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Abstract Energy consumption is a critical design issue in embedded systems, especially in

battery-operated systems. Maintaining high performance while extending the battery life is

an interesting challenge for system designers. Dynamic voltage scaling and dynamic fre-

quency scaling allow us to adjust supply voltage and processor frequency to adapt to the

workload demand for better energy management. Because of the high complexity involved,

most solutions depend on heuristics for online power-aware real-time scheduling or offline

time-consuming scheduling. In this paper, we discuss how we can apply pinwheel model to

power-aware real-time scheduling so that task information, including start times, finish times,

preemption times, etc, can be efficiently derived using pinwheel model. System predictability

is thus increased and under better control on power-awareness. However, job execution time

may be only a small portion of its worst case execution time and can only be determined at

runtime. We implement a profiling tool to insert codes for collecting runtime information of

real-time tasks. Worst case execution time is updated online for scheduler to perform better

rescheduling according to actual execution. Simulations have shown that at most 50% energy

can be saved by the proposed scheduling algorithm. Moreover, at most additional 33% energy

can be saved when the profiling technique is applied.

Keywords Power-aware real-time scheduling · Pinwheel model · Dynamic voltage scaling

· Embedded systems · Profiling
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1. Introduction

In recent years, embedded systems have been rapidly and widely spread, especially mo-

bile systems and portable systems. People enjoy the convenience in all kinds of embedded

applications, such as communication, industrial control, medical instrumentation, and en-

tertainment, etc. However, most embedded devices are operated using batteries so that their

working duration is limited. With the increasing demand of performance and computing

power, such as video playback, energy consumption increases dramatically. Although bat-

tery technology also advances along with the devices, battery capacity seems never enough

for users. Therefore, energy consumption has been a critical constraint in the design of em-

bedded systems, especially in battery-operated systems such as laptops, PDAs, and cellular

phones.

Dynamic voltage scaling (DVS) and dynamic frequency scaling (DFS) allow ad-

justing processor voltage and frequency at runtime. Usually, higher processor volt-

age and frequency leads to higher system throughput while energy reduction can

be obtained using lower voltage and frequency. Recent trends in modern processor

architecture provide support for these two mechanisms. For example, Intel Mo-

bile Processors with SpeedStep technology (http://www.intel.com/index.htm, 2004),

AMD Mobile Processors with PowerNow! technology (http://www.amd.com/us-en,

2004), Transmeta Crusoe (http://www.transmeta.com/index.html, 2004) and Stron-

gARM (http://www.intel.com/index.htm, 2004), etc. Instead of lowering processor voltage

and frequency as much as possible, power-aware real-time scheduling adjusts voltage and

frequency according to some optimization criteria, such as low energy consumption or high

throughput, while meeting the timing constraints of real-time tasks. However, reduction

of processor voltage and frequency increases the circuit delay, causing slowdown in the

execution of programs. Hence, power-aware real-time scheduling makes a trade off between

energy saving and system performance. We need to schedule properly where to change the

processor voltage and frequency to have the best power-aware performance.

DVS and DFS can be implemented at various levels of a system, such as in the processor, in

the OS scheduler, in the compiler or in the application (Unsal and Koren, 2003; AbouGhazaleh

et al., 2003). In this paper, we focus on task scheduling algorithms to meet timing constraints

while minimizing system energy consumption. Operating system is the only component with

an overview of the entire system, including task constraints and status, resource usage, etc.

Therefore, we believe it would be one of the most effective and efficient approaches to reduce

energy consumption with proper task scheduling algorithms.

The real-time scheduling problem with power optimization constraints is NP-hard (Chen

and Muhlethaler, 1996 ). It is time consuming to find an optimal schedule where energy

consumption is minimized and all timing constraints are met. Many previous works either

proposed offline scheduling for large energy reduction, or used heuristic methods to reduce

scheduling overhead. However, while the former approaches are inflexible and too costly to

store in memory, the latter ones may not realize the full potential of energy savings.

As shown in Figure 1, the slack of a job with deadline at di at any time t < di is equal to

(di − t) minus the time required to complete the remaining portion of the job (Liu, 2000).

Conventional real-time systems are usually overestimated to schedule and provide resources

using the worst case execution time (WCET). In average case, real-time tasks rarely execute

up to their WCET. In many applications, best case execution time (BCET) is often a small

fraction of their WCET (Ernst and Ye, 1997 ). However, such slack times are only known at

runtime. It may be difficult or time-consuming for schedulers to determine whether the next

job should utilize the slack time or the system enters sleep mode for the best energy saving.
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In this paper, we describe and analyze the adaption of pinwheel algorithm to power-aware

real-time scheduling. Pinwheel scheduling uses a distance-constrained specialization tech-

nique to transform all task distance constraints to harmonic numbers (Hsueh and Lin, 2001),

which we call pinwheel transformation in this paper. Pinwheel schedule can be generated in

polynomial time and space. System predictability is increased and task execution becomes

more deterministic. Sufficient scheduling information, such as job start times, finish times,

preemption times, etc, can be derived efficiently in polynomial time. Power-aware real-time

technique is then used online based on the information to make better scheduling decisions.

Furthermore, we implement a profiling tool to provide timing information at program run-

time for scheduler to adjust schedule online according to the actual execution time (AET).

Slack time thus can be better utilized for power-aware real-time scheduling. We present

some power-aware real-time scheduling algorithms using pinwheel model. Simulations have

shown that the overhead and complexity of power-aware real-time scheduling is acceptable.

The rest of this paper is organized as follows. The next section introduces some background

knowledge and previous works on power-aware real-time scheduling. Section 3 discusses

how to apply pinwheel model to power-aware real-time scheduling. In Section 4, we analyze

the benefits of adapting pinwheel algorithm. Finally, this paper is concluded in Section 5.

2. Background

2.1. Dynamic voltage scaling and dynamic frequency scaling

DVS and DFS allow the changing of processor voltage and frequency at runtime. Scheduling

using DVS and DFS is to determine the voltage along with the frequency of a processor

at runtime (Weiser et al., 1994; Govil et al., 1995). They are to support a both low-power

and high-performance processor. In order to meet peak computational loads, the processor

is operated at its maximum voltage and frequency. When the load is lower, the operating

frequency can be reduced to at least meet the timing constraints.

CMOS circuit is currently used in almost every microprocessors. The average dynamic

power which many researches in power reduction are concerned is given by the following

formula:

Pdynamic = CL ∗ NSW ∗ V 2
dd ∗ f (1)

where CL is the load capacitance, NSW is the average number of circuit switches per

clock cycle, Vdd is the supply voltage and f is the clock frequency. Although power con-

sumption can be reduced by the improvement in circuit technology (Burd and Brodersen,
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1995; Chandrakasan et al., 1992), with the use of more complex designs, circuits have an

increase in power dissipation. We can see also from the formula that energy consumed by

the processor per clock cycle scales enormously with the operating voltage and frequency.

Therefore, power-aware scheduling using DVS and DFS can have a significant impact on

energy consumption.

Figure 2 shows that the idea of decreasing the processor frequency and supply voltage to

reduce the power consumption. T1, T3 and T4 are scheduled using lower frequencies which

results in lengthening execution times in Figure 2(b). Finish times of T1, T3 and T4 are extend

from t1, t3 and t5 to t2, t4 and t6 respectively. Since lowering processor frequency results in

lengthening task execution time, to lower the voltage or frequency, there should be enough

idle time followed for the portion of lengthened execution time. If we can know efficiently

where the idle time will be in the schedule, it helps the scheduler to decide which processor

frequency would be the best for energy reduction. Supply voltage can then be adjusted

accordingly.

2.2. Pinwheel algorithm and DCTS

In some real-time applications, tasks must be executed in a distance-constrained manner,

rather than just periodically. That is, the temporal distance between any two consecutive

executions of a task should always be less than a pre-defined value. Such a real-time system

is called a Distance-Constrained Task System (DCTS). For example, video systems need

to ensure the inter-arrival time between frame replays is always less than 33 ms. A video

decoding task with period Pi and execution time ei using a periodic model is shown in

Figure 3. The distance of two consecutive jobs can be as long as 2Pi - ei or as short as ei . The

distance in periodic task model is indeterministic and this degrades predictability of real-time

systems. Assume the execution time of video decoding is 10 ms, the playing between two

frames may be up to 56 ms. This is very different from receiving at least one frame in every

33 ms.

time

Ji,j Ji,j+1 Ji,j+2

Pi Pi

2Pi - ei ei

Fig. 3 Variation Distance
between Consecutive Jobs of a
Periodic Task
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Pinwheel scheduling uses a distance-constrained specialization technique to transform all

task distance constraints to harmonic numbers (Hsueh and Lin, 2001; Hsueh and Lin, 1998).

In a DCTS, it is necessary that the transformed distance constraints are less than or equal

to the original distance constraints. Pinwheel schedulers transform the distance constraints

into a set of special harmonic periods so that the density, sum of execution time divided by

distance constraint of every task in the system, increase is minimized.

For example, suppose a system has five tasks with distance constraints {9.2, 10.6, 10.7,

21.4, 23.4} respectively, and their execution times are {1.5, 2.0, 3.4, 1.4, 3.0} respectively.

After pinwheel transformation, the five tasks will have new distance constraints {5.3, 10.6,

10.6, 21.2, 21.2} (Hsueh and Lin, 1998). These tasks then can be scheduled as periodic tasks

using the new distance constraint as their periods. The RM1 schedule using the original dis-

tance constraints as periods and the schedule of the task set after it is transformed by pinwheel

algorithm is shown in Figure 4. Since the distance constraints are harmonic numbers, the

execution schedule for each task has no jitter and meets the distance constraints. The system

predictability, which is important in real-time systems, is increased, and thus complexity of

power-aware real-time scheduling can be reduced.

1 The most popular real-time scheduling approach.(Liu and Layland, 1973)
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2.3. Related work

Recent researches focus on solving the challenge of online scheduling (Kim et al.,

2003; Manzak and Chakrabarti, 2003 ). However, online scheduling is difficult, especially

in priority-driven schedulers, due to the lack of task execution information. Shin and Choi

proposed a Low Power Fixed Priority Scheduling (LPFPS) algorithm (Shin and Choi, 1999).

Due to lack of workload information, simple technique is used. Processor voltage and fre-

quency are changed only when there is one or no job ready for execution. Pillai and Shin

presented several novel algorithms for realtime DVS that can achieve significant energy sav-

ings while simultaneously meeting real-time constraints (Pillai and Shin, 2001). The proposed

cycle-conserving real-time DVS algorithms (ccRM, ccEDF) using dynamic schedulability

tests to determine processor frequency. Although the algorithm is efficient, when a task is

finished early, the slack time is only utilized by the remaining ready tasks for inter-task

scheduling.

Daniel Mosse and et al. proposed power management hint (PMH) mechanism for

compiler to provide runtime information to OS scheduler for better online scheduling

(AbouGhazaleh et al., 2003; AbouGhazaleh et al., 2002; AbouGhazaleh et al., 2003). They

also discussed the frequency of placing PMHs and rescheduling in order to reduce scheduling

overhead (AbouGhazaleh et al., 2001). Ana Azevedo and et al. used a profile-based method

for intra-task scheduling to adapt to the AET of a task (Azevedo et al., 2002). However, these

works are either focused only on intra-task scheduling or lack of discussing about how OS

scheduler uses these information to perform inter-task scheduling.

Our contribution is first introducing pinwheel model into power-aware real-time online

scheduling to systematically utilize all slack times for energy saving and provide a

computational feasible solution. In order to adapt to AET, a profiling tool is implemented

to analyze a program and provide timing information as scheduling hints at runtime. The

proposed scheduling algorithm can take advantages of these hints to dynamically adapt to

system execution.

3. Power-aware algorithm using pinwheel model

In order to obtain better energy reduction, off-line scheduling is used in many systems.

In off-line scheduling, knowledge of real-time jobs is known a priori, including periods,

execution times, release times, etc. Complex algorithms are used in order to generate good

schedules that can minimize energy dissipation. Although it can obtain better energy reduction

but is considered inflexible. If the task set of the system changes, new schedule needs to be

precomputed and stored for later use. Many on-line approaches are proposed for these more

complicated and interactive systems. In this Section, we discuss the benefits obtained from

pinwheel algorithm for online power-aware real-time scheduling.

3.1. Benefits obtained from pinwheel model

In opposition to offline scheduling, online scheduling makes each scheduling decision dynam-

ically at necessary rescheduling points, such as when a task finishes its job, or a high-priority

task (higher than the current one) is ready for execution. Therefore, online scheduling can ac-

commodate dynamic variations in system availability and user demands. Online scheduling

is very suitable for a system whose workload is unpredictable. However, the cost of flexibility

and adaptability is that the scheduler cannot generate optimal schedule without prior knowl-
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edge. The benefits obtained from pinwheel model in power-aware real-time scheduling can

be summarized as follows:� Tasks information can be known a priori for better online and offline scheduling.� Pinwheel schedule can be generated in polynomial time and space.� The rescheduling points within the hyperperiod can be massively reduced.

The key idea of power-aware scheduling is to manage slack times in order to reduce

energy dissipation. There may be still plenty of slack times in the system when tasks running

in maximum processor frequency, especially when the system utilization is low. Under the

restriction that no task misses its deadline, according to formula (1), we can lower the

processor voltage and frequency to reduce energy consumption. However, there is no way

for on-line scheduler to know slack times in advance so that only some simple heuristic

algorithms can be used to partially solve the problem.

For example, LPFPS schedules using RM algorithm when there are more than one tasks

in the ready queue. If there is only one task in the ready queue, the slack time until the

next ready task can be derived. DVS and DFS are then applied if possible for energy saving.

When there is no task in the scheduling queue, the system enters sleep mode to reduce energy

dissipation. An example of LPFPS is shown in Figure 5(b), where T1 and T3 finish earlier

then their WCETs, but only T2 and T5 execute using lower processor frequency to make use

of the slack times. T4 executes using the maximum frequency because it is not the only one

task left in the ready queue.

As we can see, DVS and DFS are only conducted when there is less than or equal to one

ready task in LPFPS. Further energy saving is still possible if DVS and DFS can be conducted

before every task execution to more effectively manage slack times. Since lowering the

processor frequency results in lengthening the execution time of the current executing job, it

is necessary to make sure that no other job violates its timing constraints due to the change.

However, this is difficult or time-consuming in priority-driven systems.

The pinwheel model can provide more timing information for online scheduling and helps

to make better scheduling decisions. Start times, finish times, preemption times and resume

times of real-time jobs within every period can be determined and have the same distance

related to their release times. In other words, system predictability is increased. Schedulers

can schedule based on not only information of the current task or system utilization but

consider other tasks as well. It helps to reduce some difficulties of online power-aware

real-time scheduling due to non-determinism.

Power-aware real-time scheduling using pinwheel model can be divided into two phases.

In the first phase, we generate and store the pinwheel schedules. For a given real-time

task set with task execution times and periods, we first perform pinwheel transformation
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using HSx(Hsueh and Lin, 1996). With the help of pinwheel algorithm, all task periods are

transformed to harmonic integers. Real-time jobs in the generated pinwheel schedule are

assumed to be executed using the maximum processor frequency and supply voltage by

default.

In the second phase, schedulers can perform more precise power-aware scheduling accord-

ing to their scheduling policies based on the timing information obtained from the pinwheel

schedule and then dynamically perform DVS and DFS to reduce energy consumption on

every rescheduling point. This is difficult or time-consuming in priority-driven systems due

to lack of information of other real-time tasks. Furthermore, rescheduling points within a

hyperperiod of a schedule are reduced such that the number of context switch and scaling of

processor voltage and frequency is massively reduced, which leads to better energy reduction.

3.2. Greedy method

LPFPS is simple and easy to implement in most priority-driven real-time systems. However,

the chance of changing processor frequency is low and cannot fully explore the potential

of energy savings. We adopt pinwheel algorithm to solve this problem. Pinwheel algorithm

transforms periods of real-time tasks into harmonic numbers and a pinwheel schedule can

be generated in polynomial time and space for providing further power-aware scheduling

information. The scheduling interval of time t is the time between t and the end of the next

idle time in the generated pinwheel schedule (Figure 1). LPFPS can be extended to perform

DVS and DFS at every rescheduling point instead of at the time when executing the last task

in the ready queue. We call the extended version of LPFPS greedy method and the idea of

the algorithm is as follows. Whenever rescheduling is required, we allow the next ready job

to try to greedily use up the idle time within this scheduling interval so that the processor

frequency is lowered as much as possible.

Figure 6 shows an example schedule of three tasks T1, T2, and T3 where their execution

times are 9, 6, 6 and deadlines are 31.5, 31.5 and 63 respectively. The scheduling results of

the pinwheel and the greedy algorithm are shown in Figure 6(a) and Figure 6(b) respectively.

The greedy method reschedules at every rescheduling point to determine processor voltage

and frequency. Although it is efficient and easy, the energy reduction may depend on the

given real-time task set due to the processor frequency steps are discrete. As the example

shown in Figure 6(b), there is still some idle time at time 30 and no other jobs can make use

of it. This is because the remainder of the system slack time is not enough for adjustments of
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other jobs. However, it is still possible for further energy reduction if the slack time between

time 21 and 31.5 can be fully utilized.

3.3. LP method

Since lowering processor frequency leads to longer execution time, energy savings can be

achieved by exploiting the slack time such that it is as little as possible. Due to the available

processor frequencies are not continuous, the problem can be mapped into an Integer Linear

Programming (ILP) problem to find an optimal solution such that remaining slack time is

minimized. However, ILP problem is NP-complete and can not be solved in polynomial time.

Our heuristic algorithm uses Linear Programming (LP) to approximate the optimal solution.

In a given schedule, LP method is applied at the beginning of every scheduling interval to

find a feasible solution which guarantees timing constraints of tasks and utilizing slack time

within the scheduling interval as much as possible. Task execution, processor frequency and

supply voltage scaling are changed accordingly. Finding a feasible solution which satisfies

all the constraints to a LP problem can be solved in polynomial time (Cormen et al., 2001).

General speaking, the time to solve a LP problem may take up to few milliseconds or even

more, which is considered too long for a real-time scheduler. However, since the number of

real-time tasks is limited, the overhead is acceptable as we will show in the next section.

In LP method, we utilize slack time more aggressively. For a given processor con-

tains m frequency steps q1 (minimum frequency), q2, . . . , qm (maximum frequency) and

a given scheduling interval with length T . There are n jobs J1, J2, . . . , Jn with deadlines

D1, D2, . . . , Dn , execution times C1, C2, ..., Cn and start times t1, t2, . . . , tn respectively in

the given interval. Every job has a period equal to its deadline. Assume that the given task ex-

ecution time is the worst case execution time when executing using the maximum frequency

and the length of task execution time has a linear relationship with the reverse of processor

frequency. Therefore, for each task, execution time Ci using the j-th frequency, Ci j , is defined

as

Ci j = qm

q j
∗ Ci for i = 1, 2, . . . , m. (2)

We can utilize slack time by reducing the speed of the processor, i.e. lowering the processor

frequency along with lowering the supply voltage. We determine processor frequency of each

job in the scheduling interval to utilize slack time as much as possible.

Let Xi = qm

qi
, which approximates the ratio of lengthened task execution time when lower-

ing processor frequency from qm to qi . We wish to find n real numbers X1, X2, . . . , Xn such

that the sum of execution times within the scheduling interval (
∑n

i=1 Ci ∗ Xi ) is maximum.

In other words, LP method tries to fully utilize slack times. The LP formulation for the LP

method based on fully utilizing slack times for energy optimization is as follows.

Maximize

n∑
i=1

Ci ∗ Xi (3)

subject to

Xi ≥ 1 for i = 1, 2, . . . , n (4)

Xi ≤ qm

q1

for i = 1, 2, . . . , n (5)
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Ci ∗ Xi ≤ Di − ti for i = 1, 2, . . . , n (6)

n∑
i=1

Ci ∗ Xi ≤ T for i = 1, 2, . . . , n. (7)

Constraint (4) restricts the maximum available frequency to qm and constraint (5) restricts

the minimum available frequency to q1. Constraint (6) makes sure that the execution time of

every job is less or equal to its period so that the system will not utilize more slack time than

it has. In other words, every job in the scheduling interval will not miss its deadline. The

last constraint ensures that the sum of execution times within the scheduling interval will

not exceed the length of the interval. The algorithm determines processor frequency of job

Ji in the scheduling interval according to Xi . The i-th frequency derived from the processor

frequency closest to but less than Xi is selected.

Using the example illustrates in Figure 6(c), LP method can obtain further energy reduction

than the greedy method. Since the frequency of a processor can not be continuously adjustable,

LP method may not always make full use of whole the slack time. However, with the extra

timing information provided by pinwheel schedule, the LP method is the first systematic

method to utilize all slack times for energy saving.

3.4. Adaptive from WCET to AET

When a program is executing, it may not always use up to its WCET. Therefore, the schedule

generated by a scheduling algorithm using WCET may not be able to optimize the energy

consumption and may even be a bad schedule. In order to solve this problem, we implement

a profiling tool which can derive time information and pass it to scheduler at runtime. The

tool analyzes the call flow graph (CFG) and inserts codes in the binary file of a program. The

inserted codes issue a pre-defined rescheduling system call to update the current WCET. AET

can be obtained by using the updated WCET. The system will then reschedule according to

the new WCET to adapt the AET.

Since scheduling using LP method is relatively more costly, it would not be a good idea

to perform LP scheduling at every rescheduling point. We can use a hybrid method that

schedules using LP method to schedule once every scheduling interval. For applications that

usually do not use up to their WCET, further energy saving is possible. When the rescheduling

system call is issued, we can then schedule using greedy method to further utilize slack times

at runtime. Therefore, the proposed approach can maximize system energy reduction while

minimizing the scheduling overhead.

3.5. Issue and solution of applying pinwheel model

Although there are many advantages applying pinwheel model for power-aware real-time

scheduling. However, when periods of real-time tasks are transformed into harmonic numbers

using pinwheel algorithm, new periods will be equal to or shorter than the original ones. The

job execution may become too frequent and thus the behavior of the tasks is changed. Such

changes in periods might not be acceptable in some applications. For the example illustrated

in Figure 7(a), in a video system, one frame is decoded and replayed every 33 ms to play

back a video clip smoothly. After pinwheel transformation, the video system may decode

and replay a frame every 22 ms as shown in Figure 7(b). The task executes more time than it

is supposed to, such as in the first and the third of the original period. The video clip would

look like playing fast-forward and is not acceptable.
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Fig. 7 Issue and Solution of applying Pinwheel Model

In (Yu et al., 2004), we proposed and proved the feasibility of preserving the original

job execution frequency in a pinwheel schedule. The execution time of a task in a pinwheel

schedule within any original period is larger than or equal to the original execution time.

As shown in Figure 7(c), if, in some systems, changing periods is not acceptable in one or

many real-time tasks, we can make a task idle in order to prevent it from being executing too

frequently. Again, the idle times can be exploited as slack time for further energy saving.

4. Simulation results

In this section, we evaluate the benefits of power-aware real-time algorithms using pinwheel

model on energy reduction. The results are simulated using the hardware specification based

on Transmeta processors (http://www.transmeta.com/index.html, 2004) in order to obtain

more practical results. The simulations are performed on system utilization between 10% to

70% with total 140000 test sets. The number of real-time tasks of a test set is between 2 to

8. We compare the results of greedy and LP method using pinwheel model with RM, ccRM

and LPFPS on all test sets.

We perform simulations using Transmeta TM55EL-667 and TM58EX-933 specification.

The frequencies, corresponding voltages and maximum power consumption of the processors

are from the processor data books and are listed in Table 1. We take the energy consumption

using RM scheduling as base and evaluate the energy reduction of these power-aware real-

time algorithms. The normalized energy reduction is shown in Figure 8 and Figure 9. With

Table 1 Power Specification
Frequency Voltage TM55EL-667 TM58EX-933

Sleep 0.8 V 0.35 W 0.35 W

300 MHz 0.8 V 1.7 W 1.7 W

400 MHz 0.9 V 2.6 W 2.6 W

500 MHz 0.975 V 3.3 W 3.3 W

600 MHz 1.05 V 4.3 W 4.3 W

700 MHz 1.15 V N/A 5.6 W

800 MHz 1.2 V N/A 6.8 W

900 MHz 1.3 V N/A 8.8 W
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the increasing of system utilization, system slack time decreases. Certainly, it would be more

difficult to obtain energy saving with high system load, since most jobs need to be executed

at the highest frequency to avoid violation of their timing constraints. Although greedy

method gains considerable energy saving, LP method obtains the best results among all. LP

method reduces an average of 37% and 56% of energy on TM55EL-667 and TM58EX-933

respectively at 70% utilization. Energy is further reduced on TM58EX-933 than on TM55EL-

667. This is because when there are more frequency steps for a scheduler to select, it will

be more flexible to adjust CPU frequencies for real-time tasks and can thus further utilize

system slack time.

ccRM determines processor frequency by compute the utilization using the actual com-

puting time consumed by tasks. The selected frequency guarantees that all tasks will meet

their deadlines. However, due to the processor frequency is not continuously adjustable and

lacks of timing information of tasks, such as release times, preemption times, resume times,

etc, ccRM may not fully utilize the slack time using the selected frequency. On the other hand,

with the sufficient information obtained from pinwheel algorithm, greedy and LP method are

able to make better scheduling decisions.

Figure 10 shows scheduling overhead of each algorithm. RM, LPFPS, ccRM and Greedy

method consume very little time to schedule and the overhead remains constant among

different system utilization. On the other hand, LP method needs more time to schedule.

While the scheduling time increases along with the increasing of the number of real-time

tasks, there is an average scheduling overhead of 53 μs using the LP method. Directly using
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linear programming to determine processor frequency in a schedule leads to large scheduling

overhead (few milliseconds or more) which is hardly accepted in real-time systems. Due to the

nature of harmonic numbers, a smaller hyperperiod is obtained. The number of rescheduling

points is thus reduced. If the system can not accept this online overhead, we could add

hardware to speed up Linear Programming in the system. Or at least, it is easy to see the

overall overhead of LP method using pinwheel model is massively reduced due to much less

rescheduling points.

As shown in Figure 11 and Figure 12, by the help of the profiling tool, more energy

can be saved according to task execution at runtime. Instead of idling the unused time, the

proposed scheduler reschedules when the codes inserted by the profiling tool are executed.

When AET is only a small portion of the WCET, there is some additional energy saving.

This is because system utilization is low so that processor is idled at most of the time. As

the ratio of AET/WCET is increased, there is great opportunity of further adjustment and

thus additional energy saving can be considerable. There is at most 33% of additional energy

saving when AET/WCET is 50% at 70% utilization. The average energy saving is 17.85%.
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If AET is very close to the WCET, there is few unused time for online schedule adjustment

so energy saving is not obvious.

5. Conclusion

In this paper, we discuss and analyze applying pinwheel model to power-aware real-time

scheduling. We show that the harmonic nature of pinwheel model can be applied to many

power-aware real-time scheduling and thus benefits from the pinwheel model for determin-

istic task execution. Systems are under better control due to the increasing of predictability.

Scheduling and space complexity can be decreased to build fast online schedulers and var-

ious techniques can be used to fully utilized whole system slack times. Simulation shows

that power-aware real-time scheduling using pinwheel model achieves considerable energy

reduction and their scheduling overhead is manageable. We also implement a profiling tool

to analyze a program and insert codes to provide runtime execution information for better

power-aware real-time scheduling. We believe pinwheel model provides a systematic ap-

proach and a computational feasible solution to fully utilize the system slack times so as to

minimize energy consumption.
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