maintain the symbol table; so we do the
relocation in the host machine instead. If a new version
function is larger than the old one, the new function will
put into new memory address, so it needs to do re-
relocation after the patch is uploaded to the target
machine.

First, we assume the new version function will be put
to address 0, and at X, it calls the function Y, after the
patch is uploaded to the target machine, OS allocates

The caller instruction at X is call (Y-X-5) when doing
the first relocation, and it should be call (Z+X+5 - Y)
when the function is putted to Z. The value of target
function Y can be found in the symbol table and value of
X can be found in the object file. If a call instruction is
call A after the first relocation and the new function is
putted to address B, then the call instruction after re-
relocation is changed to A-B.

Use the method described as above, users don't need
to know the details of the relocation and object format,
and can save memory for the symbol tables.

Relocation and re-relocation should be done according
to different object format.

4.4 patching

When the target machine has received the patch
command, it starts the OBSM task to receive a patch; a
patch can be a code patch or a parameter patch. The
format of the patch is described as follow,
{{affected task, entry point} {parameter address
parameter size (in bytes) parameter value} }
The format of the code patch is described as follow:
{ {affected task, entry point} {old code address, code size,
code, new code address, code, and code size}}
After receiving the patch and doing the sum check, the
maintenance task suspend the affected tasks, then copy
the parameter value to the parameter address or copy new
code to the address according its size. Finally restart the
tasks.

To restart a task, the task priority, entry point, base of
stack and arguments are always needed. Tasks priority
and base of stack can be fetched in the TCB (task control
block). In most of embedded system, the max number of
arguments is determinable and the type is integer, else the

Authorized licensed use limited to: University of Florida. Downloaded on February 12, 2010 at 18:30 from IEEE Xplore. Restrictions apply.

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

patch must include the arguments number for a task;
when initializing the task and its registers, we set the esp
register as: esp register = (int) (pStackBase -
(MAX_TASK_ARGS * sizeof (int)) or esp register = (int)
(pStackBase - arguments length). Then we begin the task.

4.5 Resource Protection

When we kill a task, if the resources belonged to the
task are not been properly released, there will be serious
problems. For example, many applications in real time or
embedded environment, don't support or use MMU, so if
a task is killed, the memory its allocated but not freed,
will lost; if a semaphore is not handle properly, other
tasks who are waiting the semaphore, will wait it
permanently.

In the OBSM system, we use two methods to protect
the resource. One is the register mechanism, and the other
is reboot-delayed mechanism.

The register method can be described as follows, when
a task allocates resource, such as memory, system will
register its task ID and the resource. Once the task needs
to be restarted, the resource belonged to it will be released.
Many real time systems, even like VxWorks, tasks won't
reclaim its resource if they are killed.
We add a property called safe-count to task control

block to protect the resources which cannot be reclaimed
when the tasks need to be restarted. When a task allocates
a resource, increase the safe-count, and vice versa. If a
task need to be upgraded (but not crashed), then OBSM
system will check the safe-count to see whether the task
can be killed safely, if not, the task will be allowed to run
for more time, and its tcb is add to a queue. OBSM
system will check the queue to see whether there are tasks
can be restarted. If a task overruns the limited time and
has not been restarted, it will be forced to restart, and
tasks that share resources with this task will also be
restarted, else the task is restarted without any impact on
other tasks. This is called reboot-delayed mechanism.

5 System Prototype

We have conducted some experiments to determine the
overhead incurred due to OBSM. Our experiments based
on Pentium-s, 100 MHz, 3 source files modification (20
functions), and the overhead during OBSM is about 15
microseconds. If the conventional method is used, the
process will take 2 seconds and 110 microseconds. The
big overhead of the conventional method is because the
reboot of the system. The overhead of our method can be
divided into two parts, one is the overhead for suspending
and restarting the tasks, this normally takes about 5
seconds. The other is to copy the new version function
and data to its proper address and do the re-relocation,
and this may take 10 seconds and may increase with the
code size.

An operation interface is as below, the upper part of
the interface is the changed source files, and the lower
part is the depending tasks that need to be restarted in the
target machine.

Ego

Figure 5: example

6. Summary

There are two traditional OBSM methods, one needs
reboot after OBSM, and the other relies on redundant
hardware and software. But in centralized and real time
embedded system, it is a high cost to use hardware and
software redundancy. So we develop a method to update
the software by writing the patch to memory directly.

The classification of OBSM can reduce the overhead
during the OBSM. The task dependency analysis and
resource protection ensure the correctness of upgrading.
And Automation of patch information fetching, relocation
and re-relocation, and patching help the user upgrade the
software conveniently and correctly.

This OBSM method has a little overhead comparing to
other OBSM methods, even to the live software
upgrading. It will be useful for many other applications
that are subject to frequent software upgrading and
require high availability, such as Internet services,
transportation systems, airline reservation systems,
telephone systems and medical systems, especially for
real time embedded system.

Acknowledgement

This work is supported by the National Defense
Advanced Research Program of China.

menhwc
omt.w

Authorized licensed use limited to: University of Florida. Downloaded on February 12, 2010 at 18:30 from IEEE Xplore. Restrictions apply.

Proceedings of the 10th International Conference on Computer Supported Cooperative Work in Design

Reference
[1] Faren Qi, Renzhang Zhu, Yili Li, "Manned Spacecraft
Technology", National Defense Industrial Press, Beijing, China,
1999, pp. 401-402.
[2] Bartolome Real Planells, "XMM Instrument On-board SW.
Maintenance: An Approach Via Processor Simulation",
SpaceOps 98, Tokyo, Japan, 1998.
[3] Denis M, "The cluster On-Board Software Maintenance
Concept". ESA bulletin, 1997, vol.91, pp. 18 24.
[4] Junshe An, Yanqiu Liu, Huixian Sun, "Implementation of
On-board Software Maintenance", Computer Engineering,
Shanghai, China, Feb.2003, vol.29, No.2, 238-239.
[5] C. Steiger, R. Furnell, J. Morales, "OBSM Operations
Automation Through The Use of On-board Control Procedures",
SpaceOps 2004, Montreal, Canada, 2004.
[6] A. T. Tai and L. Alkalai, "On-board Maintenance for Long-
life Systems", in Proceedings of the IEEE Workshop on

Application-Specific Software Engineering and Technology
(ASSET'98), Apr. 1998, pp. 69-74.
[7] A. T. Tai, Kam S.Tso, "Leon Alkalai, Savio N. Chau,
William H. Sanders, Low-Cost Error Containment and
Recovery for Onboard Guarded Software Upgrading and
Beyond". IEEE Transactions on computer, 2002, vol.51 No.2
[8] Ann T. Tai, Kam S.Tso, Leon Alkalai, Savio N. Chau,
William H. Sanders, "On the Effectiveness of a Message-Driven
Confidence-Driven Protocol for Guarded Software Upgrading".
Perormance Evaluation, 2001, Vol.44, pp.211-236.
[9] A.T.Tai, K.S. Tso, L.Alkalai, S.N.Chau, and W.H.Sanders,
"On Low-Cost Error Containment and Recovery Methods for

Guarded Softeare Upgradting, Proc". 20th Int'l Conf.
Distributed Computing Systems(ICDCs 2000), 2000, pp.548-
555.
[10] Jeff Magee and Jeff Kramer, "Dynamic Structure in
Software Architectures", Fourth SIGSOFT Symposium on the
Foundations of Software Engineering (FSE), San Francisco,
October 1996, pp. 3-14.
[11] Peyman Oreizy and Richard N. Taylor, "On the Role of
Software Architectures in Runtime System Reconfiguration",
Proceedings of the International Conference on Configurable
Distributed Systems (ICCDS 4), Annapolis, Maryland, May
1998.
[12] Peyman Oreizy, Nenad Medvidovic, and Richard N.
Taylor, "Architecture-Based Runtime Software Evolution",
IEEE/ACM International Conference on Software Engineering
(ICSE '98), Kyoto, Japan, April 19-25, 1998, pp. 177-186.
[13] Object Management Group, "The common Object Request
Broker: Architecture and specification, 2.2 edition", OMG
Technical Committee Document formal/98-07-01, Feb 1998.
[14] Microsoft Corporation, Various COM documents, MSDN
library, 1998.
[15] Lu Dongxin, Teng Lijuan, Hong Bingrong, Gao Feng,
"Design of a Five Level Protection Sytem Based on Watchdog
For Sepacraft Computer", Journal of HarBin Institute of
technology, Feb.2001, Vol.33, No.1, pp.13-19.
[16] M.M.lrvine A.Dartnell, "The Use Of Emulator-Based
Simulators For On-Board Software Maintenance", European
Space Agency, ESA SP, 2001, n 509, p 150-155

Authorized licensed use limited to: University of Florida. Downloaded on February 12, 2010 at 18:30 from IEEE Xplore. Restrictions apply.

