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Abstract—Embedded processors with fixed architecture have 

disadvantages: they are neither reusable nor are they flexible 

enough to match the specific needs of different application 

domains. The main technique employed to accelerate instruction 

execution in such processors is to add fixed hardware units, 

which may be useless for some applications yet insufficient for 

others. This additional hardware may affect area and power 

constraints badly. A self-reconfigurable architecture would be 

more flexible as the extended hardware execution units can be 

reconfigured or replaced at runtime to accelerate more than one 

algorithm avoiding area, power, and routing problems. Allowing 

the processor to replace at runtime, unnecessary acceleration 

execution units with others necessary depending on runtime 

profiling information, results in significant performance gains 

with only marginal increase in area and power. As proof of 

concept, in this paper we show that a significant execution time 

reduction of approximately 42.5% and a 37% reduction in 

executed instruction count are achievable for the “RGB to 

CMYK Conversion” benchmark, at the cost of a 20% increase in 

area, using the techniques described here. This preliminary 

investigation also indicates that, although power increases due to 

the additional hardware acceleration units employed, significant 

overall energy savings can be achieved (37.7% in our case study). 

These results were obtained using Tensilica’s Technology Tools. 

I. INTRODUCTION

During the last decades a trend has emerged towards 

customization of the “general purpose” embedded processor 

to be more “application specific”, in order to cope with the 

ever-increasing performance demands of embedded 

applications [1]. The addition of hardware acceleration units, 

however, has a negative effect on area – and often power – 

constraints. A better approach, hence, would be to determine 

precisely when and how the running application – or part of it 

– needs to be accelerated. This can be done by monitoring the 

instructions executed and measuring their weights; a process 

known as “profiling”. 

Runtime profiling allows the processor to collect results of 

monitoring and take the correct decision as to whether or not a 

particular part (or region) of the application needs to be 
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accelerated [1] [2]. 

Runtime profiling only provides the necessary information; 

a so called “Runtime Reconfiguration Unit” is needed to 

actually add the required acceleration hardware dynamically. 

This approach should help overcome area problems since the 

processor will be able to replace unnecessary hardware 

acceleration units with others necessary, allowing the 

acceleration of more algorithms within the same area and 

without extra cost. 

Some of the terminology related to this research is used 

rather loosely in the literature. We feel, at this point, that it is 

appropriate to clarify our interpretation and usage of the 

following somewhat overlapping terms: 

Extensible: the processor allows normal instructions to 

be extended into accelerated special instructions [2]. 

Adaptive: the processor can tune itself to the running 

application according to its load [1]. 

Dynamic: the processor‘s instruction set extension and 

execution unit configuration are done at runtime [1]. 

Self-reconfigurable:  One particular technique used to 

achieve “adaptability” through “dynamic extensibility”. 

The main objective of this research work – in its wider 

context – is to investigate the potential performance gains 

obtainable by utilizing processor adaptation and self-

reconfigurability. The research goes through three major 

phases: Acceleration Techniques, Runtime Profiling, and 

Runtime Reconfiguration. In this paper we focus on 

Acceleration Techniques and Runtime Profiling. Runtime 

Reconfiguration will be the subject of our future work. 

The remainder of this paper is organized as follows: Section 

II provides an overview of the processor core used and the 

proposed extensions for the purpose of this research. In 

Section III the “RGB to CMYK Conversion” benchmark is 

presented and analyzed as a stimulating case study. Next, a 

brief review of Tensilica’s acceleration techniques as well as 

the hardware acceleration units used in the case study is 

introduced in Section IV. Runtime profiling is the subject of 

Section V, and Section VI concludes the paper with a 

summary of its major results. 

II. GENERAL OVERVIEW OF PROCESSOR CORE

ARCHITECTURE

A general purpose RISC processor core [3], as shown in 

Fig. 1 below, is used in this research: 
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Fig. 1. General overview of a simple RISC processor core. 

This simple core will be extended by adding new 

acceleration units built on a reconfigurable fabric, a 

reconfiguration unit, and configuration memory. Since 

traditional processors have been extremely difficult and time 

consuming to design and modify; and since our main 

objective at this stage is to study the characteristics of 

different profiling and acceleration techniques; we decided to 

use Tensilica’s Technology Tools [4] as our basic 

development platform. In a later stage the design will be 

ported to a commercially available reconfigurable platform. 

Tensilica’s Tools: 

Tensilica provides tools and techniques for designing 

processors with extended acceleration units. The algorithm to 

be executed will be written in C/C++ code, and the extended 

acceleration units are specified using TIE (Tensilica 

Instruction Extension) language. This will allow us to map our 

architecture to hardware to meet different speed, area, and 

power constraints. 

Xtensa LX2 Core: 

Tensilica’s Xtensa LX2 is a processor core that borrows the 

best features of established RISC architectures and adds new 

Instruction Set Architecture (ISA) developments of its own as 

shown in Fig. 2.

Fig. 2. The Xtensa LX2 Architecture: Designed for Configurability and 

Extensibility.

The Xtensa core ISA is implemented as a set of 24-bit 

instructions that perform 32-bit operations. Instructions can be 

extended to 32-bit, 64-bit, and 128-bit [4] [5]. 

Fig. 3. Xtensa design flow. 

As shown in Fig. 3, designing and creating the desired 

processor will pass through simple steps using Tensilica Tools 

[4] [5]. 

III. MOTIVATING CASE STUDY

We chose to use the “RGB to CMYK Conversion” 

benchmark from “EEMBC Consumer Bench™ Version 1.1” 

[6]. This benchmark provides opportunities for full-fury 

benchmark optimization. It is used for digital image 

processing in color printers and other digital imaging 

products. 

R, G, and B are 8-bit pixel color image inputs. 

Compute complementary colors c,m,y: 

1- c = 255 – R  ; 

2- m = 255 – G ; 

3- y = 255 – B ; 

Find black level K: 

   K = Minimum ( c , m , y ) ; 

Correct complementary colors: 

1- C = c – K ; 

2- M = m – K ; 

3- Y = y – K ; 

C, M, Y, K are 8-bit pixel outputs. 

     All input and output values are in the range of 
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[0:255] as inputs will be [6]: R[0], G[0], B[0], 

R[1], G[1], B[1], … and outputs will be C[0], 

M[0], Y[0], K[0], C[1], M[1], Y[1], K[1], … 

The algorithm is next divided into basic regions of code that 

will be written in C; TIE will be used to specify the 

acceleration hardware: 

BEGIN ALGORITHM 

 Region # 1 

Initializing R, G, B values. 

 End Region # 1 

 Region # 2 

Calculate complementary colors c, m, y values. 

 End Region # 2 

 Region # 3 

 Region # 4 

Find black level K value. 

 End Region # 4 

Calculate correction of complementary colors C, M, 

Y, K values. 

 End Region # 3 

END ALGORITHM

This is a very expensive routine that can be repeated many 

times for the same number of input pixels, and its processing 

time is almost linearly proportional to the number of input 

pixels [6]. In our case study, the number of input pixels was 

chosen to be 320x240 leading to 3x320x240 input values and 

4x320x240 output values. 

IV. HARDWARE ACCELERATION UNITS

To accelerate this algorithm we studied each of the code 

regions to determine whether it is a critical region or not. 

Critical region: A set of instructions executed by the 

processor that consumes a large amount of time and 

contributes significantly to the total execution time of the 

algorithm [1]. Critical regions represent the best candidates for 

acceleration if processor performance is to be enhanced 

effectively.

Tensilica’s acceleration techniques [4] [7]:

1- Fusion: Combines multiple computations into one 

multiple cycle operation. Many software instructions 

can be executed in one operation. 

2- SIMD: Single Instruction Multiple Data deals with 

multiple data items in the same instruction to reduce 

processor memory traffic. A large amount of data can 

be loaded, stored, and computed in the same 

operation. 

3- FLIX: Flexible Length Instruction Xtension is a 

technology by which we can make instructions with 

different lengths. The instruction length can be 

extended to 32-bit, 64-bit, or 128-bit. This user-

defined instruction will be able to execute many 

operations at the same time. 

The work described in this paper uses Fusion and SIMD 

acceleration only, FLIX was not used here. 

Traditional acceleration techniques: 

1- Loop Unrolling: Reduces predictions and branches 

with their conditional jumps. The number of 

instructions and computations will be reduced since 

many unnecessary loads, stores, conditional jumps, 

increments, or decrements are removed. 

2- Reducing Processor-Memory Traffic: Fetching data 

from memory and storing data back to memory 

imposes a bottleneck on processor performance. 

Reducing memory traffic will improve overall system 

performance. 

These traditional acceleration techniques are built in 

Tensilica’s SIMD, and Fusion. 

Coarse Grained Acceleration vs. Fine Grained 

Acceleration [8] [9]:

Fine grained granularity offers great flexibility when 

implementing algorithms in hardware. Fine grained 

acceleration units can be reused for more than one critical 

region, but their use will usually cause large penalties in terms 

of increasing area, power and time delay due to the associated 

routing problems. 

Coarse grained acceleration units can be faster and more 

power efficient, but lack the flexibility offered by the fine 

grained approach. 

We use coarse grained acceleration in this research. The 

rationale behind this decision is twofold. First, the lack of 

flexibility can be compensated for by the flexibility offered by 

the reconfiguration capability. Second, we believe that the fine 

grained approach would complicate the dynamic 

reconfiguration process due to the extra routing needed, a 

problem we are not willing to address at this stage. 

Bank of Acceleration Units: 

A bank consisting of 8 general and special-purpose (i.e. 

associated with a specific region) acceleration units was built 

for our case-study algorithm as shown in Table 1.  
TABLE 1

BANK OF ACCELERATION UNITS (8 UNITS)

General Units Special Units 

Load 128-bit Region #1 Acceleration 

(Initialze_RGB) 

Store 128-bit Region #2 Acceleration 

(Calculate_cmy) 

Load 32-bit 

Store 32-bit 

Region #3 Acceleration 

(Calculate_CMYK_1,2) 

Acceleration results:

 The following results are obtained by using Tensilica 

profiling tool. 
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In Table 2, the execution time reduction obtained for each 

region of the algorithm is given together with number of clock 

cycles with and without acceleration. 
TABLE 2

FULL ACCELERATION RESULTS FOR CLOCK CYCLES 

Region 

No.

Normal 

Execution
(Clock

cycles) 

Accelerated

Execution
(Clock cycles)

Reduction 

(%)

Region #1 7,109,317 374,431 94.733

Region #2 5,990,424 446,442 92.547

Region #3 7,756,829 6,528,032 15.841

Region #4 --- --- No

acceleratio

n

Table 3 compares the total energy spent on each region with 

and without acceleration. 

TABLE 3

FULL ACCELERATION RESULTS FOR TOTAL ENERGY 

Region 

No.

Normal 

Execution
(PJ)

Accelerated

Execution
(PJ)

Reduction 

(%)

Region 

#1

767,637,284 57,130,152 92.558

Region 

#2

828,812,553 69,904,509 91.566

Region 

#3

1,097,541,807 937,891,649 14.546

Region 

#4

--- --- No

acceleratio

n

Table 4 shows the savings in instruction count, the number of 

clock cycles, and for the number of loads and stores for the 

complete algorithm. 

TABLE 4

FULL ACCELERATION RESULTS FOR WHOLE ALGORITHM 

Normal 

Execution

Accelerated

Execution

Reduction 

(%)

No.

Instructions

16,745,813 8,365,073 50.047

No. Clock 

Cycles

24,317,849 10,810,259 55.546

No. Loads 8,064,805 3,975,220 50.709

No. Stores 1,843,703 1,171,709 36.448

From the Tensilica profiling tests we found that Region # 4 

will need no acceleration as the results will be nearly the same 

and from the previous results we noticed that Region# 3 

acceleration is useful for energy and speed but the 

acceleration gain is not sufficient, so it will be recommended 

with many times of execution in the case of more than 

320x240 input pixels, to reduce area consumed by hardware 

addition. 

V. RUNTIME PROFILING

Runtime profiling allows the processor to take important 

decisions about accelerating specific regions of the running 

algorithm. In this section we discuss briefly different runtime 

profiling approaches. 

Coarse Grained Profiling vs. Fine Grained Profiling: 

Fine grained profiling means that every instruction is 

monitored to measure its execution weight. If its weight 

exceeds the predetermined threshold, the instruction will be 

considered part of a critical region and it needs to be 

accelerated.

On the other hand, coarse grained profiling means 

monitoring a block of instructions as a whole and then 

determining if this block of instructions is a critical region or 

not depending on the predetermined threshold. 

The threshold in both cases determines if acceleration is 

needed or not. We determine a suitable value for the threshold 

by experimentation at design time. 

We use coarse grained profiling here, as it leads to coarse 

grained acceleration, and also to avoid the complexity of 

monitoring each individual instruction. Fine grained profiling 

would nearly double the number of executed instructions, 

since there will be an additional instruction for each one 

executed in the algorithm, in addition to the same number of 

extra storage elements. 

Runtime Profiling Importance: 

Runtime profiling plays a key role in our approach to self-

reconfiguration. It provides the processor with the necessary 

flexibility to determine, at runtime, which regions of the 

running algorithm need to be accelerated and which regions 

do not. Without runtime profiling there would be no means to 

use the hardware acceleration units judiciously, as the 

information it provides is used by the reconfiguration unit to 

replace unnecessary acceleration units with others necessary. 

The following paragraphs describe two different 

approaches to applying runtime profiling. 

Profiling techniques: 

Preparation mode profiling: 

In this technique, a “preparation run” precedes normal 

execution. In preparation mode, the processor starts 

profiling the algorithm to identify critical regions that 

need acceleration. The processor will then generate 

the required acceleration units and switch to normal 
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execution mode. Actual execution, thus, has to wait 

for results, decisions, and for hardware 

reconfiguration. In the literature, the terms “training 

mode” and “monitoring mode” have been used to 

describe the same concept [1] [2]. 

 Pessimistic Runtime profiling: 

We propose a new runtime profiling technique which we 

call “Pessimistic Runtime Profiling”. The processor will 

start at “full throttle” and consider all blocks of 

instructions to be critical regions that need to be 

accelerated (i.e. full acceleration). This fully accelerated 

run will be done only once and runtime profiling will 

provide the processor with sufficient data to identify the 

real critical regions that truly need acceleration. In the 

next phase of execution, all unnecessary acceleration 

units will be removed, and profiling will continue 

collecting data about the new critical regions during the 

full execution life time of the algorithm. 

If the processor is pessimistic, it will not have to wait for 

results and decisions from the preparation phase, leading 

to execution-time and often power savings. 

Runtime profiling results: 

We assume that the algorithm will be repeated five times 

with the same number of input pixels. 

We have five cases in our runtime profiling results: 

1- Case # 1: Normal execution without any acceleration 

and without runtime profiling. 

2- Case # 2: Fully accelerated execution without runtime 

profiling. 

3- Case # 3: Accelerated execution with preparation 

mode profiling. 

4- Case # 4: Accelerated execution with pessimistic 

runtime profiling. 

5- Case # 5: Accelerated execution with pessimistic 

runtime profiling, with a change in threshold values to 

take into consideration the additional area cost. 

“Table 5” below gives the number of clock cycles and the 

number of  instructions executed  for the five cases mentioned 

above, and Table 6 compares the results relative to case # 1. 

TABLE 5

PROFILING RESULTS 

No. Clock Cycles No. Instructions 

Case # 

1

121,579,398 83,723,913

Case # 

2

54,041,448 41,820,213

Case # 

3

94,495,104 69,422,774

Case # 

4

65,034,008 49,068,578

Case # 69,949,063 52,754,908

5

TABLE 6

PROFILING SPEED UP RESULTS RELATED TO Case # 1 

Clock Cycles 

Reduction (%) 

Instructions

Reduction (%) 

Case # 2 55.551 50.050

Case # 3 22.277 17.081

Case # 4 46.509 41.392

Case # 5 42.466 36.989

The following remarks can be made in view of the above 

results: 

1- In Case # 3, using preparation mode profiling, only a 

modest execution time reduction was achieved 

(approx. 22%). This can be attributed to the fact that 

the preparation phase represents an overhead that is 

not effectively compensated for by the acceleration 

used in the following execution phase. 

2- Pessimistic Runtime Profiling (Case # 4) achieves a 

significant execution time reduction of just over 46% 

which is twice that of Case # 3. This is a result of 

employing all the acceleration units in the first phase 

so that profiling data can be obtained and the 

associated decisions to remove unnecessary 

acceleration units can be made faster. 

3- Case # 5 also uses Pessimistic Runtime Profiling but 

attempts to strike the balance between the performance 

gain in terms of speedup and the penalty inflicted in 

terms of the extra area consumed. Noting that 

acceleration of Region # 3 is area consuming yet its 

speed gain is comparatively low, we set the threshold 

for this region to be accelerated only in cases with 

greater than 320x240 input pixels. 

Case # 5 is our target case, it saved about 34.6% of total 

area consumed by the total hardware acceleration units, and it 

also saved about 17.5% of the total special registers added for 

acceleration. Despite its area advantage, this case still gives us 

a significant execution time reduction of approximately 42.5% 

and an approximate 37% reduction in the number of 

instructions executed. 

VI. CONCLUSION

The results presented in this paper support our view that 

combining coarse grained acceleration with runtime profiling 

is a valid approach to achieve significant speedups at 

moderate area expense. We are able to avoid the “slow 

startup” associated with preparation mode profiling by making 

the processor act pessimistically in the first execution phase 

by turning on all the acceleration units. Runtime profiling can 

be done by a completely separate hardware unit to avoid 

increasing the number of instructions executed by the normal 

execution units of the processor.  This is one area currently 

under investigation and will be presented in a future paper. 

Building and evaluating the reconfiguration unit is our next 

major step towards our goal and will be carried out by porting 
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our designs to a state-of-the-art commercially available 

reconfigurable platform. A general overview of our new self-

reconfigurable processor core architecture is shown in Fig. 4. 
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Fig. 4. General overview of our processor architecture 

In addition to general core of RISC processor, hardware 

acceleration units will be added in our new core to accelerate 

critical regions detected by our pessimistic runtime profiling. 

A separated configurable load/store unit will be responsible of 

transferring data from and to Memory. As shown in Fig. 4, a 

special registers unit is added for holding 128-bit and 32-bit 

register files. There will also be a reconfiguration unit that 

will reconfigure hardware acceleration units, replacing 

unnecessary units with others necessary. Reconfiguration unit 

will get acceleration unit configurations from a special 

configuration memory. 

Increasing the number of acceleration unit configurations 

will make the processor more general and more applications 

can be executed and accelerated by it. On the other hand, this 

will increase the size of the configuration storing unit. These 

topics also represent directions for future investigation. 
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