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Abstract— Aggressive superscalar processor with deep
pipeline and sophisticated speculative execution techniques is
pushing the power budget to its limit. It is found that a signifi-
cant portion of this power is wasted during wrong path execution
and non power optimal allocation of power hungry resources. Dy-
namic reconfiguration of micro-architectural resources can be ex-
ploited to bring down this waste at runtime. Lack of architectural
method to capture the behavior of a program at runtime makes
dynamic reconfiguration a challenge. In this paper we propose a
method to characterize program behavior at runtime using con-
flict miss pattern of a data cache, which in turn identifies different
program phases in terms of cache utilization. We use this phase in-
formation to enable/disable cache ways dynamically depending on
the conflict miss pattern of a program. Using a hardware tracking
mechanism we ensure that the program performance (through-
put in terms of IPC) does not degrade beyond a tolerable limit.
Through simulation we establish that an average improvement of
32% (best case 38%) in cache power saving is achieved at the ex-
pense of less than 2% degradation in performance for SPEC-CPU
and MEDIA benchmarks. The additional hardware that detects
and captures the phase information is outside the critical path of
the processor and does not contribute to the overall delay.

I. INTRODUCTION

Optimal resource allocation requires runtime information of
a program. Performance counters and hardware profilers are
used to capture such informations and an offline analysis helps
to find out suitable architectural design options. As an alter-
native, program phase directed optimizations can be exploited
to enable on-line reconfiguration. Different processor parame-
ters, for instance IPC (Instruction Per Cycle), branch miss rate,
power dissipation etc, exhibit periodic behavior when moni-
tored during entire execution of a program. The observed pa-
rameter remains almost unchanged during a small time win-
dow. Hence, a program passes through different “phases” of
execution which are repetitive in nature. This phenomenon,
termed as “program phase” remains invariant with input data
set. An example of variation of IPC, reorder buffer (ROB) oc-
cupancy and issue rate is shown in fig. 1 for mpeg2decode
benchmark. Each point of the plot represents a metric averaged
over 10,000 cycles.

In this paper we present an efficient hardware mechanism to
capture the variation of phase at runtime using conflict miss
pattern of a program. Conflict miss arises due to insufficient
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Fig. 1. mpeg2decode phase profile

number of ways in a cache set. As a consequence of program
locality, conflict misses at each cache set generate a definite
pattern when observed in a small time window. Our archi-
tecture keeps track of the number of conflict misses at each
cache set during a smaller interval of program execution. At
the end of every interval, the accumulated miss pattern is com-
pared with the pattern of previous interval. A pattern matching
mechanism checks for a match and classifies the pattern into
different clusters which in turn characterizes a program into
phases. It is found that, the number of misses do not change
even with higher associativity of cache sets in certain phases of
program execution. Without compromising the performance,
additional cache ways can be disabled when a program enters
into a phase of lower conflict misses. A feedback directed re-
configurable cache architecture incorporating our phase detec-
tor is proposed and evaluated using SPEC-CPU and MEDIA
benchmarks.

II. RELATED WORK

An analysis of basic block distribution in [12] leads to an
automated approach to identify a smaller subset of code which
represents overall program characteristics. An extension of the
concept of Basic Block Vector (BBV) is used in [13] to iden-
tify program phases at hardware by using a BBV based phase
tracker. Dhodapkar and Smith [5] use working set signature

1-4244-0630-7/07/$20.00 ©2007 IEEE.

9A-4

884



to identify execution phases. In [13], 32 randomly chosen ba-
sic blocks are used to characterize program phase from a pool
of static basic block existing in a program. The choice being
random, the accuracy in detecting a phase can vary widely at
different instance of simulated execution. In our work we use
a miss classification table based architecture which keeps track
of conflict misses from each set of a cache. Instead of taking a
selective set of basic block, this scheme considers contribution
from all sets of a cache to characterize a program.

Hardware detection of conflict misses is proposed by Collins
and Tullsen in [4]. In this paper, we utilize the concept of con-
flict miss detector to identify a program phase depending on
the conflict miss pattern during program execution. Albonesi
proposed a scheme to allocate cache ways on demand basis in
[1]. Compiler support is necessary to incorporate the scheme
where a prior analysis of a particular program is done to in-
sert cache control instructions. In [10], authors discuss two
different schemes of partitioning caches, (i) associativity based
partitioning and (ii) overlapped wide-tag partitioning. In our
scheme we use associativity based partitioning for reconfigura-
tion. The proposed hardware detects program phases at runtime
and the decision to reconfigure cache ways are taken dynami-
cally.

III. SIMULATION FRAMEWORK

Our simulation framework is modeled using Wattch [2], a
power estimation tool based on SimpleScalar-3.0 [3] for Alpha
and PISA instruction set architecture to simulate a dynamically
scheduled superscalar processor. SPEC CPU benchmarks are
simulated using ALPHA instruction set and MEDIA bench-
marks [6] are simulated using PISA instruction set. We model
.13µm technology for our simulation. We consider the effect of
leakage current by incorporating some part of the HotLeakage
[14] tool in our simulation. Just like other architectural power
analysis tools, our simulation platform (Wattch) estimates dy-
namic power using activity based power models. In our sim-
ulation we assume that a component consumes linearly scaled
power based on its bit activity (similar to Wattch) in the active
state and leakage power while idle.

Table I shows the parameters used for carrying out simula-
tions. The base configuration parameters approximately match
those of Alpha 21264 processor. We use process parameters
for a .13µm process at 1.7 GHz in all our simulations. For
SPEC CPU benchmarks, we use reduced input set available
from MinneSPEC [9] benchmark suite. All the benchmarks
are run to completion.

IV. CHARACTERIZATION OF PROGRAM PHASES

In this section we describe a hardware method to character-
ize program execution phases at runtime. A number of exper-
iments reveal that the program behavior is primarily control
dominated. A number of processor specific metrics vary sig-
nificantly over different interval of a program. It is important
to identify such variation and characterize it appropriately for
processor reconfiguration. In this paper, we use cache conflict
misses to characterize cache utilization for a given interval and
reconfigure the cache ways at runtime.

TABLE I
PROCESSOR PARAMETERS

Parameter value

Fetch queue/RUU/LSQ size 8/64/32 instructions
Fetch/Decode/Issue width 4/4/4 instructions/cycle
Commit width 4 instr/cycle (in-order)
Functional Units 4 int ALU

1 int mult/div
2 mem ports

Branch Predictor Combined branch predictor
Bimodal 2K table
2-Level (gshare) 1K table
10 bit history
1K chooser, 4 cycles penalty

BTB 2048 entry, 4-way
Return address stack 16-entry
L1 data cache 64K, 4-way, LRU

32B block, 1 cycle latency
L1 instruction cache 64K, 2-way, LRU

32B block, 1 cycle latency
L2 cache Unified, 1M, 4-way, LRU

32B block, 15 cycle latency
Memory 75 cycle first chunk latency

2 cycles subsequently
TLB 128 entry itlb, 128 entry dtlb,

4-way, 30 cycle miss latency

Hardware Phase Detector

A schematic representation of our hardware phase detector
is shown in fig. 2. It consists of an array of 16 bit saturat-
ing counter associated with 8 bit tag field. Each set in the
data cache is associated with a tag-counter pair. Each counter
records the number of conflict misses in the corresponding
cache set. All the counters are reset at the beginning of ev-
ery interval. When a cache block is evicted from a particular
set, the lower order 8 bits of the evicted tag are stored in the
tag field of the phase detector. A conflict miss is recorded if the
lower order 8 bits of the tag of the address of a subsequent miss
in the same set matches with the tag of the phase detector. Ef-
fectively the phase detector captures a subset of conflict misses
as it checks for only one previously evicted tag from a cache
set. The most recently evicted tag from a cache set is stored in
the tag of the phase detector and compared with a miss address
to detect a conflict miss. The number of bits used to store the
tag field is chosen to be 8 as it is sufficient to detect around
90% of both capacity and conflict misses [4].

Every time a miss is detected by the detector, corresponding
counter is increased by one. The value of the counters effec-
tively form a vector of dimension S, where S is the number
of sets in the cache. At the end of every interval a normalized
vector of dimension S is formed. The duration of the interval
for our experiment is taken to be 2 million instructions. An on-
line clustering algorithm, as described in Algorithm 1, is used
to classify the vector into separable clusters. Each cluster rep-
resents an execution phase of the program. A Phase History
Table (PHT) records the cluster (phase) information by assign-
ing an unique phase id for each cluster along with the phase
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Fig. 2. Phase Detector

vector. Each entry in the PHT consists of a normalized vector
and a phase identity field. An element of the phase vector is
a normalized value and we observe that 4 bits are sufficient to
store the value with required accuracy. A total of 8 phase id can
be stored in PHT. In case of a replacement, oldest phase vector
is replaced by a new one. The number of such replacements
are very few in our experiment as most of the benchmarks ex-
hibit 8 or less number of phases. As PHT is accessed once at
the end of an interval (2 million instructions), the power contri-
bution is negligible compared to the total dynamic power. For
our experiment with 512 cache sets, the size of the page table
is approximately 512 × 4 × 8 bits = 2kB.

Algorithm 1 Detection of Phases
1: get mc vector[m];
2: min = BIGNUM ;
3: for all i = 1 to m − 1 do
4: dist = distance(mc vector[i], mc vector[m]);
5: if dist ≤ min then
6: min = dist;
7: index = i;
8: end if
9: end for

10: if min ≤ threshold then
11: update (mc vector[index], mc vector[m]);
12: else
13: add new mct entry(mc vector[m]);

14: end if

In Algorithm 1 a threshold is assigned to differentiate be-
tween two clusters (phases). Every time a match is found be-
tween a phase vector (vector computed at a given interval) with
a vector in PHT, the entry in PHT is updated by the geometric
centroid of the two. mc vector[m] is a vector obtained at any
given interval m. The algorithm checks for a best match among
all m− 1 previous vectors. If a match is found, the new vector
is merged with the appropriate cluster and the vector represent-
ing that cluster is updated with their geometric centroid, oth-
erwise a new cluster is recorded. In the algorithm the variable
index keeps track of the best match vector. A phase recorded
in PHT represents the geometric centroid of the interval vec-
tors captured during program execution. The phase vector be-
ing normalized, distance between any two vectors dij ≤ 2. A
plot of threshold with the number of cluster formed during
execution is shown in fig. 3. The number of clusters varies lin-

early when threshold assumes high values. With increasing
threshold, clusters collapse to form fewer number of phases.
In our experiment we choose the threshold to be 1.1. With
lower threshold the number of clusters grow exponentially.
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Fig. 3. Number of Cluster formed with different threshold

V. CACHE RECONFIGURATION

In this section we describe an optimization technique to use
the phase information obtained by using a hardware phase de-
tector. Cache consumes around 20% of the processor dynamic
energy. A 4 way set associative L1 data cache consumes ap-
proximately 250% more energy than a direct map cache hav-
ing equal number of sets [8]. The performance gain by incor-
porating 3 additional ways is not more than 8-12% (best case).
Moreover, a program does not need all the ways to be enabled
during the entire execution time. Several methods are proposed
to shutdown/disable cache ways when they are not used at its
full potential. We briefly discuss a cache organization where
the bitlines and wordlines are segmented for minimizing delay
and propose a micro-architectural modification that helps save
energy by dynamically configuring cache ways.

A. Cache Segmentation

An analytical access time model for on-chip SRAM caches
is proposed and evaluated in Cacti [11]. Bit lines and word
lines of a cache are segmented to improve delay at the expense
of additional sense amplifier and decoder driver. Depending
on number of bit line and word line segmentation, Cacti intro-
duces six cache parameters. A cache is partitioned into two
subarrays, namely data and tag subarray. The parameters Ndwl

indicates the number of times a word line is segmented and
Ndbl indicates the number of time a bit line is segmented in
data array. Nspd is the number of sets that are mapped into a
single section of word line. Similarly, three more parameters
are assigned for the tag array, Ntwl, Ntbl and Ntspd. Table II
shows values of these organizational parameters for different
cache configuration.

It is observed that the number of wordline segments of a data
array is always greater than or equal to the associativity of the
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cache. This indicates that a cache way spans one or more word-
line segment. A wordline segment can be selectively enabled
or disabled by sending control signal through cache controller.
In the following section we describe a modified cache architec-
ture to incorporate our phase detector for dynamically enabling
and disabling cache ways at runtime.

TABLE II
OPTIMAL N PARAMETERS

Size Assoc. Ndwl Ndbl Nspd Ntwl Ntbl Ntspd

32 KB 1 1 4 1 1 4 4
32 KB 2 8 1 4 1 4 2
32 KB 4 8 1 2 1 4 1

64 KB 1 4 1 4 1 2 8
64 KB 2 8 1 4 1 4 4
64 KB 4 8 1 2 1 4 2

B. Phase Directed Reconfiguration

Fig. 4 shows a scheme to reconfigure L1 data cache ways us-
ing the phase detector and modified cache controller. A hard-
ware counter keeps track of number of misses in the cache.
A phase detector keeps track of the program phases and de-
cides whether a particular way has to be enabled or disabled.
In fig. 4, a 4-way set associative cache is shown with a modi-
fied cache controller and way select logic. The way select algo-
rithm is described in Algorithm 2 that can be implemented as
a hardware module embedded in cache controller. Algorithm 2
is invoked at the beginning of each interval. Cache controller
generates a way select signal depending on the control signal
from the phase detector. The way select signal enables or dis-
ables a particular cache ways by inhibiting the activation signal
for precharge and sense amplifier. In the figure only two data
ways and a single tag array are shown.
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Fig. 4. Reconfigurable Cache Organization

Algorithm 2 Cache Way Selection Algorithm
1: if (STATE == STABLE) then
2: if ((present miss − recorded miss) < miss noise) then
3: miss noise− = noise dcr;
4: update state();
5: else
6: shutdown one way of Cache;
7: update state();
8: STATE = UNSTABLE;
9: end if

10: end if
11: if (STATE == UNSTABLE) then
12: if (miss rate > threshold) and (available ways ! = 0) then
13: enable one more way;
14: update state();
15: else
16: state = STABLE;
17: update state();
18: miss noise = base noise;
19: end if

20: end if

The way select logic maintains two states, STABLE and
UNSTABLE. Every time a program enters into a new
phase, the state is assigned to be UNSTABLE and the cache
ways are configured. After few invocation the state becomes
STABLE. The program phase id with the way configuration
is stored in a status table or in the PHT. Any subsequent detec-
tion of similar phase will enable the cache controller to reload
the previous configuration corresponding to the detected phase.
When cache controller loads a saved configuration while de-
tecting a previously recorded phase, it checks whether the state
is over or under-configured. If a new optimal configuration is
found the previous record is overwritten by the new one. In Al-
gorithm 2, the steps involved in STABLE and UNSTABLE
states are described. A simple hardware performance counter
keeps track of the miss rate and the information is fed back to
the phase detector and the cache controller. The PHT keeps
record of number of misses in each phase. Table III contains
the values of different parameters used in Algorithm 2. The
values are chosen appropriately by profiling all benchmarks.

TABLE III
PARAMETER VALUES FOR ALGORITHM 2

SPEC INT/FP MEDIA

threshold 3% 2%
base noise 4000 3000
noise dcr 200 100

When the cache configuration is in STABLE state, it com-
pares with the total miss count of the saved state. If the differ-
ence between the recorded state and the present state crosses
a miss noise threshold, it shuts down one cache way. This
ensures that, without significant improvement in the number
of misses, additional cache ways are shutdown to save power.
The update state() operation updates the PHT with the status
informations containing number of misses, number of enabled
ways and the phase id of the present state. To avoid frequent
unwanted change from a stable to unstable state a higher value

9A-4

887



of base noise is set. Every time a STABLE state is assigned,
the miss noise is initialized with base noise.

C. Effect of Disabling Cache Ways

When a cache way is disabled, blocks which are still valid
in that disabled way should be accessible for future reference.
Also the data residing in the cache block should be coherent
when the disabled way is again enabled at a later stage. We
have evaluated three schemes to address this issue.

• case 1: All data in the disabled way are flushed. This
is the simplest way to ensure data coherence. All dirty
blocks are written back to the L2 cache for a write back
cache. Status of all other blocks are set as invalid. Cache
flushing leads to significant performance loss.

• case 2: A fill buffer approach to move data from disabled
to enabled way as proposed in [1]. In fig. 5, datapath
modification to move data from enabled to disabled way
is shown. We assume a performance penalty of 8 cycles
for each such transfer in our simulation.

• case 3: An accessed block in a disabled way is stored in a
4 entry fully associative victim buffer [7]. Instead of mov-
ing the data to the enabled way, the referenced block is
moved to the victim buffer. The replacement policy in the
buffer is LRU and hence any subsequent hit in the disabled
way will replace the LRU entry from the buffer. While
moving data from disabled way to the victim buffer, the
entry in the disabled way is invalidated.

To CPU

To L2 CacheBuffer

MUX

Way

DisabledEnabled
Way

Enabled
Way

Enabled
Way

MUX

Fig. 5. Modified datapath in a 4 way Reconfigurable Cache

In fig. 6 a victim buffer is placed in the datapath. A request
for a data in disabled way is moved to the victim buffer. This
effectively holds the data in the buffer for a subsequent refer-
ence instead of flushing all data from disabled way at the first
instant. Eviction from the victim buffer writes data back to L2
cache.

Case 3, which we incorporate with our simulation performs
better than the first one where disabled ways are flushed. More
than 75% of the accesses in the disabled ways are serviced by
the victim buffer, effectively saving the penalty incurred during
cache flushing. In fig. 7 we plot the number of misses in the
disabled way that are serviced by the victim buffer. One ad-
vantage of our method of using victim buffer over the scheme
as described in case 2 is that, it avoids frequent activation of

MUX

To L2 Cache

To CPU

Victim Buffer

Enabled

Way

Enabled
Way

Enabled
Way

Disabled
Way

Address from CPU

Fig. 6. 4-way Reconfigurable Cache with Victim Buffer

precharge and sense amplifier logic of the disabled way. When
a data access to the disabled way is serviced by victim buffer,
the latency encountered is equivalent to L1 cache latency. Ev-
ery hit to victim buffer saves 7 cycles penalty compared to case
2.
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D. Hardware Overhead

The hardware described in fig. 2 consists of tags associ-
ated with simple saturating counters. The number of such tag-
counter pair is equal to the number of sets present in the cache.
While estimating the power of the proposed hardware, the ma-
jor part of dynamic power dissipation is on the 8-bit tag part
of the phase detector. The counter is updated only if there is a
hit in the phase detector’s stored tag. The contribution for the
counter is negligibly small. The idle power is estimated by the
HotLeakage power model as mentioned earlier. The tag part is
modeled as a direct-mapped cache tag which is indexed by the
index bits of the address. On a cache miss the structure is ac-
cessed and checked for a possible hit in the tag. Our estimation
shows that the power overhead averaged over all benchmarks is
around 2% of the power dissipated by the cache. Power dissi-
pated by PHT (size = 2kB) is also included in computing total
power. The effects of additional modification of the datapath as
described in fig. 4 are not considered in the simulation as they
do not contribute significantly. The power consumed by victim
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buffer in fig. 6 is modeled using the SRAM power model used
in Wattch simulator.
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VI. POWER-PERFORMANCE TRADE-OFF

In our simulation we have compared our scheme with the
base configuration where the number of cache ways are 4. In
fig. 8 the plot of normalized L1 data cache power, IPC and total
EDP are shown for SPEC-INT, SPEC-FP and MEDIA bench-
marks. It shows an average saving of 32% of L1 data cache
power with almost negligble loss of IPC. An improvement of
5% in EDP shows that the total energy saving is achieved off-
setting the overhead of the additional hardware.

VII. CONCLUSION

Runtime optimization of processor resources are limited by
the techniques to identify the appropriate point to invoke recon-
figuration. A lossy profiling technique always inherits the risk
of over-configuration or under-configuration. More sophisti-
cated robust technique comes with the cost of complex hard-
ware and more power consumption. In this paper we have in-
troduced a feedback directed cache reconfiguration scheme that
dynamically reconfigure a way partitioned cache. The hard-
ware phase detector captures dynamic behavior of a program
with the help of counters and associated reconfiguration logic.
One disadvantage of this method is that, phases that change at
smaller granularity are averaged out when reconfigured for a
larger interval. We obtain 32% power benefit for L1 data cache
with marginal loss of IPC for all benchmarks. The hardware
reconfiguration overhead in our scheme is minimal and it does
not offset the power benefit.
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