
The Imagine Stream Processor

Ujval J. Kapasi, William J. Dally, Scott Rixner†, John D. Owens, and Brucek Khailany ∗

Computer Systems Laboratory †Computer Systems Laboratory

Stanford University, Stanford, CA 94305, USA Rice University, Houston, TX 77005, USA

{ujk,billd,jowens,khailany}@cva.stanford.edu rixner@rice.edu

Abstract

The Imagine Stream Processor is a single-chip pro-
grammable media processor with 48 parallel ALUs. At
400 MHz, this translates to a peak arithmetic rate of
16 GFLOPS on single-precision data and 32 GOPS on 16-
bit fixed-point data. The scalability of Imagine’s program-
ming model and architecture enable it to achieve such high
arithmetic rates. Imagine executes applications that have
been mapped to the stream programming model. The stream
model decomposes applications into a set of computation
kernels that operate on data streams. This mapping exposes
the inherent locality and parallelism in the application, and
Imagine exploits the locality and parallelism to provide a
scalable architecture that supports 48 ALUs on a single chip.
This paper presents the Imagine architecture and program-
ming model in the first half, and explores the scalability of
the Imagine architecture in the second half.

1. Introduction

Media-processing applications, such as 3-D polygon ren-
dering, MPEG-2 encoding, and stereo depth extraction, are
becoming an increasingly dominant portion of computing
workloads today. The real-time performance constraints of
these applications coupled with high arithmetic intensity re-
quire parallel solutions that can scale to meet these demands.
Fortunately, media-processing applications inherently con-
tain a large amount of data-parallelism. Furthermore, pro-
viding large numbers of ALUs to operate on data in parallel
is relatively inexpensive. In today’s VLSI technology, hun-
dreds of 32-bit adders can fi t on a single 1 cm2 chip. Yet
current programmable solutions cannot scale to support this
many ALUs, even though by themselves the ALUs easily fi t

∗The research described in this paper was supported by the Defense
Advanced Research Projects Agency under ARPA order E254 and moni-
tored by the Army Intelligence Center under contract DABT63-96-C0037,
by ARPA order L172 monitored by the Department of the Air Force under
contract F29601-00-2-0085, by Intel Corporation, by Texas Instruments, by
an Intel Foundation Fellowship, and by the Interconnect Focus Center Pro-
gram for Gigascale Integration under DARPA Grant MDA972-99-1-0002.

on a chip. This is because both providing instructions and
transferring data at the necessary rates are problematic. For
example, a 48 ALU single-chip processor must issue up to
48 instructions/cycle and provide up to 144 words/cycle of
data bandwidth to operate at peak rate.

The Imagine Stream Processor addresses these issues by
using the stream programming model to expose parallelism
as well as producer-consumer locality, the true data local-
ity in media processing applications. This locality can be
exploited by routing most of the required bandwidth on lo-
cal wires, which are more efficient and plentiful than global
communication paths. Imagine exploits this locality with a
bandwidth hierarchy that sustains the data bandwidth neces-
sary to support 48 ALUs on a single die. This translates to
a peak of 16 GFLOPS on single-precision applications and
32 GFLOPS on 16-bit applications. On a variety of realis-
tic applications, as shown in Table 1, Imagine can sustain
up to 50 instructions per cycle, and up to 15 GOPS of arith-
metic bandwidth. In order to evaluate the scalability of the
architecture, a prototype was built that contains the maxi-
mum number of ALUs that could be supported on a single
chip. Early studies of what the targeted technology could
support led to the choice of 48 ALUs for the Imagine proto-
type. The 2.6 cm2 prototype was developed in collaboration
with Texas Instruments, in their 1.5V 0.15µm CMOS pro-
cess. The Imagine prototypes are being tested and debugged

Table 1: Performance of 16-bit and floating point
applications on Imagine

Applications Arithmetic All Operations

(16-bit in italics) IPC GOPS IPC % of peak

Depth Extraction [3] 30 11.9 50 45%

MPEG-2 Encode 38 15.4 53 47%

QR-decomposition 26 10.5 44 61%

Render (sphere) [8] 15 5.9 28 40%

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

Input Data

fft_stage

in1

in2
out fft_stage fft_stage

Output Data

(in bit-reversed
order)

(a) Stream and kernel representation

void fft(stream<complex> in,
stream<complex>[10] twiddle,
stream<complex> out)

{
tmp1 = in; // does not imply copy
for (int i=0; i<10; i++) {
fft_stage(tmp1[0..511], tmp1[512..1023],

twiddle[i], tmp2);
tmp1 = tmp2;

}
out = tmp1.bitrev();

}

kernel fft_stage(istream<complex> in1,
istream<complex> in2,
istream<complex> twiddle,
ostream<complex> out)

{
for (int i=0; i<512; i++) {
in1 >> a;
in2 >> b;
twiddle >> W;
out << (a+b) << (W*(a-b));

}
}

(b) Stream-level program pseudocode (c) Kernel-level program pseudocode

Figure 1: 1024-point complex radix-2 FFT.

in the lab (July 2002). So far, simple kernels and memory
transfers have been tested without fla ws. A fully-featured
dual-Imagine development board is concurrently being de-
bugged in order to facilitate the testing of more complex ap-
plications. Final static timing analyses reported 296 MHz for
the prototype in the typical process corner. However, since
the parts are expected to function up to 400 MHz in the lab,
this clock rate is assumed for all results in this paper.

The remainder of this paper is organized into two major
parts. The fi rst part presents an overview of the stream pro-
gramming model using FFT as an example (Section 2) and
then presents the Imagine architecture (Section 3). The next
part of the paper discusses the scalability of the Imagine ar-
chitecture to a large number of ALUs. This includes a discus-
sion, in Section 4, of how to organize the various modules on
Imagine to provide enough instruction and data bandwidth
for the increased number of ALUs. Section 5 then illustrates
some of these concepts with examples of real kernels and ap-
plications. A brief section on different but related approaches
follows (Section 6). The last section summarizes the conclu-
sions drawn in the paper (Section 7). Finally, further details
on the Imagine architecture and its programming model and
languages can be found in [6].

2. An Example Stream Application: FFT

The Imagine Stream Processor executes applications that
have been mapped to the stream programming model. This
programming model organizes the computation in an appli-
cation into a sequence of arithmetic kernels, and organizes
the data-flo w into a series of data streams. The data streams
are ordered, fi nite-length sequences of data records of an ar-
bitrary type (although all the records in one stream are of

the same type). The inputs and outputs to kernels are data
streams. The only non-local data a kernel can reference at
any time are the current head elements of its input streams
and the current tail elements of its output streams.

A simple example, in Figure 1a, shows the mapping of
a 1024-point radix-2 FFT to the stream model. Each oval
in the fi gure corresponds to the execution of a kernel, while
each arrow represents a data stream transfer. In this case,
each stream is composed of complex fl oating point elements.
The overall FFT requires 10 butterfly stages, and thus 10
calls to the fft stage kernel. In the stream implementation,
the data are read and written according to a perfect shuffl e
pattern [9], so the kernel requires two input streams and one
output stream. The output of the last kernel is in bit-reversed
order, so it must be reordered through memory. Finally, a
third input stream, not shown in Figure 1a, provides the nec-
essary twiddle factors required for each stage.

In order to execute the stream version of FFT, two types
of programs, which operate at different levels, are necessary.
One program, shown in Figure 1b, will operate at the stream
level and will control both the order of kernel execution and
the transfer of data streams for each kernel. The other type
of program, shown in Figure 1c, will operate at the kernel
level and will dictate the actual computation that must oc-
cur on each stream element. Applications that are more in-
volved than the FFT example map to the stream model in
a similar fashion. Examples can be found in other refer-
ences: Khailany et al. discuss the mapping of a stereo depth
extractor [6]; Rixner discusses the mapping of an MPEG-2
encoder [10]; and Owens et al. discuss the mapping of a poly-
gon rendering pipeline [8].

The stream model is important because it organizes an ap-
plication to expose the locality and parallelism information

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

that is inherent in the application. Locality is exposed both
within a kernel — temporaries such as the result of (a-b)
are guaranteed to stay local to the kernel — and producer-
consumer locality between kernels is explicit from the stream
graph. This ensures that the only data transferred between the
clusters and SRF are records that need to be passed from ker-
nel to kernel, and that the only data transferred between the
SRF and DRAM are records that are part of truly global data
structures. In FFT, for example, only data elements passed
between stages need to access the SRF, and only the ini-
tial input data and fi nal output data need to access the global
memory space in DRAM. Data-level parallelism is exposed
between stream elements since the butterfly calculation in
fft stage could be applied to all 512 complex pairs in par-
allel. Also, instruction-level parallelism is available between
operations in a kernel — (a+b) and (W*(a-b)) can be
calculated in parallel — and task-level parallelism exists be-
tween kernels in an application.

3. Imagine

Imagine is a programmable stream processor and is a
hardware implementation of the stream model. A block di-
agram of the architecture is shown in Figure 2. Imagine is
designed to be a stream coprocessor for a general purpose
processor that acts as the host, as seen in the figure. The
stream controller sequences stream commands from the host
processor and issues them to the various modules on the chip.
All data stream transfers are routed through a 32 KW stream
register fi le (SRF). The streaming memory system transfers
entire streams between the SRF and off-chip SDRAM. Ker-
nel programs consist of a sequence of VLIW instructions and
are stored in a 2K × 576-bit RAM in the microcontroller.
The microcontroller issues kernel instructions to eight arith-
metic clusters in a SIMD manner. Each cluster consists of six
ALUs (plus a few utility functional units) and 304 registers
in several local register fi les (LRFs). The network interface
module routes streams between the SRF of its node and the
external network.

3.1. Stream-level ISA

Table 2 presents an abridged list of the stream-level in-
structions supported by Imagine; operations not listed in the
table include scalar operations for reading and writing var-
ious architectural registers and operations that synchronize
the clusters with the stream controller. Each instruction in
the table operates on an entire stream every time it is exe-
cuted. Furthermore, all stream operands originate in the SRF
and stream results are stored back to the SRF. Thus, Imagine
is a load-store architecture for streams.

Stream-level instructions are issued to Imagine by the host
processor. Once on-chip, the stream controller stores each in-
struction in a scoreboard and issues them to the proper mod-
ule as soon as its dependencies are satisfied. Hardware re-

Imagine Stream Processor

Microcontroller

ALU Cluster 7

ALU Cluster 6

ALU Cluster 5

ALU Cluster 4

ALU Cluster 3

ALU Cluster 2

ALU Cluster 1

ALU Cluster 0

Stream
Register File

Stream
Controller

Host
Processor

Streaming
Memory
System

S
D
R
A
M

Host
Interface

Network Interface

Other Imagine
Nodes, I/O

Figure 2: Imagine architecture block diagram

source dependencies, such as memory port conflicts, are re-
solved at runtime. Data dependencies are encoded statically
and sent to Imagine by the host processor along with each
instruction. The high-level language the programmer uses
to code stream-level functions is StreamC. A stream sched-
uler [5] translates the StreamC code to a schedule of stream-
level instructions and applies high-level code transformations
such as software pipelining and strip-mining. The actual
StreamC code for the FFT application looks roughly like the
pseudocode in Figure 1b. Assuming the stream ‘in’is ini-
tially in memory and that the kernel microcode for fft stage
is initially in the instruction store in the microcontroller, the
StreamC is translated into 12 stream instructions (ignoring
any scalar instructions that might be necessary).

The first stream-level instruction is a MEMOP to load the
input data into the SRF. This is followed by ten KERNEL in-
structions, and the last instruction is another MEMOP to store
the result in bit-reversed order into SDRAM. The first KER-
NEL operation will not start until the initial MEMOP com-
pletes since the input to the KERNEL operation is the output
of the MEMOP. Likewise the input to the second KERNEL

operation is the output of the first. The assumption that the
microcode initially resides in the instruction store is reason-
able since the instruction store is large enough to hold the
working set of kernels of most applications. For reference,
the microcode for the fft stage kernel is 20 VLIW instruc-
tions long (the main loop is only 11), while the instruction
store in the microcontroller can store 2K VLIW instructions.

3.2. Kernel-level ISA

A KERNEL operation issued by the stream controller starts
the execution of a kernel program on the microcontroller.
The microcontroller keeps track of the program counter as
it broadcasts each VLIW instruction to all eight clusters in
a SIMD manner. Each VLIW instruction consists of sev-

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

Table 2: Imagine stream-level instruction set

KERNEL Execute a kernel operation using stream arguments that reside in the SRF

MEMOP Transfer a stream between SDRAM and the SRF (addressing modes include strided, indexed, and bit-reversed)

NETOP Transfer a stream between the SRF and the network

HOST TRANSFER Transfer a stream between the host processor and the SRF

LOAD PGM Transfer a kernel program from the SRF to the microcode RAM in the microcontroller

N
et

w
or

k

+

From SRF

To SRF

+ + * * /

Local Register
File

Communication UnitScratch-pad Memory

In
te

r-
cl

us
te

r

++ ++ ++ * * //

Figure 3: Imagine Arithmetic Cluster Block Diagram

eral ALU operations as well as control signals for every LRF
in a cluster. Figure 3 shows the architecture of a single
cluster, including the main functional units, the local regis-
ter files, and the interconnect between the two. Each clus-
ter contains 3 ALUs (which support adds, shifts, and log-
ical operations), 2 multipliers, 1 divide/square root unit, 1
communication unit and 1 local scratch-pad memory. All
the arithmetic units support floating point as well as integer
arithmetic; the adders and multipliers also support sub-word
SIMD arithmetic. The communication unit is an interface to
a switch that supports inter-cluster data routing. The scratch-
pad memory, a 256 × 32-bit register file, supports displace-
ment addressing and stores arrays, values spilled from the
LRFs, or other data structures such as hash tables or stacks.

The actual program for the fft stage kernel from Figure 1c
is programmed in KernelC. KernelC is a subset of C that ab-
stracts away many details of the internals of the cluster archi-
tecture. A compiler that uses communication scheduling [7]
is used to map a KernelC program to a sequence of VLIW
instructions. The scheduler applies common optimizations,
such as copy propagation and dead code elimination, as well
as transformations such as loop unrolling and modulo soft-
ware pipelining.

4. Discussion

4.1. Micro-architecture

The micro-architectures of the modules on Imagine are
designed to be scalable. This is achieved by taking advantage
of the properties of the stream model. In particular, Imagine
capitalizes on the data-parallel organization of records within

a stream, the sequential ordering of accesses to streams, lo-
cality of kernel data, and simple control flo w within kernels.

Imagine exploits the data-level parallelism (DLP) in
streams by executing a kernel on eight successive stream el-
ements in parallel (one on each cluster). The SIMD organi-
zation helps Imagine provide the instruction and data band-
width necessary to operate 48 ALUs. Since every cluster
is executing the same VLIW instruction, minimal additional
instruction decode and issue logic is required for additional
clusters. Furthermore, by partitioning the ALUs into SIMD
clusters, the stream register file and local register files can be
partitioned as well. This reduces the number of ports into
the register files by a factor equal to the number of partitions.
Rixner et al. present quantitative studies on the scalability
of SIMD partitioned register files [11]. Further SIMD paral-
lelism is available on Imagine since most integer operations
have a subword parallel form that operates on two 16-bit val-
ues that are packed into one 32-bit register.

The stream model ensures that kernel programs will never
access main memory directly. This is because all external
kernel inputs and outputs are communicated through data
streams, which reside in the SRF. Since the kernel-level in-
struction set does not contain any other variable latency op-
erations, an accurate static VLIW schedule can be generated.
VLIW control is effi cient since additional hardware for regis-
ter renaming, dependency detection, or operation reordering
is not necessary.

The SRF takes advantage of the sequential access pattern
of streams in order to effi ciently support 22 logical ports: 8
cluster (8 words wide), 4 memory, 8 network (2 words wide),
1 host, and 1 microcontroller). The sequential access pattern
allows the SRF RAM array to transfer 32 consecutive words
of data on every read or write. Since clients access the SRF
with requests that are much smaller than 32 words, stream
buffers are used to store the intermediate data. This virtual-
izes access to the SRF, so that one physical port into the SRF
RAM can provide enough bandwidth to satisfy the requests
from all 22 logical ports. Note that the SRF can satisfy only
the average bandwidth demand from all the clients. Thus,
another advantage of the stream buffers is that they can sus-
tain transient periods of activity that is higher than the peak
bandwidth out of the SRF RAM.

One other optimization Imagine employs is partitioning

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

the local register files in each cluster so that there is one two-
ported register file per ALU input. A single crossbar con-
nects each ALU output to every register file input. Rixner et
al. show that this register file structure scales with increasing
numbers of ALUs better than a single monolithic register fi le
structure [11].

While many media applications adhere to the properties of
the stream model listed in this section, there are always prac-
tical situations in which code is not perfectly data-parallel
or in which data is accessed in a non-regular fashion. For
this purpose, Imagine provides communication mechanisms
that allow data-parallel partitions to exchange data. In par-
ticular, a general permutation instruction shuffl es portions of
a 32-bit integer in order to communicate between sub-word
SIMD partitions. Also, a programmable inter-cluster switch
is used to exchange data between clusters and to implement
reduction operations. Note that the synchronization in both
cases is essentially free since all partitions are operating in
lock-step. The last mechanism is a scatter/gather style mem-
ory transfer that also allows communication between SIMD
partitions, as well as arbitrary data reordering.

The fi nal micro-architectural consideration is conditional
execution. While not prevalent in media applications, condi-
tionals do arise and must be dealt with efficiently . A hard-
ware select operation allows execution of data-dependent
sections of code using predication. However, predication
causes the duty factor of the ALUs to decrease exponen-
tially with the depth of nested if-then-else clauses. Further-
more, load-imbalance can further reduce the duty factor of
the ALUs when each cluster has to perform a varying amount
of work. For this reason Imagine provides another mecha-
nism, conditional streams, that executes data-dependent code
more efficiently [4]. Conditional streams efficiently support
case-statements, stream combine operations, and operations
that require load-balancing across the clusters.

4.2. Bandwidth Hierarchy

The previous section discussed how Imagine takes advan-
tage of the stream model in order to provide a scalable micro-
architecture. This allows Imagine to provide 48 ALUs on a
single chip. This section will focus on how Imagine provides
the necessary bandwidth to support 48 ALUs by taking ad-
vantage of the locality exposed by the stream model. This is
necessary because it is impractical to provide data on every
cycle to this many ALUs using off-chip DRAM or even a sin-
gle monolithic register file. Imagine’s bandwidth hierarchy,
however, increases the available bandwidth by an order of
magnitude at each level of the hierarchy by taking advantage
of the locality exposed by the stream programming model.
The bandwidth hierarchy is integral to scaling this architec-
ture to support more than a few ALUs.

In the stream model, the greatest data bandwidth demand
is within a kernel. Since local routing resources are plenti-
ful, Imagine economically provides the most data bandwidth

Table 3: Maximum rates of the Imagine Processor

Per Cluster Aggregate

(W/cycle) (GB/s)

Intra-cluster BW 34 435

Peak SRF BW 8 140

Average SRF BW 2 25.6

Inter-cluster BW 1 12.8

Network BW 0.5 6.4

DRAM BW 0.16 2.1

within a cluster, and maps kernel execution onto the clus-
ters. Also recall that the stream model exposes the producer-
consumer locality of streams. Thus, Imagine maps stream
communication onto the second level of its hierarchy, the
SRF. The SRF captures the locality of temporary streams,
such as those between successive calls to the fft stage ker-
nel. This limits the amount of data that is transferred be-
tween off-chip SDRAM and Imagine to only the data which
is truly global, such as the initial input and fi nal output data in
an application. The actual bandwidth numbers for different
communication paths on Imagine are summarized in Table 3.
The lines in bold correspond the bandwidth levels discussed
in this section. Note that the ratio of bandwidths provided by
Imagine is 1:12:207. Also, other references provide details
on how well media application demands map to this hierar-
chy provided by Imagine [10, 6].

5. Case Studies

This section will investigate how the performance of real
programs scale on Imagine. One indicator of scalability is
the speedup of programs on two machines that differ only in
the number of clusters: the first machine has only 1 cluster,
the second machine has 8, like Imagine. In order to achieve
a high speedup from the 1-cluster machine to the 8-cluster
machine, the application has to contain DLP to begin with,
the stream model must expose it, and Imagine must be able
to exploit it. This aspect of scaling (data-parallelism across
the clusters) will be explored in order to better understand
how real programs scale. Note, however, that the speedups
presented here do not take into account VLSI implementation
details since they are outside of the scope of this paper.

Table 4 lists the speedup realized for one kernel and two
applications. The fft stage kernel is similar to the one dis-
cussed in an earlier section, except it uses a radix-4 algo-
rithm. The Polygon Rendering application is the ADVS-1
benchmark presented in [8]. The Depth Extraction applica-
tion is the same as the one in Table 1.

The fft stage kernel was chosen because it is a good ex-

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

Table 4: Speedup of 8 clusters over 1 cluster

Name Kernel Application

(kernels in italics) Speedup Speedup

radix-4 fft stage 6.5 –

Polygon Rendering 5.3 4.6

Depth Extraction 6.2 5.7

ample of a kernel that is not perfectly data-parallel, and
hence incurs some overhead when implemented on Imag-
ine’s SIMD clusters. Figure 4 helps illustrate the type and
number of operations that are required due to this overhead.
This figure shows a visualization of the inner loop of the
radix-4 FFT kernel after scheduling (and software pipelin-
ing). This schedule was created using iscd, the KernelC
scheduler described in Section 3.2. The vertical axis in the
figure is instruction number (time moves downwards, the
height of a box is the latency of that operation); each col-
umn corresponds to a different functional unit. The white
unmarked operations are floating point operations to com-
pute the numerical FFT results. The eight gray operations
on the COMM 0 unit are inter-cluster communication opera-
tions which transfer data between cluster partitions. The op-
erations on the SPRD 0 and SPWR 0 units are indexed reads
and writes to the scratch-pad.1 The other gray boxes are all
hardware select operations.

All the gray operations are not present in the 1-cluster
version, and account for the sub-linear speedup of the ker-
nel. They are needed to transpose the data among the cluster
partitions, so that the data is reordered according to the FFT
algorithm. The selects and scratch-pad operations are nec-
essary to allow each cluster to choose a different value to
communicate or output — they are essentially simple condi-
tionals. There are a total of 20 selects, 16 scratch-pad opera-
tions, and 8 inter-cluster communications — all of which are
unnecessary on the 1 cluster machine.2 On the other hand,
notice that no extra operations are required for synchroniza-
tion between the clusters since the clusters are synchronized
by definition in the SIMD execution model. The end result
is that despite the extra operations, the fft stage kernel still
achieves a speedup of 6.5.

An interesting note is that the scheduler exploited the
available ILP in the cluster. In fact, the inner loop of this
kernel achieves 92% of the peak instruction rate in the clus-
ters. The visualization also shows the amount of overhead
in this kernel due to software pipelining and the distributed
register file organization. All the envelope-style operations

1The scratch-pad ports went completely unused in the 1-cluster imple-
mentation of fft stage.

2These operations are not shown in the pseudocode in Figure 1, but
would be required in a KernelC implementation of fft stage.

ALU_0 MULT_0 MULT_1 DIV_0 SPRD_0 SPWR_0 COMM_0ALU_1 ALU_2

9

10

11

12

13

14

15

16

17

18

19

Figure 4: Radix-4 FFT kernel schedule

were added during the scheduling process in order to delay a
value for a later software pipeline iteration, to move a value
from one local register file to another, or to do both.

The two applications shown in Table 4, Polygon Render-
ing and Depth Extraction, provide more examples of how
kernel performance scales from the 1-cluster to 8-cluster ma-
chine. The speedups of just the kernels in the application are
5.3 and 6.2 respectively. These speedups were measured us-
ing the total kernel runtime for each application on each ma-
chine. The runtimes were measured on isim, a cycle-accurate
stream processor simulator. The deviation from the ideal
speedup of 8.0 occurs for similar reasons as for the fft stage
kernel. In addition, the Polygon Rendering application con-
tains several large conditional blocks. These were mapped to
conditional streams to retain a high duty factor for the ALUs
as well as to improve load-balance among the SIMD parti-
tions.

Kernel speedup is not the entire story for these two ap-
plications, however. That is because any overhead in the ap-
plication, such as priming and draining execution pipelines,
becomes a larger portion of the runtime on the larger ma-
chine. Furthermore, SRF bandwidth and DRAM bandwidth
were kept constant for these two machines. So the 8-cluster
machine has less SRF and DRAM bandwidth per ALU, and
therefore is stalled waiting for results from DRAM more of-
ten. The end result is that the overall application speedup of
the Polygon Rendering application is 4.6 and for the Depth
Extraction application it is 5.7. Thus, for the particular con-
figuration of the Imagine processor, these overheads only
caused the speedups to deteriorate 9–13% from the pure ker-
nel speedups. These overheads, however, may have a smaller
or larger impact on different machine configurations, and
will surely have a larger impact as a machine scales to larger
numbers of ALUs.

6. Related Approaches

The Imagine stream architecture builds upon several ex-
isting ideas. Some of these include vector processors, task-
parallel stream processors, VLIW media processors, DSPs,
graphics coprocessors, and subword SIMD parallel instruc-
tion sets. Only the first two will be discussed here — further
comparisons with related approaches can be found in [6].

The vector model is similar to the stream model: vector

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

architectures [12] take advantage of the data parallelism be-
tween consecutive elements in a vector in the same way a
stream processor does. However, vector architectures do not
have an analog for the local register files in stream archi-
tectures. This increases the demand on vector register fi le
bandwidth and ultimately limits the scalability of a vector ar-
chitecture. Furthermore, a stream processor performs all the
operations required for a record before processing the next
record. This creates a relatively small working set of tem-
porary values. A vector processor instead performs the first
operation on all the elements in a vector, and then the next
operation on all the elements in the vector. This order of
execution creates a larger set of temporaries, increasing the
demand on the vector register file capacity.

Another related approach is to exploit the task-level par-
allelism (TLP) exposed by the stream model. Programmable
architectures in this class [14, 1, 13] execute multiple kernels
concurrently and take advantage of the producer-consumer
locality and TLP inherent in stream programs by passing
streams directly between kernels. These architectures can
scale to larger numbers of ALUs by either adding more
ALUs to each kernel execution unit or by adding more ker-
nel execution units. The work presented in this paper con-
centrates solely on scaling the performance of a single ker-
nel as much as possible by taking advantage of the data-
and instruction-level parallelism (DLP and ILP) in the stream
model. It is an open research problem to quantify the perfor-
mance of applications on a spectrum of architectures, each
with a different amount of scaling in the DLP, ILP, and TLP
axes.

7. Conclusions

The Imagine Stream Processor supports 48 ALUs on a
single-chip, and sustains up to 15 GOPS on realistic me-
dia applications such as MPEG-2 encoding. The architecture
of the chip is based on the concept of streams. The stream
model exposes the parallelism and locality in an application.
Imagine provides a bandwidth hierarchy to take advantage of
the locality exposed by the stream model, and provides over
two orders of magnitude more bandwidth at the ports of the
ALUs than available to off-chip SDRAM. Furthermore, the
architecture can be effi ciently scaled: the Imagine prototype
supports 48 parallel ALUs on a single chip. Finally, stream
applications map well to this hierarchy enabling Imagine to
operate all 48 ALUs at a high duty factor.

Future work will look at scaling the performance beyond
a single node. The expectation is that the stream discipline
will allow multiple-node systems to take advantage of the
parallelism in applications in the same way as a single node
does. Furthermore, the stream model may make automatic
domain decomposition to systems with very large numbers
of nodes a tractable problem. One area of current research
is to attempt to solve some of these issues in order to ap-

ply the concepts of the Imagine architecture to systems with
thousands of nodes that are executing large scale scientific
codes [2]. A large system like this also requires innovative
language design and compilation techniques. Imagine’s Ker-
nelC and StreamC are first steps in the right direction, but
they are somewhat specific to media processing and to the
Imagine architecture. The design of a high-level stream lan-
guage that can be applied to a more general class of domains
and architectures is an immediate research objective.

References

[1] E. Caspi, A. Dehon, and J. Wawrzynek. A Streaming Multi-threaded
Model. In Proceedings of the Third Workshop on Media and Stream
Processors, pages 21–28, Austin, TX, Dec 2001.

[2] W. J. Dally, P. Hanrahan, and R. Fedkiw. A Streaming Supercom-
puter. Stanford Computer Systems Laboratory White Paper, Septem-
ber 2001.

[3] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka. A Stereo
Machine for Video-rate Dense Depth Mapping and its New Appli-
cations. In Proceedings of the 15th Computer Vision and Pattern
Recognition Conference, pages 196–202, June 1996.

[4] U. J. Kapasi, W. J. Dally, S. Rixner, P. R. Mattson, J. D. Owens,
and B. Khailany. Efficient Conditional Operations for Data-parallel
Architectures. In Proceedings of the 33rd IEEE/ACM International
Symposium on Microarchitecture, pages 159–170, December 2000.

[5] U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and B. Towles.
Stream Scheduling. Concurrent VLSI Architecture Tech Report 122,
Stanford University, Computer Systems Laboratory, March 2002.

[6] B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong,
J. D. Owens, B. Towles, A. Chang, and S. Rixner. Imagine: Media
Processing with Streams. IEEE Micro, pages 35–46, Mar/Apr 2001.

[7] P. Mattson, W. J. Dally, S. Rixner, U. J. Kapasi, and J. D. Owens.
Communication Scheduling. In Proceedings of the 9th International
Conference on Architectural Support for Programming Languages
and Operating Systems, November 2000.

[8] J. D. Owens, W. J. Dally, U. J. Kapasi, S. Rixner, P. Mattson, and
B. Mowery. Polygon Rendering on a Stream Architecture. In
Proceedings of the 2000 SIGGRAPH / Eurographics Workshop on
Graphics Hardware, pages 23–32, August 2000.

[9] M. C. Pease. An Adaptation of the Fast Fourier Transform for Parallel
Processing. Journal of the ACM, 15(2):252–264, April 1968.

[10] S. Rixner. Stream Processor Architecture. Kluwer Academic Pub-
lishers, Boston, MA, 2001.

[11] S. Rixner, W. J. Dally, B. Khailany, P. R. Mattson, U. J. Kapasi, and
J. D. Owens. Register Organization for Media Processing. In Pro-
ceedings of the 6th International Symposium on High-Performance
Computer Architecture, pages 375–386, January 2000.

[12] R. Russell. The Cray-1 Computer System. Comm. ACM, 21(1):63–
72, Jan 1978.

[13] M. B. Taylor and et al. The Raw Microprocessor: A Computational
Fabric for Software Circuits and General Purpose Programs. IEEE
Micro, Mar/Apr 2002.

[14] J. V. M. Bove and J. A. Watlington. Cheops: A Reconfigurable Data-
flo w System for Video Processing. IEEE Trans. on Circuits and Sys-
tems for Video Tech., pages 140–149, April 5 1995.

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

