COMPARATIVE ANALYSIS OF HIGH LEVEL PROGRAMMING FOR
RECONFIGURABLE COMPUTERS: METHODOLOGY AND EMPIRICAL STUDY

Esam El-Araby] , Mohamed Taher', Mohamed Abouellail,
Tarek El-Ghazawi', and Gregory B. Newby’
'The George Washington Univeristy, *Arctic Region Supercomputing Center
{esam, mtaher, mlail, tarek } @gwu.edu, newby@arsc.edu

ABSTRACT

Most application developers are willing to give up some
performance and chip utilization in exchange of
productivity. High-level tools for developing
reconfigurable computing applications trade performance
with ease-of-use. However, it is hard to know in a general
sense how much performance and utilization one is giving
up and how much ecase-of-use he/she is gaining. More
importantly, given the lack of standards and the uncertainty
generated by sales literature, it is very hard to know the
real differences that exist among different high-level
programming paradigms. In order to do so, one needs a
formal methodology and/or a framework that uses a
common set of metrics and common experiments over a
number of representative tools. In this work, we consider
three representative high-level tools, Impulse-C, Mitrion-
C, and DSPLogic in the Cray XD1 environment. These
tools were selected to represent imperative programming,
functional programming and graphical programming, and
thereby demonstrate the applicability of our methodology.
It will be shown that in spite of the disparity in concepts
behind those tools, our methodology will be able to
formally uncover the basic differences among them and
analytically assess their comparative performance,
utilization, and ease-of-use.

1. INTRODUCTION

Developing applications for Reconfigurable Computers
(RCs) requires both hardware and software programming
knowledge. The unique problems of RCs come from the
fact that hardware and software are traditionally described
using different languages and tools. The standard way of
describing software is using high-level languages (HLLs),
such as C, C++, or Fortran. The standard way of describing
hardware is using hardware description languages (HDLs),
such as VHDL and Verilog. Describing hardware using
HLLs is possible, and has been tried in several commercial
products such as Xilinx Forge, Celoxica Handel-C,
Impulse-C, and Mitrion-C. Dataflow program entry, based
on the graphical user interface, e.g. DSPLogic, seems to
offer an interesting compromise between HLLs and HDLs.
These languages offer a trade-off between a shorter

1-4244-0606-4/07/$20.00 ©2007 IEEE.

development time and a performance overhead imposed by
high level languages.

Describing hardware in HLLs, or at least using dataflow
diagrams, seems to be a major and distinctive feature of
high-performance RCs. It would allow mathematicians and
computer scientists to develop entire applications without
relying on hardware designers. It would also substantially
increase the productivity of the design process.

A compiler for RCs must combine the capabilities of
tools for traditional microprocessor compilation and tools
for computer-aided design with FPGAs. It must also
extend these two separate set of tools with capabilities for
mutual synchronization and data transfer between
microprocessor and reconfigurable processor sub-systems
[1].

In this study, three high level tools for reconfigurable
programming were evaluated and compared with respect to
their performance and ease-of-use. Impulse-C, Mitrion-C
and DSPLogic were chosen for two reasons. Firstly, they
are all fully developed HLL tools sharing the common goal
of reaching a broader audience of potential RC users.
Secondly, each one has a different and distinct vision on
how to realize the latter goal, whether through imperative,
functional or schematic programming.

To be able to reach a well-rounded comparison between
the tools, four work loads were selected for development
on cach tool. Furthermore, the same RC was used as the
testbed. In this study, the Cray XDI1 reconfigurable
computer was the environment selected.

2. HIGH-LEVEL DESIGN TOOLS

Hardware description languages (HDLs) are tailored
specifically to hardware design. Because of this they
provide a flexible and powerful way to generate efficient
logic. However, this tailoring makes them unfamiliar
territory for people outside the hardware design field. In
order to communicate hardware design to a more general
audience, a number of tools are emerging to support the
use of other high-level programming languages (primarily
C and C++) as HDLs. The outcome of C and C++ for
hardware design facilitates the partitioning of resources
between software and hardware, and facilitates hardware
and software co-simulation and code reuse.

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

2.1. Impulse-C

Impulse-C represents a class of imperative languages with
syntax based strongly on ANSI C [3]. The language is
extended to address specific hardware concepts such as
communicating sequential processes (CSP), and streams.
CSPs exploit the parallelism inherent in applications while
streams provide a mechanism for inter-process
communications. The Impulse-C software-to-hardware
compiler translates C-language processes to low-level
FPGA hardware. Existing VHDL designs may also be
incorporated and called from the Impulse-C code as
external functions. Fig. 1 shows the Impulse-C
development flow.

gise Impulse C Visual Stur:Iiio"'“I !
Platform design files CodeWarrior™ |
- GCC,ete. |

]

Generate Generate
hardware

interfaces

Generate

RTL software

interfaces

Software
libraries

HDL HDL
files files

Altera Quartus, Nios compiler,

MicroBlaze

Xilinx ISE,
other compiler,

FPGA tools others

Fig. 1. Impulse-C to RTL to FPGA flow [3].
2.2. Mitrion-C

Mitrion-C is an ANSI C-based functional language [4].
Mitrion-C programming language is an implicitly parallel
programming language with syntax similar to C. The
language centers on parallelism and data-dependencies. In
contrast, traditional languages are sequential and center on
order-of-execution. In Mitrion-C there is no order-of-
execution; any operation may be executed as soon as its
data-dependencies are fulfilled. Mitrion-C is a Single-
Assignment language (variables may only be assigned
once in a scope) in order to prevent variables from having
different values within the same scope. Software written in
the Mitrion-C programming language is compiled into a
configuration of the so-called Mitrion Virtual Processor.
The Mitrion Virtual Processor is a fine-grain, massively

Mitrion-C
Source code

[T T T E S EEE 1
Mitrion Software Development Kit

Processor Processor
Machine-code Architecture

e e e

Simulator Processor
& Debugger Configurator
L o i o i i o i i i + _______________ 1
Processor

Circuit Design
(VHDL IP Core)

Fig. 2. Mitrion-C Programming flow [4].

parallel, reconfigurable soft-core processor. Fig. 2 shows
the Mitrion-C programming flow.

2.3. DSPLogic RC Toolbox

DSPLogic RC Toolbox provides a combined graphical and
text-based programming environment for RC application
development based on Xilinx System Generator for DSP
package [5]. It ecnables the designer to design RC
applications with the MATLAB/Simulink package from
The MathWorks. Blocks from the DSPlogic RC blockset
and Xilinx System Generator are used to create a data flow
diagram. Existing VHDL designs may also be incorporated
using System Generator’s HDL co-simulation capabilities.
Fig. 3 shows the DSPLogic Programming Flow.

Matlab/Simulink

Algorithm

|

CPU/FPGA Partition, Simulink
Specify Dataflow
DSPlogic RC Design Data
Blockset Processor
Implement
Algorithm l
l Verify Data
Processor Output
Call RCIO API
Functions Familiar, industry l
standard modeling DSPlogic RCIO
environment FPGA Builder

Fully Integrated, Verified,
Seamless Application

RCIO API
Transparent interface

Fig. 3. DSPLogic Programming flow [5].
3. CRAY-XD1 RECONFIGURABLE COMPUTER

The general structure of the XD1 we used is as follows:
one chassis houses six compute cards. Each compute card

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

has two AMD Opteron microprocessors at 2.4 GHz and
one or two RapidArray Processors (RAPs) that handle the
communication. The two Opteron microprocessors on each
card are connected via AMD's HyperTransport with a
bandwidth of 3.2 GB/s forming a 2-way SMP. Optionally
an application acceleration processor (FPGA) can be put
onto a compute board. With two RAPs/board a bandwidth
of 8 GB/s (4 GB/s bi-directional) between boards is
available via a RapidArray switch. This switch has 48 links
of which half is used to connect to the RAPs on the
compute boards within the chassis and the others can be
used to connect to other chassis [6].

Users can develop their applications using cither the
standard HDL flow or a suite of higher-level languages
such as C and C++ or the Xilinx System Generator for
DSP package. Fig. 4 shows how a higher-level flow fits
into the standard development flow of the Cray XDI1
system [7].

int mask(a, m) |mpU|SG-C
Impulse-C retum (a & m); Handel-C .
Celoxica Mitrion-C DSPlogic
Mitrionics MATLAB/
Simulink

System Xilinx
Generator for

Mentor Graphics
Synplicity
Synopsys

Xilinx

....and others

Gate Level
EDIF File

01001011010101

0110101001 | Binary File

0101011010 | for FPGA
10100101010101

o St S
Fig. 4. Cray-XD1 development flow [7].

4. APPLICATIONS

Four workloads were selected for implementation on Cray-
XD1 using the selected tools. The first workload is a
simple pass-through implementation that reads input from
the uP and sends it back. The purpose of this simple
application is to measure the overhead caused by each tool
on the FPGA with respect to the area utilization and also to
measure the maximum clocking rates reached by each tool
in the simplest of applications. This will give an initial and
basic idea of the performance for each tool.

101

The second application implemented is a discrete
wavelet transform (DWT). DWT is composed of two FIR
filters and two down-samplers as shown in Fig. 5. The two
filters are preloaded with the high-pass and low-pass
coefficients defining the particular wavelet used for the

Lowpass

transform.
1
Lowpass !
FIR Filter 9I. >t
Coef's :
1
Ls|, . 1
) nghp_ass I H
Highpass > | FIR Filter > I,

Coef's

Input Image

Fig. 5. 1-D DWT filter.

The third and fourth applications implemented are the
data encryption standard algorithm (DES) and DES
breaking. DES takes a 64-bit plaintext block (data) and a
64-bit key as inputs and generates a 64-bit ciphertext block
(encrypted data). As shown in Fig. 6, DES consists of 16
identical rounds supplemented by a few auxiliary
transformations. The DES breaking architecture is
essentially similar to DES with constant plain and cipher
texts. Because of this, the major differentiating

INPUT]

l

.::TNITIAl PEEMUTATION_\

PERMUTED
INPUT |
5
K2
Kn
Li5=R14
_] 3 | s
(+) ()
: il
PREOUTPUT |Ry6=L15(#) Ry 5, K].s}} ’ Lie=Ris |
— T —
(:]NVERSE INITIAL PERM)
| OUTPUT —|

Fig. 6. DES algorithm architecture.

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

characteristic between DES and DES breaking, within our
context, is that DES breaking is computational-intensive
while DES is I/O-intensive application.

5. HLL PROGRAMMING PARADIGMS AND
METRICS OF EVALUATION

The different HLL paradigms/approaches (i.c. imperative

programming represented by Impulse-C, functional
programming represented by Mitrion-C, and
schematic/graphical ~ programming represented by

DSPLogic) were assessed in our study according to some
envisioned evaluation metrics in terms of the explicitness
of the programming model, ease-of-use, and efficiency of
generating hardware as compared to a reference HDL
approach.

The programming model can be defined as the hardware
abstract view presented to the programmer by the
programming tool. Thus, a programming model defines
which parts of the hardware architecture will become
visible to the programmer and under his/her direct control.
In an RC, given a particular programming paradigm, the
programming model determines whether (and how) the
programmer can control data transfers between the FPGA

and the onboard memory, the FPGA and the
microprocessor memory, and the FPGA and the
microprocessor.

Fig. 7 shows the Cray-XD1 operational environment,
which illustrates all architectural modules that can be
visible to the programmer and data transfers that can be
under his/her control. Naturally, there is a trade off
between how explicit the programming model is in making
more architectural details visible and ease-of-use. The
Cray-XD1 architecture allows the opteron processor to
access the FPGA internal registers, internal memory, and
external memory. The FPGA can access the pP memory.
However, the use of HLL can disable some of these

features.
I QDR3

|
Operational Environment

QDR4

DRAM

QDR2

|
|
|
|
|
}
} QDR1
|
|

I

83

o 2 RapidArray
‘ Transport
| v |
|
|

P |
< RapidArray
HyperT‘ranSPOFt Processor

|
|

|
Fig. 7. Cray-XD1 architectural model [7].

102

The XD1 platform provides a number of transfer modes
between the microprocessor and the FPGA depending on
the initiator of the transfer. The microprocessor can read
from and/or write to the FPGA local memory space (i.c.
internal registers, internal BRAMS, and external memory).
On the other hand, the FPGA can also read from and/or
write to the microprocessor local memory space. The most
efficient among these modes of transfer, in terms of
bandwidth utilization and/or transfer throughput, is the so-
called write-only mode. In this mode, the producer of the
data initiates the transfer. These transfers can be either
burst or non-burst. Burst transfers are useful for large
amount of data.

The modes of transfer are embedded in the HLL tools
with different degrees of explicitness/implicitness. Some of
these tools hide from the user the details of implementation
of such transfer while others leave it as the responsibility
of the user. For example, DSPlogic implicitly handles the
transfer scenarios utilizing the best mode (i.e. write-only
architecture) guaranteeing the highest throughput possible.
Table 1 shows the allowed features and modes of transfers
utilized by the selected HLL tools on XD1.

The metric we devised for ease-of-use was in terms of
the total acquisition (learning and experience gaining) time
as well as the total development time. The casier the
language is to use the faster it will take a user/developer to
acquire/learn this language and develop a certain
application with. In other words, the acquisition time and
the development time express directly an opposite effect to
ease-of-use; that is difficulty-of-use. The acquisition time
is dependent on the type of paradigm being adopted, while
the development time depends on both the paradigm as
well as the application being developed. The acquisition
time and the development time also capture the effects of
the programming model explicitness. The more explicit the
programming model is, i.e. the more architectural details
that need to be handled by the user/developer, the longer it
will take to both acquire the language and develop
applications. It is also worth to mention that the
user/developer experience can reduce both the acquisition
and the development times. Therefore, our metric for ease-
of-use, or equivalently difficulty-of-use, takes into
consideration the programming model explicitness as well
as the user/developer previous experience. A final note to
mention with regard to this metric is that we will normalize
this metric to a similar corresponding metric for a
reference HDL language.

Another metric we used in our assessment is the
efficiency of generating hardware. Efficiency combines the
ability of each programming paradigm to extract the
maximum possible parallelism/performance with the
lowest cost. This is in terms of end-to-end throughput and
the synthesized clock frequency, and resource usage (e.g.
slice utilization) as compared to a reference conventional
HDL approach; assuming optimality of the HDL approach.

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

Again, the user/developer experience should be taken into
consideration when devising this metric. The more
experienced the user/developer is the higher the throughput
and frequency with less resource usage he/she can achieve
from a certain language.

Finally, the sample size of the experiment population
should be as large as possible to achieve accurate results
and conclusions with minimum variances. By the sample
size we mean the number of users being included in the
experiment, the number of applications considered, the
number of languages for each paradigm, as well as the
number of platforms being used as testbeds. Our
experiments involved three independent wusers with
different degrees of experience in the field. As mentioned
carlier we considered four different applications. Limited
by the current status of the technology, we studied one
language per paradigm on one supporting platform. This
limitation of the sample size was beyond our control and
was heavily dependent on the availability of all the
languages on common platforms.

Based on the above discussion, we may introduce the
following notation in order to quantify our concepts:

e Ease-of-Use

O Nappiications 1S the total number of applications

developed, i.c. the applications sample size

O Nyues 1s the total number of independent users

involved in the experiments, ie. the
users/developers sample size
O Tuserexperience 15 the individual user/developer

experience in time units
O Texperience 15 the average experience of independent

users in time units
N,

yisers
user.experience
=)

exp erience
users

0 Tracquisiion 18 the average acquisition time of
language x by independent users

O Tretacquisiion 18 the average acquisition time of a
reference language, e¢.g. VHDL, by independent
users

0 T vdeveotopment 18 the average development time of
application y using language x by independent users

0 T} retdeveotopment 15 the average development time of
application y using a reference language, c.g.
VHDL, by independent users

0 Tldeveolopmen: 1S the average development time using

language x by independent users
N,

applications

3T

y.x.development
—_ =l

x.development —

)
applications
O Tretdeveotopment 18 the average development time using
a reference language, ¢.g. VHDL, by independent
users

103

N,

applications
T y,ref .development

T =

ref .development

3)
applications
o d, is the average difficulty factor of language x
across independent users
T, gguision™ Lo
d, == ' @)
eXp erience
o dy.r is the average difficulty factor of a reference
language, e.g. VHDL, across independent users
T acquisiti +T ref .devel
= ref acq of develop (3)

experience

d

o 0o, is the normalized average difficulty factor of
language x relative to a reference language, ¢.g.
VHDL

5 _ dx — T x.acquisition—‘rT x.development (6)
ref T ref .acquisition +T ref .development

o A, is the normalized average case-of-use factor for
language x relative to a reference language

T, eonisision L e deve
A.=1-0, =1- : e
ref .acquisiti +71ref.u.’b lop
;L — (zvref.acquisition_Tx.acwisiﬁon)—F(Tref.Jb lop _Tx.db lop) (7)
T, ot ccquisition™ L ref deveior
;L — Aacqi,n'.vition-i_ development
T et acquision™ L et devetoy
Efficiency
o Jfu« is the synthesized frequency achieved for
application y wusing language x across the
independent users
o P,. is the average throughput achieved for
application y wusing language x across the
independent users
o P, is the average throughput achieved for

application y using a reference language, c.g.
VHDL, across the independent users

o A,. is the average resource usage, ie. area
utilization, achieved for application y using
language x across the independent users

o A,,.r is the average resource usage, ie. area
utilization, achieved for application y using a
reference language, ¢.g VHDL, across the
independent users

o F,,is the average efficiency for application y using
language x across the independent users

fy,x .Py,x . T

experience

E =
= ®

o E,,r is the average efficiency for application y
using a reference language, ¢.g. VHDL, across the

independent users

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

Ssrer Brrer .

y.ref = A Texperience (9)
yoref
o F,isthe average efficiency of language x
Nappl(caﬂam
E
X Nopptications
E _ y=1 _ Texperience api fy,x : Py,x (10)
L= = .
N pplicati N pplicati y=l Ay,x

o FE. is the average efficiency of a reference
language, ¢.g. VHDL

N,

applications

S vy

E _ y=1 — experience . yoref yiref (1 1)
Ay,ref

N prations N appian pr
o 1, 1s the normalized average efficiency of language
x relative to a reference language, e.g. VHDL

Negplications o Py)x
=t (12)
»=l Ay,ref

We would like to mention that the ease-of-use metric
has been mapped to the range from zero to umity, or
equivalently 100%, inclusive, through the normalized
average casc-of-use factor, A, Unity A, represents the
casiest-to-use languages while zero A, represents the most
difficult-to-use languages, ic. HDLs. Similarly, zero
normalized efficiency, #,, represents the least efficient
languages while unity normalized efficiency represent the
most efficient languages, i.e. HDLs.

6. EXPERIMENTAL RESULTS AND
OBSERVATIONS

Table 1 shows the ease-of-use of the different paradigms,
i.c. imperative, functional, and graphical, in terms of the
acquisition time.

The development time of each application under each
paradigm is included in Table 2. Table 2 also presents the
experimental results collected for the four workloads
implemented using the selected tools as well as a reference
HDL implementation for each workload. It can be noticed
that DSPlogic and Impulse-C, depending on the application
design, can achieve the highest clock rate supported on
XD1, 200MHz, while Mitrion-C is limited to a maximum
of 100 MHz. On the other hand, Impulse-C could achieve
the lowest resource usage for all workloads used. This is
due to the fact that Impulse-C uses the simplest transfer
scenario which does not utilize the FPGA external memory
interface. This results in less resources being utilized as
compared to the other tools. However, for I/O-intensive
applications, this transfer scenario impacted the throughput
dramatically, because it is the least efficient among all
transfer modes on XD1 while for computational-intensive
applications such as DES breaking the tool achieves
comparable results to HDL. On the other hand, it can also
be noted that the results for DES and DES breaking on
Mitrion-C are not shown. DES, as an example of relatively
large applications, proved to be problematic to the Mitrion-
C compiler. This compiler showed limited capabilities in
handling large designs even for simulation. We may
observe from the experimental results that programming
models and their explicitness to the end-user for the
different approaches (i.e. imperative, functional, and
graphical) is implementation dependent and differ from
one vendor to another. This suggests a need for
standardization with this respect. In addition, imperative
approaches proved to be the ecasiest to acquire and use
while performing reasonably and comparably with
standard HDL approaches. Dataflow/graphical approaches
proved to achieve the highest efficiency but not as casy to
acquire and use as imperative counterparts. On the other
hand, pure functional approaches proved to be the most
difficult, among the three approaches, to acquire and use.
Moreover, HDL approaches remain the highest in

Table 1. Explicitness of the programming models.

Lmpulse €

P FPCA's | P FPCA's ne Epea FPGA—pp Acquisition
Exteinal Internal Inteinal Registers Nle;nm'v Time*
Alemory Memory (Non-Burst Transfer) e (davs)

Mitrion C

DaFlogic

Note A4

Equation (1) = 1 e 08020 = 0 years

-) Read / Wrife . -
Future Suppoit NA (Tmplicit) Future Support
o Read / Write
Read / Write i S S)
(Burst‘Non Burst) NA ‘(.E:q.)hmt) But ?t W H.t?_F only 14
(Esplicit {limited to {Explicit)
Exphett) 32 registers)
Write-only
Burst Write-only | Write-only (Tmplicit} Burst Write-only -
{Imiplicit) {Imiplicit) {limited to {Implicit) ’
8§ registers }
Explicit Explicit Explicit Explicit 15

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

Table 2. Experimental Results.

Application Metric Impulse-C | Mitrion-C | DSPLogic | VHDL
Clock Rate (MHz.) 200 100 200 200
Slice Utilization (%0) 13 21 28 12
Pass-Through - -
Throughput (MB/s) 1.4 376 534 620
Development Time (Hours) <1 1 1 1
Clock Rate (MHz.) 100 100 200 200
Slice Utilization (%0) 17 28 29 13
DWT — —
Throughput (MB/s) 1.35 375 481 620
Development Time (Hours) 4 6 5 10
Clock Rate (MHz.) 100 NA 200 200
Slice Utilization (%0) 35 NA 39 22
DES -
Throughput (MB/s) 1.38 NA 481 620
Development Time (Hours) 10 18 15 25
Clock Rate (MHz.) 100 NA 200 200
DES Slice Utilization (%o) 36 NA 37 23
Breaker Throughput (MB/s) 800 NA 1600 1600
Development Time (Hours) 10 18 15 25
Table 3. Tools Efficiency and Ease-of-Use.
o Normalized NOI‘W?IIZG(I Normalized
Average Average e Average Average
Difficulty Difficulty Ease-of-Use Efficiency Efficiency
factor factor
(@) factor) (E,) (UM)
0/
@) o (%0)
Impulse-C | 3.9727x10-3 0.4640 53.60 2.8196x10% 572
Mitrion-C | 7.9112x10-3 0.9240 7.60 3.9122x10% 7.94
DSPlogic | 4.0383x10-3 04717 52.83 2.2975x104 46.625
VHDL 8.5615x10°3 1 0 4.9277x10% 100
| Texpen'ence= 5 years ‘
100% 7
HDL
Zz/B/B | anguages
Verilog
=
2
I
>
Q
=
2 5oy —_—
© o & Graphical/Dataflow
E < € DsPiogic Languages
=
o Functional
| Languages Imperative
Languages
0 e
0 Difficult 50% Easy 100%

Ease-of-Use
Fig. 8. Efficiency vs. Ease-of-Use of Programming Paradigms.

105

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

efficiency (optimal with this respect) but on the expense of
being the hardest to acquire and use for applications
developers/programmers, specifically for those with
limited hardware design experience. These observations
are captured both in Table 3 and in Fig. 8.

7. CONCLUSIONS

In this study, three high level tools, ie. Impulse-C,
Mitrion-C and DSPLogic, for reconfigurable programming
were formally and quantitatively evaluated and compared
with respect to their performance in the Cray XDI1
environment. These tools were selected to represent
imperative programming, functional programming and
graphical/dataflow programming. We established a formal
methodology and framework for evaluating different
programming paradigms for reconfigurable applications
and platforms. The metrics we devised were ease-of-use,
and efficiency of generating hardware characterized by
high throughput at the lowest cost of resource usage. The
user previous experience was also taken into consideration
within this framework. It was shown that in spite of the
disparity in concepts behind those programming
paradigms, our methodology was able to formally uncover
the basic differences among them and analytically assess
their comparative performance, utilization, and ease-of-
use.

To be able to reach a well-rounded comparison between
the tools, four work loads were selected for development
on cach tool. Furthermore, the same reconfigurable
computer was used as the testbed. In this study, the Cray
XD1 reconfigurable computer was the environment
selected.

After thorough examination of each tool, one comes up
with many lessons learned. First off, the designer must
keep in mind that optimized hardware C isn’t the same as
optimizing software C. Secondly; some hardware
knowledge is still needed for a better understanding of the
tool when performance issues arise.

What’s very encouraging with new suites of HLLs for
hardware description emerging is that preliminary results

106

achieved are close to manual HDL. Software-to-hardware
porting becomes considerably easier and more efficient
with every new release. These tools will definitely benefit
the scientific community in developing complex and faster
running designs with having significantly less knowledge
of HDL.

Of course many challenges still remain. Unsupported
platforms will require VHDL knowledge, however, once a
wrapper is generated, it will be reusable. Another major
problem is Hardware debugging. Tracing becomes difficult
since the internal VHDL signals are unknown.

8. REFERENCES

[1] W. Luk, N. Shirazi, and P.Y.K. Cheung, Compilation Tools
for Run-time Reconfigurable Designs, IEEE Symposium on
Field-Programmable Custom Computing Machines, FCCM
1997, 56-65.

K. Compton, S. Hauck, Reconfigurable Computing: A

Survey of Systems and Software, ACM Computing Surveys

34 (2)(2002) 171-210.

Impulse C — “Impulse Accelerated Technologies™ web site

available at http://www.impulsec.com/

Mitrion web site

http://www.mitrion.com/index.shtml

] DSPLogic web site available at http://www.dsplogic.com

] Cray website available at http://www.cray.com

] Cray Inc, Seattle WA, "Cray XD1 Datasheet", 2005

] Xilinx, Board Level Verification,

http://www xilinx.com/products/design_resources/design_to

ol/grouping/board_level verif.-htm

T. Wheeler, P. Graham, B. Nelson, and B. Hutchings, Using

Design-Level Scan to Improve Design Observability and

Controllability for Functional Verification of FPGAs, FPL

2001.

[10] W. Stallings, Cryptography and Network Security, Prentice
Hall, 1999.

[11] E. El-Araby, M. Taher, K. Gaj, T. El-Ghazawi, D. Caliga,
and N. Alexandridis, System-Level Parallelism and
Throughput Optimization in Designing Reconfigurable
Computing Applications, RAW 2004.

[12] Van der Steen, Aad J. and Jack Dongarra, “Overview of
Recent Supercomputers,” 2004.

available at

Authorized licensed use limited to: University of Florida. Downloaded on March 05,2010 at 14:34:25 EST from IEEE Xplore. Restrictions apply.

