
COMPARATIVE ANALYSIS OF HIGH LEVEL PROGRAMMING FOR
RECONFIGURABLE COMPUTERS: METHODOLOGY AND EMPIRICAL STUDY

Esam El-ArabyI, Mohamed Taherl, Mohamed Abouellaill,
Tarek El-Ghazawi', and Gregory B. Newby2

The George Washington Univeristy, 2Arctic Region Supercomputing Center
{esam, mtaher, mlail, tarek}Jgwu.edu, newbygarsc.edu

ABSTRACT development time and a performance overhead imposed by
high level languages.

Most application developers are willing to give up some Describing hardware in HLLs, or at least using dataflow
performance and chip utilization in exchange of diagrams, seems to be a major and distinctive feature of
productivity. High-level tools for developing high-performance RCs. It would allow mathematicians and
reconfigurable computing applications trade performance computer scientists to develop entire applications without
with ease-of-use. However, it is hard to know in a general relying on hardware designers. It would also substantially
sense how much performance and utilization one is giving increase the productivity of the design process.
up and how much ease-of-use he/she is gaining. More A compiler for RCs must combine the capabilities of
importantly, given the lack of standards and the uncertainty tools for traditional microprocessor compilation and tools
generated by sales literature, it is very hard to know the for computer-aided design with FPGAs. It must also
real differences that exist among different high-level extend these two separate set of tools with capabilities for
programming paradigms. In order to do so, one needs a mutual synchronization and data transfer between
formal methodology and/or a framework that uses a microprocessor and reconfigurable processor sub-systems
common set of metrics and common experiments over a [1].
number of representative tools. In this work, we consider In this study, three high level tools for reconfigurable
three representative high-level tools, Impulse-C, Mitrion- programming were evaluated and compared with respect to
C, and DSPLogic in the Cray XD1 environment. These their performance and ease-of-use. Impulse-C, Mitrion-C
tools were selected to represent imperative programming, and DSPLogic were chosen for two reasons. Firstly, they
functional programming and graphical programming, and are all fully developed HLL tools sharing the common goal
thereby demonstrate the applicability of our methodology. of reaching a broader audience of potential RC users.
It will be shown that in spite of the disparity in concepts Secondly, each one has a different and distinct vision on
behind those tools, our methodology will be able to how to realize the latter goal, whether through imperative,
formally uncover the basic differences among them and functional or schematic programming.
analytically assess their comparative performance, To be able to reach a well-rounded comparison between
utilization, and ease-of-use. the tools, four work loads were selected for development

on each tool. Furthermore, the same RC was used as the
1. INTRODUCTION testbed. In this study, the Cray XD1 reconfigurable

computer was the environment selected.
Developing applications for Reconfigurable Computers
(RCs) requires both hardware and software programming 2. HIGH-LEVEL DESIGN TOOLS
knowledge. The unique problems of RCs come from the
fact that hardware and software are traditionally described Hardware description languages (HDLs) are tailored
using different languages and tools. The standard way of specifically to hardware design. Because of this they
describing software is using high-level languages (HLLs), provide a flexible and powerful way to generate efficient
such as C, C++, or Fortran. The standard way of describing logic. However, this tailoring makes them unfamiliar
hardware is using hardware description languages (HDLs), territory for people outside the hardware design field. In
such as VHDL and Verilog. Describing hardware using order to communicate hardware design to a more general
HLLs is possible, and has been tried in several commercial audience, a number of tools are emerging to support the
products such as Xilinx Forge, Celoxica Handel-C, use of other high-level programming languages (primarily
Impulse-C, and Mitrion-C. Dataflow program entry, based C and C++) as HDLs. The outcome of C and C++ for
on the graphical user interface, e.g. DSPLogic, seems to hardware design facilitates the partitioning of resources
offer an interesting compromise between HLLs and HDLs. between software and hardware, and facilitates hardware
These languages offer a trade-off between a shorter and software co-simulation and code reuse.

1-4244-0606-4/07/$20.OO ©)2007 IEEE. 99

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

2.1. Impulse-C Afiifon-C
Source code

Impulse-C represents a class of imperative languages with r----------- ---------------------

syntax based strongly on ANSI C [3]. The language is e?ompiZe Mitrion Sofiware Devielcpmient Kiti
extended to address specific hardware concepts such as I ~~~~ProcessorPr esoIcommunicating sequential processes (CSP), and streams. fAlhin-code Arci ec
CSPs exploit the parallelism inherent in applications while
streams provide a mechanism for inter-processSiltrPocsrI
communications. The Impulse-C software-to-hardware &D~ge c~iuao
compiler translates C-language processes to low-level -.----------------I
FPGA hardware. Existing VHDL designs may also be Processor
incorporated and called from the Impulse-C code as Crircit De~sig
external functions. Fig. 1 shows the Impulse-C HLP,
development flow. FG

-~~~~~~~~~~~~~~~~Fig.2. Mitrion-C Programming flow [4].
imIse c ~V&sal StUdio0 parallel, reconfigurable soft-core processor. Fig. 2 shows

design fesCodeWrriorrMthe Mitrion-C programming flow.
GCC, etc.

--------- - ---- ------ ----- 2.3. DSPLogic RC Toolbox

7-1 ~~~~DSPLogic RC Toolbox provides a combined graphical and
text-based programming environment for RC application
development based on Xilinx System Generator for DSP
package [5]. It enables the designer to design RC
applications with the MlATLAB/Simulink package from
The MathWorks. Blocks from the DSPlogic RC blockset

Mge file libraines and Xiin System Generator are used to create a data fow

using System Generator's HDL co-simulation capabilities.
Fig. 3 shows the DSPLogic Programming Flow.

Akjorithrn Matlab/5lmulink~~~~~~~~~~~~~~..............................
I- # .-~~~...............................-A CPU/FPGA PaitiHon,Simulink~~................................Specify Datafiow~~~~~~~~~~~~~~~~~~~~~~~~~~~~..................................

Fig.1.Impulse-CtoRTLtoFPGAflow[3].~~~.................................
2.2.Mitrion-C~~~...............................
Mitrion-CisanANSIC-basedfunctionallanguage[4].CaU RCIOAPI~~..Mitrion-CprogramminglanguageisanimplicitlyparallelFunctions Familiar,industry~~1...

An da rdprogramminglanguagewithsyntaxsimilartoC.Theenvironment FPGABuUder~~~...languagecentersonparallelismanddata-dependencies.In~~...contrast,traditionallanguagesaresequentialandcenteron~~...order-of-execution. In Mitrion-C there is no order-of-FullyIntegrated, Verified1~~..
execution;anyoperationmaybeexecutedassoonasits R~~~..API...........data-dependenciesarefulfilled.Mitrion-CisaSingle- TransParentintetf~~...Assignmentlanguage(variablesmayonlybeassigned~~..onceinascope)inordertopreventvariablesfromhaving~~~...different values within the same scope. Software written inFig.3.DSPLogicProgramming flow [5].~~..

theMitrion-Cprogramminglanguageiscompiledintoa~~~..configurationoftheso-calledMitrionVirtualProcessor.3.CRAYXD1 RECONFIGURABLE COMPUTER~~...TheMitrionVirtualProcessorisafine-grain,massivelyThegeneralstructure oftheXD1 we used isas follows:~~...

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

has two AMD Opteron microprocessors at 2.4 GHz and The second application implemented is a discrete
one or two RapidArray Processors (RAPs) that handle the wavelet transform (DWT). DWT is composed of two FIR
communication. The two Opteron microprocessors on each filters and two down-samplers as shown in Fig. 5. The two
card are connected via AMD's HyperTransport with a filters are preloaded with the high-pass and low-pass
bandwidth of 3.2 GB/s forming a 2-way SMP. Optionally coefficients defining the particular wavelet used for the
an application acceleration processor (FPGA) can be put transform.
onto a compute board. With two RAPs/board a bandwidth Input Image Lowpass 12-> L
of 8 GB/s (4 GB/s bi-directional) between boards is Lowpass FIR Filter LI
available via a RapidArray switch. This switch has 48 links
of which half is used to connect to the RAPs on the Highpass 2 H

Highpass FIR Filtercompute boards within the chassis and the others can be Coefs

used to connect to other chassis [6].
Users can develop their applications using either the Fig. 5. 1 -D DWT filter.

standard HDL flow or a suite of higher-level languages
such as C and C++ or the Xilinx System Generator for The third and fourth applications implemented are the
DSP package. Fig. 4 shows how a higher-level flow fits data encryption standard algorithm (DES) and DES
into the standard development flow of the Cray XD1 breaking. DES takes a 64-bit plaintext block (data) and a
system [7]. 64-bit key as inputs and generates a 64-bit ciphertext blocksystem = [7]. (encrypted data). As shown in Fig. 6, DES consists of 16

ntfn IpusC iidentical rounds supplemented by a few auxiliary
felurn (a & M); Hafid&Ctransformations. The DES breaking architecture islimpuls-C am Handel-Celoxi.a Mitrion-C DSP- Lgc essentially similar to DES with constant plain and cipher

Mit ionics - MATLAB/ texts. Because of this, the major differentiating
C Synt ss Smuln]I _ _ I l ~~~~~~~~~~~~~WTlALP'MUJAT-ON
p s m)(> Ns I HLSystemrInnx

~~LJ ~Generotor for
n, proewt I GE0eMt PERMU ED LHLL Tools - PR

IN PUT
and ot SynthersIs
syooy Li iR

Xilinxx

Xi;,iK!

0 |X10X1OU Binary F le

10 00oio 1000 for FPGA
Gray (HDL Tools) _ io r_

- 4 - _ - - - - - - - - - - - - - -

Fig. 4. Cray-XD1 development flow [7].

4. APPLICATIONS L[

Four workloads were selected for implementation on Cray- K6
XDI using the selected tools. The first workload is a
simple pass-through implementation that reads input from
the piP and sends it back. The purpose of this simple PREOUTPUT L5Ya(R
application iS to measure the overhead caused by each tool
on the FPGA with respect to the area utilization and also to (rVWR;l iniTiAL P RM;)
measure the maximum clocking rates reached by each tool ;;;;
in the simplest of applications. This will give an initial and 0)tU
basic idea of the performance for each tool.Fi.6DEalothariecu.

101

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

characteristic between DES and DES breaking, within our The XD1 platform provides a number of transfer modes
context, is that DES breaking is computational-intensive between the microprocessor and the FPGA depending on
while DES is I/O-intensive application. the initiator of the transfer. The microprocessor can read

from and/or write to the FPGA local memory space (i.e.
5. HLL PROGRAMMING PARADIGMS AND internal registers, internal BRAMS, and external memory).

METRICS OF EVALUATION On the other hand, the FPGA can also read from and/or
write to the microprocessor local memory space. The most

The different HLL paradigms/approaches (i.e. imperative efficient among these modes of transfer, in terms of
programming represented by Impulse-C, functional bandwidth utilization and/or transfer throughput, is the so-
programming represented by Mitrion-C, and called write-only mode. In this mode, the producer of the
schematic/graphical programming represented by data initiates the transfer. These transfers can be either
DSPLogic) were assessed in our study according to some burst or non-burst. Burst transfers are useful for large
envisioned evaluation metrics in terms of the explicitness amount of data.
of the programming model, ease-of-use, and efficiency of The modes of transfer are embedded in the HLL tools
generating hardware as compared to a reference HDL with different degrees of explicitness/implicitness. Some of
approach. these tools hide from the user the details of implementation

The programming model can be defined as the hardware of such transfer while others leave it as the responsibility
abstract view presented to the programmer by the of the user. For example, DSPlogic implicitly handles the
programming tool. Thus, a programming model defines transfer scenarios utilizing the best mode (i.e. write-only
which parts of the hardware architecture will become architecture) guaranteeing the highest throughput possible.
visible to the programmer and under his/her direct control. Table 1 shows the allowed features and modes of transfers
In an RC, given a particular programming paradigm, the utilized by the selected HLL tools on XD1.
programming model determines whether (and how) the The metric we devised for ease-of-use was in terms of
programmer can control data transfers between the FPGA the total acquisition (learning and experience gaining) time
and the onboard memory, the FPGA and the as well as the total development time. The easier the
microprocessor memory, and the FPGA and the language is to use the faster it will take a user/developer to
microprocessor. acquire/learn this language and develop a certain

Fig. 7 shows the Cray-XD1 operational environment, application with. In other words, the acquisition time and
which illustrates all architectural modules that can be the development time express directly an opposite effect to
visible to the programmer and data transfers that can be ease-of-use; that is difficulty-of-use. The acquisition time
under his/her control. Naturally, there is a trade off is dependent on the type of paradigm being adopted, while
between how explicit the programming model is in making the development time depends on both the paradigm as
more architectural details visible and ease-of-use. The well as the application being developed. The acquisition
Cray-XD1 architecture allows the opteron processor to time and the development time also capture the effects of
access the FPGA internal registers, internal memory, and the programming model explicitness. The more explicit the
external memory. The FPGA can access the [tP memory. programming model is, i.e. the more architectural details
However, the use of HLL can disable some of these that need to be handled by the user/developer, the longer it
features. will take to both acquire the language and develop

QDR3 QDR4 applications. It is also worth to mention that the
Operational 'Enviroinment | user/developer experience can reduce both the acquisition

and the development times. Therefore, our metric for ease-
DRAM QDR2 of-use, or equivalently difficulty-of-use, takes into

consideration the programming model explicitness as well
as the user/developer previous experience. A final note to

QDR1 mention with regard to this metric is that we will normalize
this metric to a similar corresponding metric for a

reference HDL language.
vR0 Another metric we used in our assessment is the

RTandsprt efficiency of generating hardware. Efficiency combines the
tTrranrsportI ability of each programming paradigm to extract the

i [0 | ~~~~~~~~~maximum possible parallelism/performance with the

l | ~yerrnsot RpidlArray lowest cost. This is in terms of end-to-end throughput andl| 5, i~~~~~~~roci)e,ssor the synthesized clock frequency, and resource usage (e.g.
l | ~~~~~~~~~~~~sliceutilization) as compared to a reference conventional

0 0 < l 1~~~~~~~~~~HDL approach; assuming optimality of the HDL approach.
Fig. 7. Cray-XD1 architectural model [7].

102

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

Again, the user/developer experience should be taken into Nqpph-ns
consideration when devising this metric. The more Z Ty,ref.development (3
experienced the user/developer is the higher the throughput Tref development = N
and frequency with less resource usage he/she can achieve applications
from a certain language. o d, is the average difficulty factor of language x

Finally, the sample size of the experiment population across independent users
should be as large as possible to achieve accurate results Txacquisition +Tdevelopment
and conclusions with minimum variances. By the sample xp erience (4)
size we mean the number of users being included in the .d ih eraedcu
experiment, the number of applications considered, the ladgiate, aergV Dic factoreof arere
number of languages for each paradigm, as well as the lTae,ae.g.sVHDLaTnumber of platforms being used as testbeds. Our d Tef acquisition +7ref development (5)
experiments involved three independent users with Texperience
different degrees of experience in the field. As mentioned o 6, is the normalized average difficulty factor of
earlier we considered four different applications. Limited language x relative to a reference language, e.g.
by the current status of the technology, we studied one VHDL
language per paradigm on one supporting platform. This dx Tx.acquisition +Tdevelopment
limitation of the sample size was beyond our control and (5 d T +T (6)
was heavily dependent on the availability of all the ref ref acquisition ref development
languages on common platforms. o A is the normalized average ease-of-use factor for

Based on the above discussion, we may introduce the language x relative to a reference language
following notation in order to quantify our concepts: 1- 1_ xacquisition +Tdevelopment
* Ease-of-Use Tref acquisition +Tref development

o Napplications is the total number of applications (T -T HT -T)l
dvlpdi..th aplcain sapl siz \ref.acquisition x.acquisition!ref development x.development!_d eveloped , i.e. thle applications sample size 'lx = 7

o Nusers is the total number of independent users Tref acquisition +Tref development
involved in the experiments, i.e. the Aacquisition+Adevelopment
users/developers sample size Ax = T u +T

o Tuser experience is the individual user/developer ref acquisition +ef.development
experience in time units

o Texperience is the average experience of independent * Efficiency
users in time units o , iS the synthesized frequency achieved for

application y using language x across the
ZTuser experience independent users

Texperience Y=1 (1) PYX is the average throughput achieved for
Nusers application y using language x across the

o Tx.acquisition is the average acquisition time of independent users
language x by independent users o Py,ref is the average throughput achieved for

o Trefacquisition is the average acquisition time of a application y using a reference language, e.g.
reference language, e.g. VHDL, by independent VHDL, across the independent users
users o Ayx is the average resource usage, i.e. area

o Tyjxdeveolopment is the average development time of utilization, achieved for application y using
application y using language x by independent users language x across the independent users

o Ty,refdeveolopment is the average development time of o Ayref is the average resource usage, i.e. area
application y using a reference language, e.g. utilization, achieved for application y using a
VHDL, by independent users reference language, e.g. VHDL, across the

o Tx.deveolopment is the average development time using independent users
language x by independent users o Eyx is the average efficiency for application y using

N,ppliah-tk- language x across the independent users
E T,x development (. p

x.develop2ment = N()yx A y expeinc (8)
Napplications y,x

o Trefdeveo/opment isthe average development time using 0 Ey,rej is the average efficiency for application y
a reference language, e.g. VHDL, by independent using a reference language, e.g. VHDL, across the
users independent users

103

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

f *P The development time of each application under each
,re- y,ref y,ref TLyrer- Aye experience (9) paradigm is included in Table 2. Table 2 also presents the

y,ref experimental results collected for the four workloads
o Ei is the average efficiency of language x implemented using the selected tools as well as a referenceapplicati- HDL implementation for each workload. It can be noticed

LY _Tx erien_ce_ fY r Py ((0) that DSPlogic and Impulse-C, depending on the application
applications applications y=1 design, can achieve the highest clock rate supported onap,plications applications Y

XD 1, 200\Mz, while Mitrion-C is limited to a maximumo Erej is the average efficiency of a reference of 100 MHz. On the other hand, Impulse-C could achievelanguage, e.g. VHDL the lowest resource usage for all workloads used. This is
v Ey,~j N~~f (11) due to the fact that Impulse-C uses the simplest transfer

Eref- Y=1 Texperience .Y y,re *y,ref scenario which does not utilize the FPGA external memory
Naplications Na N 1 Ay, interface. This results in less resources being utilized as

o px is the normalized average efficiency of language compared to the other tools. However, for I/O-intensive
x relative to a reference language, e.g. VHDL applications, this transfer scenario impacted the throughput

N,ppli-ti-, f P dramatically, because it is the least efficient among all
Z Y'X Y'X transfer modes on XDI while for computational-intensive

Ex= y=1 AYX applications such as DES breaking the tool achievesExE f,ppli- f . P (12) comparable results to HDL. On the other hand, it can also
ze ,e y,refL1 Ay,ref be noted that the results for DES and DES breaking on

Y=1 Ay,ref . Mitrion-C are not shown. DES, as an example of relatively
We would like to mention that the ease-of-use metric large applications, proved to be problematic to the Mitrion-has been mapped to the range from zero to unity, or C compiler. This compiler showed limited capabilities in

equivalently 10000, inclusive, through the normalized handling large designs even for simulation. We may
average ease-of-use factor, ¾, Unity)x represents the observe from the experimental results that programmingeasiest-to-use languages while zero Ax represents the most models and their explicitness to the end-user for the
difficult-to-use languages, i.e. HDLs. Similarly, zero different approaches (i.e. imperative, functional, and
normalized efficiency, C, represents the least efficientlagynormalized efficiency, represent' 'f. .t graphical) is implementation dependent and differ from
languages while unity normalized efficiency represent the

on vedrt aohr.Tisugtsa edfrone vendor to another. This suggests a need for
most efficient languages, i.e. HDLs. standardization with this respect. In addition, imperative

approaches proved to be the easiest to acquire and use

OBSERVATIONS while performing reasonably and comparably with
standard HDL approaches. Dataflow/graphical approaches
proved to achieve the highest efficiency but not as easy toTable1 the ease-of-use of thifferentspradgms acquire and use as imperative counterparts. On the other

i.e..imrtie, f hand, pure functional approaches proved to be the most
acquisition*time. difficult, among the three approaches, to acquire and use.

Moreover, HDL approaches remain the highest in
Table 1. Explicitness of the programming models.

jPFPGA' i-FPGAs ji-FPGA Acqisitioni
Extetriil InternalIntd1 nal Reui9tei s FPA- TimeA
1\ 1a1101F1 Pvo (No-Buitst TtAansfe) (d_ _

= ~~Read WhU1te .=I=IfpPlse-C Futwue Slppolt NA Reid Wiite Futue Suppoit

,D R
1! ,eadl ' W teRlead WkReiteit

lVtitrion-C(BuAN m Biu~t) N ~ (EN lihcit) Biust W~iite-oifi 1Mii|&C (BurGst/N;on iirtst) NA4]i ie t l 1 4 l(limiit-ed to (ExliLThit)(Exhcit) 3- regvter

gistedr)

VHDL Explicit Exhplcit ExpliciteExpiity

Euation (1) 9 Tepoin= (10+3+2)13 = 5 years

104

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

Table 2. Experimental Results.
Applicaioin Melt i jInOiplweC Mitrio-i. DSPLogic VHDL

1lokkit (|MH) 200 1(0 200 200
She6 Utilizati6h (O) 13 21 28 12

Pa h Throughput (MBs) 1.4 376 534 620

D 16ivelopmit Time (Hours) 1 1 1 1

C1ock Ra tMII) 100 100 200 200
DT

SI Uitihiz io(17 28 29 13
T osghptft(MIBslk) 1.3 ^75 481 620

D6VeloPmntk Thi6 (Hours) 4 6 5 10

io6kRAt (MHzI) 100 NA 200 200

ES
Si Utfilizion () 5 NA 7 22

TouTghput (MMs) 1.?8 NA 481 620

DcvCI 6pmt T ime (HEus) 10 18 15 25

C1lo kRt ll-Iz|) 100 NA 200 200

DES Sli Utilization (%) | 6 NA 7 23
Breaker UThou hut MBs) 800 NA 1600 1600

D lopm Thim (Hos 10 18 15 2

Table 3. Tools Efficiency and Ease-of-Use.

NoiiAlize iiiflid Noi fliz Nrmlized
1 eragetAgA1el ge A1erage AerAgeDifiul AviE'ge T|Ig Et''1eLiffaictlf DlifficuIlty EAfaetotse Efficien4 Efficdenyffi clotit neot (E) (I)

lmnpih e-C 9x10-3 3 04640 5360 2.8196x103I --

Mitfiou-C |-.91 12X10-3 0|9240 60 1x9L^^X103 794

DSPlogic 4.0'83x1- 41 L _0 46625

VH 85615xl- I 0 4 .9 100

T rne= 5 years

100% ix
HOL

1anuLangUages

X

U ~~~~~~~~~~~~~~~~xGaphicaUlDataflow
DSPloc ||LAnguagesS II

0 D Funcutio%Eayal0

Tl l I~Eae-f-s
Fig 8.Efcec s aeo-s fPormigPrdgs

> I I I~~~~10

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

efficiency (optimal with this respect) but on the expense of achieved are close to manual HDL. Software-to-hardware
being the hardest to acquire and use for applications porting becomes considerably easier and more efficient
developers/programmers, specifically for those with with every new release. These tools will definitely benefit
limited hardware design experience. These observations the scientific community in developing complex and faster
are captured both in Table 3 and in Fig. 8. running designs with having significantly less knowledge

ofHDL.
7. CONCLUSIONS Of course many challenges still remain. Unsupported

platforms will require VHDL knowledge, however, once a
In this study, three high level tools, i.e. Impulse-C, wrapper is generated, it will be reusable. Another major
Mitrion-C and DSPLogic, for reconfigurable programming problem is Hardware debugging. Tracing becomes difficult
were formally and quantitatively evaluated and compared since the internal VHDL signals are unknown.
with respect to their performance in the Cray XD1
environment. These tools were selected to represent 8. REFERENCES
imperative programming, functional programming and
graphical/dataflow programming. We established a formal [1] W. Luk, N. Shirazi, and P.Y.K. Cheung, Compilation Toolsgraphical.dataflow programming. We established a formal for Run-time Reconfigurable Designs, IEEE Symposium onmethodology and framework for evaluating different Field-Programmable Custom Computing Machines, FCCMprogramming paradigms for reconfigurable applications 1997; 56-65.
and platforms. The metrics we devised were ease-of-use, [2] K. Compton, S. Hauck, Reconfigurable Computing: A
and efficiency of generating hardware characterized by Survey of Systems and Software, ACM Computing Surveys
high throughput at the lowest cost of resource usage. The 34 (2) (2002) 171-210.
user previous experience was also taken into consideration [3] Impulse C - "Impulse Accelerated Technologies" web site
within this framework. It was shown that in spite of the available at http://www.impulsec.com/
disparity in concepts behind those programming [4] Mitrion web site available at
paradigms, our methodology was able to formally uncover http://www.mitrion.com/index.shtml

the bidfnsm te a al[5] DSPLogic web site available at http://www.dsplogic.com
theirbcmpadatiferpene mamng uthe andaassess [6] Cray website available at http://www.cray.comtheir comparative performance, utilization, and ease-of- [7] Cray Inc, Seattle WA, "Cray XD1 Datasheet", 2005
use. [8] Xilinx, Board Level Verification,

To be able to reach a well-rounded comparison between http://www.xilinx.com/products/design_resources/design_to
the tools, four work loads were selected for development ol/grouping/board_level_verif.htm
on each tool. Furthermore, the same reconfigurable [9] T. Wheeler, P. Graham, B. Nelson, and B. Hutchings, Using
computer was used as the testbed. In this study, the Cray Design-Level Scan to Improve Design Observability and
XD1 reconfigurable computer was the environment Controllability for Functional Verification of FPGAs, FPL
selected. 2001.

After thorough examination
cted

each tool, one comesup
[10] W. Stallings, Cryptography and Network Security, PrenticeAfter thorough examination of each tool, one comes up Hall, 1999.

with many lessons learned. First off, the designer must [11] E. El-Araby, M. Taher, K. Gaj, T. El-Ghazawi, D. Caliga,
keep in mind that optimized hardware C isn't the same as and N. Alexandridis, System-Level Parallelism and
optimizing software C. Secondly; some hardware Throughput Optimization in Designing Reconfigurable
knowledge is still needed for a better understanding of the Computing Applications, RAW 2004.
tool when performance issues arise. [12] Van der Steen, Aad J. and Jack Dongarra, "Overview of

What's very encouraging with new suites of HLLs for Recent Supercomputers," 2004.
hardware description emerging is that preliminary results

106

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

