
Towards a Self-Reconfigurable Embedded

Processor Architecture

Shady O. Agwa, Hany H. Ahmad, and Awad I. Saleh

Abstract—Embedded processors with fixed architecture have

disadvantages: they are neither reusable nor are they flexible

enough to match the specific needs of different application

domains. The main technique employed to accelerate instruction

execution in such processors is to add fixed hardware units,

which may be useless for some applications yet insufficient for

others. This additional hardware may affect area and power

constraints badly. A self-reconfigurable architecture would be

more flexible as the extended hardware execution units can be

reconfigured or replaced at runtime to accelerate more than one

algorithm avoiding area, power, and routing problems. Allowing

the processor to replace at runtime, unnecessary acceleration

execution units with others necessary depending on runtime

profiling information, results in significant performance gains

with only marginal increase in area and power. As proof of

concept, in this paper we show that a significant execution time

reduction of approximately 42.5% and a 37% reduction in

executed instruction count are achievable for the “RGB to

CMYK Conversion” benchmark, at the cost of a 20% increase in

area, using the techniques described here. This preliminary

investigation also indicates that, although power increases due to

the additional hardware acceleration units employed, significant

overall energy savings can be achieved (37.7% in our case study).

These results were obtained using Tensilica’s Technology Tools.

I. INTRODUCTION

During the last decades a trend has emerged towards

customization of the “general purpose” embedded processor

to be more “application specific”, in order to cope with the

ever-increasing performance demands of embedded

applications [1]. The addition of hardware acceleration units,

however, has a negative effect on area – and often power –

constraints. A better approach, hence, would be to determine

precisely when and how the running application – or part of it

– needs to be accelerated. This can be done by monitoring the

instructions executed and measuring their weights; a process

known as “profiling”.

Runtime profiling allows the processor to collect results of

monitoring and take the correct decision as to whether or not a

particular part (or region) of the application needs to be

Manuscript received July 31, 2009.

Shady O. Agwa is M.Sc. Student at Computer and Systems Section,

Department of Electrical Engineering, Assiut University, Assiut, Egypt

(corresponding author to provide phone: 002-012-4376775; e-mail:

shady.agwa@yahoo.com).

Hany H. Ahmad is Assistant Professor of Computer Engineering at

Computer and Systems Section, Department of Electrical Engineering, Assiut

University, Assiut, Egypt (e-mail: hanya@aun.edu.eg).

Awad I. Saleh is Professor of Automatic Control at Computer and Systems

Section, Department of Electrical Engineering, Assiut University, Assiut,

Egypt(e-mail: awad.i.saleh@gmail.com).

accelerated [1] [2].

Runtime profiling only provides the necessary information;

a so called “Runtime Reconfiguration Unit” is needed to

actually add the required acceleration hardware dynamically.

This approach should help overcome area problems since the

processor will be able to replace unnecessary hardware

acceleration units with others necessary, allowing the

acceleration of more algorithms within the same area and

without extra cost.

Some of the terminology related to this research is used

rather loosely in the literature. We feel, at this point, that it is

appropriate to clarify our interpretation and usage of the

following somewhat overlapping terms:

Extensible: the processor allows normal instructions to

be extended into accelerated special instructions [2].

Adaptive: the processor can tune itself to the running

application according to its load [1].

Dynamic: the processor‘s instruction set extension and

execution unit configuration are done at runtime [1].

Self-reconfigurable: One particular technique used to

achieve “adaptability” through “dynamic extensibility”.

The main objective of this research work – in its wider

context – is to investigate the potential performance gains

obtainable by utilizing processor adaptation and self-

reconfigurability. The research goes through three major

phases: Acceleration Techniques, Runtime Profiling, and

Runtime Reconfiguration. In this paper we focus on

Acceleration Techniques and Runtime Profiling. Runtime

Reconfiguration will be the subject of our future work.

The remainder of this paper is organized as follows: Section

II provides an overview of the processor core used and the

proposed extensions for the purpose of this research. In

Section III the “RGB to CMYK Conversion” benchmark is

presented and analyzed as a stimulating case study. Next, a

brief review of Tensilica’s acceleration techniques as well as

the hardware acceleration units used in the case study is

introduced in Section IV. Runtime profiling is the subject of

Section V, and Section VI concludes the paper with a

summary of its major results.

II. GENERAL OVERVIEW OF PROCESSOR CORE

ARCHITECTURE

A general purpose RISC processor core [3], as shown in

Fig. 1 below, is used in this research:

978-1-4244-5844-8/09/$26.00 ©2009 IEEE 21

Authorized licensed use limited to: University of Florida. Downloaded on April 05,2010 at 00:58:50 EDT from IEEE Xplore. Restrictions apply.

Fig. 1. General overview of a simple RISC processor core.

This simple core will be extended by adding new

acceleration units built on a reconfigurable fabric, a

reconfiguration unit, and configuration memory. Since

traditional processors have been extremely difficult and time

consuming to design and modify; and since our main

objective at this stage is to study the characteristics of

different profiling and acceleration techniques; we decided to

use Tensilica’s Technology Tools [4] as our basic

development platform. In a later stage the design will be

ported to a commercially available reconfigurable platform.

Tensilica’s Tools:

Tensilica provides tools and techniques for designing

processors with extended acceleration units. The algorithm to

be executed will be written in C/C++ code, and the extended

acceleration units are specified using TIE (Tensilica

Instruction Extension) language. This will allow us to map our

architecture to hardware to meet different speed, area, and

power constraints.

Xtensa LX2 Core:

Tensilica’s Xtensa LX2 is a processor core that borrows the

best features of established RISC architectures and adds new

Instruction Set Architecture (ISA) developments of its own as

shown in Fig. 2.

Fig. 2. The Xtensa LX2 Architecture: Designed for Configurability and

Extensibility.

The Xtensa core ISA is implemented as a set of 24-bit

instructions that perform 32-bit operations. Instructions can be

extended to 32-bit, 64-bit, and 128-bit [4] [5].

Fig. 3. Xtensa design flow.

As shown in Fig. 3, designing and creating the desired

processor will pass through simple steps using Tensilica Tools

[4] [5].

III. MOTIVATING CASE STUDY

We chose to use the “RGB to CMYK Conversion”

benchmark from “EEMBC Consumer Bench™ Version 1.1”

[6]. This benchmark provides opportunities for full-fury

benchmark optimization. It is used for digital image

processing in color printers and other digital imaging

products.

R, G, and B are 8-bit pixel color image inputs.

Compute complementary colors c,m,y:

1- c = 255 – R ;

2- m = 255 – G ;

3- y = 255 – B ;

Find black level K:

 K = Minimum (c , m , y) ;

Correct complementary colors:

1- C = c – K ;

2- M = m – K ;

3- Y = y – K ;

C, M, Y, K are 8-bit pixel outputs.

 All input and output values are in the range of

22

Authorized licensed use limited to: University of Florida. Downloaded on April 05,2010 at 00:58:50 EDT from IEEE Xplore. Restrictions apply.

[0:255] as inputs will be [6]: R[0], G[0], B[0],

R[1], G[1], B[1], … and outputs will be C[0],

M[0], Y[0], K[0], C[1], M[1], Y[1], K[1], …

The algorithm is next divided into basic regions of code that

will be written in C; TIE will be used to specify the

acceleration hardware:

BEGIN ALGORITHM

 Region # 1

Initializing R, G, B values.

 End Region # 1

 Region # 2

Calculate complementary colors c, m, y values.

 End Region # 2

 Region # 3

 Region # 4

Find black level K value.

 End Region # 4

Calculate correction of complementary colors C, M,

Y, K values.

 End Region # 3

END ALGORITHM

This is a very expensive routine that can be repeated many

times for the same number of input pixels, and its processing

time is almost linearly proportional to the number of input

pixels [6]. In our case study, the number of input pixels was

chosen to be 320x240 leading to 3x320x240 input values and

4x320x240 output values.

IV. HARDWARE ACCELERATION UNITS

To accelerate this algorithm we studied each of the code

regions to determine whether it is a critical region or not.

Critical region: A set of instructions executed by the

processor that consumes a large amount of time and

contributes significantly to the total execution time of the

algorithm [1]. Critical regions represent the best candidates for

acceleration if processor performance is to be enhanced

effectively.

Tensilica’s acceleration techniques [4] [7]:

1- Fusion: Combines multiple computations into one

multiple cycle operation. Many software instructions

can be executed in one operation.

2- SIMD: Single Instruction Multiple Data deals with

multiple data items in the same instruction to reduce

processor memory traffic. A large amount of data can

be loaded, stored, and computed in the same

operation.

3- FLIX: Flexible Length Instruction Xtension is a

technology by which we can make instructions with

different lengths. The instruction length can be

extended to 32-bit, 64-bit, or 128-bit. This user-

defined instruction will be able to execute many

operations at the same time.

The work described in this paper uses Fusion and SIMD

acceleration only, FLIX was not used here.

Traditional acceleration techniques:

1- Loop Unrolling: Reduces predictions and branches

with their conditional jumps. The number of

instructions and computations will be reduced since

many unnecessary loads, stores, conditional jumps,

increments, or decrements are removed.

2- Reducing Processor-Memory Traffic: Fetching data

from memory and storing data back to memory

imposes a bottleneck on processor performance.

Reducing memory traffic will improve overall system

performance.

These traditional acceleration techniques are built in

Tensilica’s SIMD, and Fusion.

Coarse Grained Acceleration vs. Fine Grained

Acceleration [8] [9]:

Fine grained granularity offers great flexibility when

implementing algorithms in hardware. Fine grained

acceleration units can be reused for more than one critical

region, but their use will usually cause large penalties in terms

of increasing area, power and time delay due to the associated

routing problems.

Coarse grained acceleration units can be faster and more

power efficient, but lack the flexibility offered by the fine

grained approach.

We use coarse grained acceleration in this research. The

rationale behind this decision is twofold. First, the lack of

flexibility can be compensated for by the flexibility offered by

the reconfiguration capability. Second, we believe that the fine

grained approach would complicate the dynamic

reconfiguration process due to the extra routing needed, a

problem we are not willing to address at this stage.

Bank of Acceleration Units:

A bank consisting of 8 general and special-purpose (i.e.

associated with a specific region) acceleration units was built

for our case-study algorithm as shown in Table 1.
TABLE 1

BANK OF ACCELERATION UNITS (8 UNITS)

General Units Special Units

Load 128-bit Region #1 Acceleration

(Initialze_RGB)

Store 128-bit Region #2 Acceleration

(Calculate_cmy)

Load 32-bit

Store 32-bit

Region #3 Acceleration

(Calculate_CMYK_1,2)

Acceleration results:

 The following results are obtained by using Tensilica

profiling tool.

23

Authorized licensed use limited to: University of Florida. Downloaded on April 05,2010 at 00:58:50 EDT from IEEE Xplore. Restrictions apply.

In Table 2, the execution time reduction obtained for each

region of the algorithm is given together with number of clock

cycles with and without acceleration.
TABLE 2

FULL ACCELERATION RESULTS FOR CLOCK CYCLES

Region

No.

Normal

Execution
(Clock

cycles)

Accelerated

Execution
(Clock cycles)

Reduction

(%)

Region #1 7,109,317 374,431 94.733

Region #2 5,990,424 446,442 92.547

Region #3 7,756,829 6,528,032 15.841

Region #4 --- --- No

acceleratio

n

Table 3 compares the total energy spent on each region with

and without acceleration.

TABLE 3

FULL ACCELERATION RESULTS FOR TOTAL ENERGY

Region

No.

Normal

Execution
(PJ)

Accelerated

Execution
(PJ)

Reduction

(%)

Region

#1

767,637,284 57,130,152 92.558

Region

#2

828,812,553 69,904,509 91.566

Region

#3

1,097,541,807 937,891,649 14.546

Region

#4

--- --- No

acceleratio

n

Table 4 shows the savings in instruction count, the number of

clock cycles, and for the number of loads and stores for the

complete algorithm.

TABLE 4

FULL ACCELERATION RESULTS FOR WHOLE ALGORITHM

Normal

Execution

Accelerated

Execution

Reduction

(%)

No.

Instructions

16,745,813 8,365,073 50.047

No. Clock

Cycles

24,317,849 10,810,259 55.546

No. Loads 8,064,805 3,975,220 50.709

No. Stores 1,843,703 1,171,709 36.448

From the Tensilica profiling tests we found that Region # 4

will need no acceleration as the results will be nearly the same

and from the previous results we noticed that Region# 3

acceleration is useful for energy and speed but the

acceleration gain is not sufficient, so it will be recommended

with many times of execution in the case of more than

320x240 input pixels, to reduce area consumed by hardware

addition.

V. RUNTIME PROFILING

Runtime profiling allows the processor to take important

decisions about accelerating specific regions of the running

algorithm. In this section we discuss briefly different runtime

profiling approaches.

Coarse Grained Profiling vs. Fine Grained Profiling:

Fine grained profiling means that every instruction is

monitored to measure its execution weight. If its weight

exceeds the predetermined threshold, the instruction will be

considered part of a critical region and it needs to be

accelerated.

On the other hand, coarse grained profiling means

monitoring a block of instructions as a whole and then

determining if this block of instructions is a critical region or

not depending on the predetermined threshold.

The threshold in both cases determines if acceleration is

needed or not. We determine a suitable value for the threshold

by experimentation at design time.

We use coarse grained profiling here, as it leads to coarse

grained acceleration, and also to avoid the complexity of

monitoring each individual instruction. Fine grained profiling

would nearly double the number of executed instructions,

since there will be an additional instruction for each one

executed in the algorithm, in addition to the same number of

extra storage elements.

Runtime Profiling Importance:

Runtime profiling plays a key role in our approach to self-

reconfiguration. It provides the processor with the necessary

flexibility to determine, at runtime, which regions of the

running algorithm need to be accelerated and which regions

do not. Without runtime profiling there would be no means to

use the hardware acceleration units judiciously, as the

information it provides is used by the reconfiguration unit to

replace unnecessary acceleration units with others necessary.

The following paragraphs describe two different

approaches to applying runtime profiling.

Profiling techniques:

Preparation mode profiling:

In this technique, a “preparation run” precedes normal

execution. In preparation mode, the processor starts

profiling the algorithm to identify critical regions that

need acceleration. The processor will then generate

the required acceleration units and switch to normal

24

Authorized licensed use limited to: University of Florida. Downloaded on April 05,2010 at 00:58:50 EDT from IEEE Xplore. Restrictions apply.

execution mode. Actual execution, thus, has to wait

for results, decisions, and for hardware

reconfiguration. In the literature, the terms “training

mode” and “monitoring mode” have been used to

describe the same concept [1] [2].

 Pessimistic Runtime profiling:

We propose a new runtime profiling technique which we

call “Pessimistic Runtime Profiling”. The processor will

start at “full throttle” and consider all blocks of

instructions to be critical regions that need to be

accelerated (i.e. full acceleration). This fully accelerated

run will be done only once and runtime profiling will

provide the processor with sufficient data to identify the

real critical regions that truly need acceleration. In the

next phase of execution, all unnecessary acceleration

units will be removed, and profiling will continue

collecting data about the new critical regions during the

full execution life time of the algorithm.

If the processor is pessimistic, it will not have to wait for

results and decisions from the preparation phase, leading

to execution-time and often power savings.

Runtime profiling results:

We assume that the algorithm will be repeated five times

with the same number of input pixels.

We have five cases in our runtime profiling results:

1- Case # 1: Normal execution without any acceleration

and without runtime profiling.

2- Case # 2: Fully accelerated execution without runtime

profiling.

3- Case # 3: Accelerated execution with preparation

mode profiling.

4- Case # 4: Accelerated execution with pessimistic

runtime profiling.

5- Case # 5: Accelerated execution with pessimistic

runtime profiling, with a change in threshold values to

take into consideration the additional area cost.

“Table 5” below gives the number of clock cycles and the

number of instructions executed for the five cases mentioned

above, and Table 6 compares the results relative to case # 1.

TABLE 5

PROFILING RESULTS

No. Clock Cycles No. Instructions

Case #

1

121,579,398 83,723,913

Case #

2

54,041,448 41,820,213

Case #

3

94,495,104 69,422,774

Case #

4

65,034,008 49,068,578

Case # 69,949,063 52,754,908

5

TABLE 6

PROFILING SPEED UP RESULTS RELATED TO Case # 1

Clock Cycles

Reduction (%)

Instructions

Reduction (%)

Case # 2 55.551 50.050

Case # 3 22.277 17.081

Case # 4 46.509 41.392

Case # 5 42.466 36.989

The following remarks can be made in view of the above

results:

1- In Case # 3, using preparation mode profiling, only a

modest execution time reduction was achieved

(approx. 22%). This can be attributed to the fact that

the preparation phase represents an overhead that is

not effectively compensated for by the acceleration

used in the following execution phase.

2- Pessimistic Runtime Profiling (Case # 4) achieves a

significant execution time reduction of just over 46%

which is twice that of Case # 3. This is a result of

employing all the acceleration units in the first phase

so that profiling data can be obtained and the

associated decisions to remove unnecessary

acceleration units can be made faster.

3- Case # 5 also uses Pessimistic Runtime Profiling but

attempts to strike the balance between the performance

gain in terms of speedup and the penalty inflicted in

terms of the extra area consumed. Noting that

acceleration of Region # 3 is area consuming yet its

speed gain is comparatively low, we set the threshold

for this region to be accelerated only in cases with

greater than 320x240 input pixels.

Case # 5 is our target case, it saved about 34.6% of total

area consumed by the total hardware acceleration units, and it

also saved about 17.5% of the total special registers added for

acceleration. Despite its area advantage, this case still gives us

a significant execution time reduction of approximately 42.5%

and an approximate 37% reduction in the number of

instructions executed.

VI. CONCLUSION

The results presented in this paper support our view that

combining coarse grained acceleration with runtime profiling

is a valid approach to achieve significant speedups at

moderate area expense. We are able to avoid the “slow

startup” associated with preparation mode profiling by making

the processor act pessimistically in the first execution phase

by turning on all the acceleration units. Runtime profiling can

be done by a completely separate hardware unit to avoid

increasing the number of instructions executed by the normal

execution units of the processor. This is one area currently

under investigation and will be presented in a future paper.

Building and evaluating the reconfiguration unit is our next

major step towards our goal and will be carried out by porting

25

Authorized licensed use limited to: University of Florida. Downloaded on April 05,2010 at 00:58:50 EDT from IEEE Xplore. Restrictions apply.

our designs to a state-of-the-art commercially available

reconfigurable platform. A general overview of our new self-

reconfigurable processor core architecture is shown in Fig. 4.

[7] Steven Leibson, Tensilica Inc, “Customizable Processors and Processor

Customization,” in Processor Design: System-on-Chip Computing for

ASICs and FPGAs, J.Nurmi (ed.), ©2007 Springer. Ch. 8, pp. 149-175.

[8] Fabio Campi and Claudio Mucci, STMicroelectronics, ARCES,

University of Bologna, “Run-Time Reconfigurable Processors,” in

Processor Design: System-on-Chip Computing for ASICs and FPGAs,

J.Nurmi (ed.), ©2007 Springer. Ch. 9, pp. 177-208.

[9] Koen De Bosschere, Wayne Luk, Xavier Martorell, Nacho Navarro,

Mike O’Boyle, Dionisios Pnevmatikatos, Alex Ramirez, Pascal Sainrat,

Andre Seznec, Per Stenstrom, and Olivier Temam. “High-Performance

Embedded Architecture and Compilation Roadmap,” HiPEAC Network

of Excellence, in Transactions on HiPEAC I, P. Stenstrom (Ed.), LNCS

4050, 2007. © Springer-Verlag Berlin Heidelberg 200, pp. 5-29.

Fig. 4. General overview of our processor architecture

In addition to general core of RISC processor, hardware

acceleration units will be added in our new core to accelerate

critical regions detected by our pessimistic runtime profiling.

A separated configurable load/store unit will be responsible of

transferring data from and to Memory. As shown in Fig. 4, a

special registers unit is added for holding 128-bit and 32-bit

register files. There will also be a reconfiguration unit that

will reconfigure hardware acceleration units, replacing

unnecessary units with others necessary. Reconfiguration unit

will get acceleration unit configurations from a special

configuration memory.

Increasing the number of acceleration unit configurations

will make the processor more general and more applications

can be executed and accelerated by it. On the other hand, this

will increase the size of the configuration storing unit. These

topics also represent directions for future investigation.

REFERENCES

[1] Hamid Noori, Kazuaki Murakami, and Koji Inoue “An Adaptive

Dynamic Extensible Processor,” in Conf. Rec. 2005 IEICE General

Conference, CPSY2005-29(2005-12).

[2] Lars Bauer, Muhammad shafique, Dirk Teufel and Jorg Henkel, “A Self-

Adaptive Extensible Embedded Processor,” in Conf. Rec. 2007 IEEE

Int. Conf. SASO '07. First International Conference, pp. 344-350.

[3] MIPS Architecture, http://en.wikipedia.org/wiki/MIPS_architecture.

[4] Tensilica Tools, Tensilica Inc: http://www.tensilica.com/.

[5] Xia, Chen and Zhang, Qi, “H.264 Decoder Tensilica Configurable

Embedded Processor Implementation”, December 19, 2008. Web

document found at:

http://www.ee.hawaii.edu/~xrzhou/ee693e/slides/final_project.pdf.

[6] EEMBC Software Benchmark Data Book, http://www.eembc.org/.

26

Authorized licensed use limited to: University of Florida. Downloaded on April 05,2010 at 00:58:50 EDT from IEEE Xplore. Restrictions apply.

