
2468 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005

Complex Upset Mitigation Applied to a
Re-Configurable Embedded Processor

Sana Rezgui, Gary Swift, Kevin Somervill, Jeffrey George, Carl Carmichael, and Gregory Allen

Abstract—Soft-core processors implemented in static random
access memory-based field-programmable-gate-arrays, while
attractive to spacecraft designers, require upset mitigation. We
investigate a proposed solution involving two levels of scrubbing
plus triple modular redundancy and measure its in-beam perfor-
mance.

Index Terms—Embedded processors, field-programmable-gate-
arrays (FPGAs), radiation testing.

I. INTRODUCTION

THE growing interest in using embedded system applica-
tions built on static random access memory based field-

programmable-gate-arrays (S-FPGAs) in space and the well-
known upset sensitivity of S-FPGAs in radiation environment,
have led to many research activities for the evaluation of the
reliability of their operation in orbit. Two major concerns have
been addressed: the characterization of the FPGA sensitivity in
beam and the evaluation of the proposed mitigation solution for
embedded designs in such a circuit.

Prior work in this area involved testing of a hardened
8051 micro-controller using Hamming code [1] on two pro-
grammable logic devices (PLDs). Only the PLD, which
implemented the protected registers, was exposed to the beam.
The experimenters obtained complete SEU immunity of the
protected design while running a 6 6 matrix multiplication
program under heavy ion beams. The protected design used
more flip-flops (164%) and more logic blocks (184%) compared
to the single-string version of the design while the maximum
frequency was reduced from 33 to 4 MHz.

Another experiment implemented a similar 8051 micro-con-
troller core on a Xilinx XCV300 FPGA using triple module re-

Manuscript received July 15, 2005. This work was supported by the NASA
Electronic Parts and Packaging Program (NEPP) and Exploration System Re-
search and Technology (ESR&T). Some research presented here was carried
out by the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration (NASA) Ref-
erence herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Labora-
tory, California Institute of Technology.

S. Rezgui and C. Carmichael are with Xilinx, Inc., San Jose, CA 95124 USA
(e-mail: sana.rezgui@xilinx.com).

G. M. Swift and G. Allen are with the Jet propulsion Laboratory/Cal-
ifornia Institute of Technology, Pasadena, CA 91109 USA (e-mail:
gary.m.swift@jpl.nasa.gov).

K. Somervill is with NASA Langley Research Center, Elec-
tronic Systems Branch, Hampton, VA 23681-2199 USA (e-mail:
kevin.m.somervill@nasa.gov).

J. George is with the Aerospace Corporation, El Segundo, CA 90245 USA
(e-mail: Jeffrey.s.george@aero.org).

Digital Object Identifier 10.1109/TNS.2005.860743

dundancy (TMR) techniques [2]. The testing used fault injection
techniques on an emulation board to deliberately inject errors
into the configuration bitstream. The TMR 8051 design used
about 4 times more configuration logic blocks (CLBs) and 3.6
times more flip-flops with a maximum frequency of 10 MHz.
While this method had a higher hardware overhead compared
to the Hamming code approach, it gave a significant improve-
ment in speed. It also provides protection against single event
transients (SETs) that is not available in the former approach.

These prior experiments demonstrate the need for a general
approach to mitigating transient faults in user logic while re-
ducing pin count, area, and power dissipation. This paper eval-
uates the effectiveness of a Xilinx tool for creating a fully mit-
igated embedded systems processor run in a radiation environ-
ment. This automated tool employs the triple modular redun-
dancy (TMR) technique to mitigate any design implemented
on a Xilinx Virtex FPGA [3], [4]. For this purpose, the Xilinx
MicroBlaze\texttrademark intellectual property (IP) soft core
was tested under irradiation while running an integer-based fast
Fourier transform (FFT) program by the North American SEE
Consortium. We report the proton-induced error cross section
for the mitigated design as well as detail the additional FPGA
resources required as compared to that of the unmitigated (or
single-string version).

II. EXPERIMENTAL APPROACH AND TARGET PROCESSOR

Radiation testing was based on the consortium’s dynamic
characterization apparatus [3] with a Virtex-II XQR2 V6000 as
the device-under-test (DUT). This device contains 144 18-Kbit
block RAMs, 824 I/Os and 16 395 508 configuration bits. An
HM5 225 165 B SDRAM memory was added to the board for
external code storage. The test board also hosted a second FPGA
to perform two separate functions: 1) configuration readback
and scrubbing of the DUT and 2) control and monitoring of
the functional operation of the MicroBlaze running the FFT
program. Configuration scrubbing is the transparent process of
reloading the configuration bitstream to correct upsets. Here
“transparent” means that normal device operation runs concur-
rently and without interruption. The former, the configuration
monitor, also detects single event functional interrupts (SEFIs)
and automatically reconfigures the DUT when they occur. The
configuration scrubbing is done at 16 MHz completing approx-
imately four scrub-cycles per second. The number of readback
errors and SEFIs are logged continuously on a host computer.
The latter function, the functionality monitor, continuously de-
tects and counts the number of errors in the DUTs outputs. Any
mismatches detected by the service FPGA are sent to a separate
host computer via custom Visual Basic software. More details

0018-9499/$20.00 © 2005 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:24 from IEEE Xplore. Restrictions apply.

REZGUI et al.: COMPLEX UPSET MITIGATION APPLIED TO A RE-CONFIGURABLE EMBEDDED PROCESSOR 2469

about this testing methodology are given in [3]. The only part of
the setup that is modified for a new test design is the internal ar-
chitecture of the functional monitor. Fig. 1 shows the test setup
in the chamber at the cyclotron of Texas A&M University.

A. MicroBlaze Soft IP Internal Architecture

The MicroBlaze soft IP core is a reduced instruction set com-
puter (RISC) optimized for implementation in Xilinx FPGAs.
This soft IP processor is 32-bit instruction word Harvard archi-
tecture with a single-issue pipeline. As shown in Fig. 2, it in-
cludes thirty-two 32-bit general-purpose registers (GPRs) and
can be configured with two caches for enhanced performance.
It supports two data buses: IBM’s on-chip peripheral bus (OPB)
and an local memory bus (LMB). To communicate with its ex-
ternal peripherals, the MicroBlaze uses a specific bus called gen-
eral purpose input output (GPIO). Furthermore, it is enhanced
with hardware exception handling circuitry as well as hardware
debug logic.

B. DUT Test Design

Fig. 3 illustrates the initial MicroBlaze architecture and
its connections to the internal memory (internal block RAM)
through the OPB and block random access memory (BRAM)
buses as well as to the external SDRAM memory. The DUT
I/Os are used for a bi-directional data transfer bus between the
DUT and service FPGAs, handshaking for data transfer opera-
tions, and detection of external interrupt or internal hardware
exceptions (unaligned access, illegal op-code, illegal address
of the code instruction on the OPB bus (IOPB), illegal address
of the program data on the OPB bus (DOPB) and division by
zero) in the MicroBlaze soft processor.

The architecture presented in Fig. 3 is a common hardware
design for each MicroBlaze program selected to run under the
beam. The program code resides in the internal BRAM memory
or in external storage transferred to the SDRAM by a loader
program. The code is loaded each time the DUT is configured.
The MicroBlaze clock speed is set at 33 MHz while the GPIO
data transfer rate is set at 250 KHz, to allow the MicroBlaze to
process the data requests on the GPIO bus.

C. DUT Test Software

An integer-based Fast Fourier Transform (FFT) [7] was se-
lected as the test program. This program is stored in the internal
BRAMs each time the DUT is configured. A fixed set of data is
sent from the service FPGA to the DUTs and stored in the in-
ternal BRAM memories. The results of the FFT program are re-
turned to the service FPGA and compared to the expected result.

Upon reset, a synchronization sequence is initiated using
handshaking signals between the MicroBlaze processor and
the service FPGA. Next, the service FPGA sends the DUT 16
complex numbers, each a pair of 16 bit integers. Once the DUT
has received all 32 words, it computes the FFT and returns the
result to the service FPGA. There the calculated results are
compared with the expected values and any errors are reported
via the host interface. On the host computer, erroneous results
are displayed and recorded in a time-stamped strip chart along

Fig. 1. Test Setup at the Cyclotron of Texas A&M University.

with counts of any processor exceptions which must be due to
beam-induced upsets or transients.

For exception fault detection, a new mechanism has been
added to both FPGAs’ designs (service and DUT). Indeed, upon
detection of any of the five hardware exceptions, the MicroBlaze
jumps to a specific address to run the exception’s subroutine.
By means of minimal software modification of each of the five
exceptions’ subroutines, the DUT sends a signal to the service
FPGA which should acknowledge the detection of this excep-
tion to the DUT and to the functional monitor. The DUT pursues
then the execution of the program where it was interrupted. In
the case of an exception’s occurrence (for instance due to an il-
legal op-code) and if the BRAM is not refreshed, the program
will continuously jump to this exception subroutine and it won’t
be possible to restart normal operation unless correction of the
code. It should also be mentioned that not all the possible anom-
alies of the MicroBlaze operation are detected by the hardware
exceptions (for instance some of the illegal instructions do not
invoke the illegal op-code exception).

III. PROCESSOR UPSET MITIGATION

The proposed mitigation solution uses the Xilinx TMR tool
[8] to triplicate the user design resources, remove half-latches
and SRL16 modules, and provide for configuration scrubbing
of the DUT internal resources to prevent the accumulation of
induced upsets. In addition, the processor’s register file, orig-
inally implemented using look-up table (LUT)-random access
memory (RAM) resources, must be re-implemented using func-
tionally equivalent storage based on user flip-flops (LUT-RAM)
storage which should be over-written by configuration scrub-
bing. Finally, a BRAM scrubbing engine is needed to prevent
the corruption of the code or data stored there. For this purpose,
one BRAM port must be dedicated to error detection and correc-
tion that will leave only one port for the MicroBlaze use, which
requires the insertion of the BRAM on the OPB port but not on
the LMB port. To allow continuous refreshing of the BRAM
contents, a counter is used to cycle through the memory ad-
dresses incrementing the BRAM address of the second port and
in case the first port of the BRAM is not being used, it rewrites
the BRAM content at this specific address with the voted value

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:24 from IEEE Xplore. Restrictions apply.

2470 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005

Fig. 2. MicroBlaze core block diagram [6].

from the associated voter (TRV16 in Fig. 4). In case it is used,
it skipped this address. Fig. 4 shows the BRAM scrubber block
diagram and more details are given in the [9].

Two mitigated versions of the MicroBlaze design architecture
have been implemented and tested: with and without the BRAM
scrubber. At each of the mitigation phases described above, the
internally used resources are counted and displayed in Table I.
The given data show the clear hardware overhead in terms of
FFs and mainly in terms of LUTs between the two phases 1
(9%) and 2 (47%). This is clearly due to the replacement of the
dual-port RAMs. A better idea would be to replace them with
BRAM. Nevertheless, it should be noticed here that the overall
hardware overhead is less than 40% and is still acceptable for
large configuration devices as the Virtex II 6000. Also, the cur-
rent consumption of the final mitigated design (phase 3) is 0.99
A, which is 2.6 times higher than the initial current value for
the single-string design. On the other side, although the miti-
gated MicroBlaze design has been exercised only at 33 MHz
during these radiation testing experiments, the maximum fre-
quency of the mitigated design could run at a frequency up to
66 MHz compared to 77 MHz for the single-string design. For
clarity purposes in the following of this paper, the design where
the BRAM was not scrubbed (phase 2), will be called Design 1,
while the fully mitigated design is called Design 2.

IV. PROTON TEST RESULTS

The radiation experiments were conducted, at the Crocker
Nuclear Laboratory at University of California at Davis (UCD)
usingaprotonbeamof63.3MeV.Nobeamtestingwasperformed
on the single-string design. Indeed, it was expected that the error
cross-section would be high and the differentiation between the
error signatures would not be possible mainly because of the
error propagation that could occur between two scrub cycles,
which effects won’t be corrected by the FPGAs scrubbing.
In addition, the code is stored in the internal memories of
the FPGA and if not mitigated (not tripled or scrubbed); the
code corruption will definitely make the obtained results hard
to explain.

Both versions of the mitigated design, with and without the
BRAM scrubbing functionality, have been tested (designs 1
and 2). In the case of the fully mitigated design (enhanced
with the refreshing of the BRAM contents), the experiments
were performed at three widely spaced flux levels to study
the effectiveness of the proposed mitigation technique. It is
well known that upset mitigation techniques’ effectiveness is
strongly dependent on the underlying upset rate and thus the flux
of the beam or the space environment. For example, the word
error-rate for memory arrays mitigated with Hamming codes is
approximately proportional to the square of the underlying bit
upsetrate.Varyingthebeamfluxallowscheckingthisdependence
for the more complex mitigation implemented here.

The results are reported in Tables II and III. As shown in
column two, the configuration monitor showed that the mitigated
design is accumulating an average of five upsets per scrub
cycle at a flux of protons/s/cm2. Each time the flux
is increased by an order of magnitude, the rate of accumulated
upsets per scrub cycle also increases tenfold approximately.
The detected errors on the mitigated design were classified
in three major types. Type 1 errors were those in which the
FFT outputs were wrong. These are subdivided such that they
were either corrected after a configuration scrub cycle (type
1a), or they were not corrected after a scrub cycle, even after
a reset of the DUT design (type 1b). Type 2 errors were those
attributed to nonresponsiveness of the DUT, requiring a reset
and synchronization between DUT and service FPGAs that
was either corrected by scrubbing and hence referred to as a
recovering reset (type 2a), or was not corrected by scrubbing
and referred to as a runaway reset (type 2b). This type of
error (runaway reset) is an uncorrected error condition that
causes the functional monitor to continually attempt to reset
the MicroBlaze processor each time the watchdog timer set
for the handshaking between the two FPGAs reaches its limit
value. Type 3 errors were the occurrence of an exception or
interrupt detection.

As shown in Tables II and III, the design’s error cross sec-
tions increase with the flux. Indeed, if the DUT is exposed to

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:24 from IEEE Xplore. Restrictions apply.

REZGUI et al.: COMPLEX UPSET MITIGATION APPLIED TO A RE-CONFIGURABLE EMBEDDED PROCESSOR 2471

Fig. 3. Block diagram of the microblaze single-string design (before functional triplication).

Fig. 4. BRAM mitigation block diagram.

higher number of upsets per scrub cycle then the first rule of the
TMR mitigation technique, which fully guarantees the mitiga-
tion of less or equal to 1 upset per scrub cycle, is violated and
some errors will be expected. Nevertheless, the cross-sections
were very low particularly for the fully mitigated design. Indeed,
in the case of the Design 1 where the BRAM is not scrubbed,
the five classified type of errors have been observed at different

fluxes. On the other hand, in the case of the fully mitigated de-
sign, while very few type 1a errors were observed (7 in the case
of the experiment performed at the p/cm2/s). Five re-
sets were applied to successfully recovering the DUT from type
2a errors (flux 1) and no errors of type 1b or 2b that would re-
quire a reconfiguration of the DUT were observed.

The other error types (types 1b, 2b, and 3) were observed with
an increase of the flux resulting in an automatic increase in the
upset rate per scrub cycle. While only one error from type 1b
has been counted, several errors of type 2b were observed. The
errors of type 3 (detected exception) were followed instantly
by a runaway reset. Note that at the same flux, the device error
cross-section for the Design 1 is approximately
higher of an order of magnitude from the Design 2 error cross-
section . As the only difference between both
designs is the scrubbing of the BRAMs, the difference between
the two cross-sections should be due to the modification of the
BRAMs’ content and the accumulation of errors. This proves
that the continuous refreshing of the BRAMs’ content (data and
code) was effective.

These results show also that the cross-sections of runaway
resets (corrected by reconfiguration of the DUT) are more fre-
quent in the case of Design 1 and occur only at a high flux in
the case of Design 2. Indeed, in the case of Design 1, since the
BRAM is not refreshed the code corruption could be one of the
reasons of the existence of these exceptions and runaway resets.
While in the case of the fully mitigated design, the increase of
flux is expected to overwhelm the TMR mitigation technique al-
though the BRAM is continuously refreshed. Besides, the pro-
gram code could be corrupted directly by SEUs on the BRAMs
or indirectly by SEUs on the CLBs used for the address, data
and control busses of the BRAMs or the voters. Hence, if the
number of upsets per second (flux) therefore per scrub cycle in-
creases, wrong values could be written by the BRAM scrubber
voters.

To make sure that the BRAM code corruption is likely to be
the cause of these runaway resets, the BRAM mitigation de-
sign has been implemented in standalone mode and tested under
proton beams at similar fluxes and at the same facility (UCD).
Better results from the BRAM mitigation design in standalone
mode are expected than when used in the MicroBlaze design for
two main reasons. First, in standalone mode, the BRAM data is

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:24 from IEEE Xplore. Restrictions apply.

2472 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005

TABLE I
COMPARISON BETWEEN THE SINGLE-STRING AND THE THREE VERSIONS OF THE MITIGATED MICROBLAZE DESIGN.

(a) OCCUPIED INTERNAL RESOURCES. (b) TIMING PERFORMANCES AND CURRENT CONSUMPTION.

TABLE II
PROTON-INDUCED CROSS SECTIONS OF THE DESIGN 1 AT VARIOUS FLUXES

TABLE III
PROTON-INDUCED CROSS SECTIONS OF THE DESIGN 2 AT VARIOUS FLUXES

not being modified by another driver as when implemented in
the MicroBlaze design, where the program duty cycle is very
high and comparable to 100%. For instance, if the MicroBlaze
is running the loop that processes the FFT data, the BRAM
scrubber won’t be able to interrupt it and scrub the currently
executing instruction. Second, the standalone BRAM scrubber
design was tested while running at 66 MHz, twice the speed
of the same design when inserted in the MicroBlaze design (33
MHz). Therefore the rate of errors (two erroneous bytes located
at the same address in the BRAM) should be multiplied by a
factor of 4 (22) to be comparable to the runaway reset errors. In
addition, as only 7% of the BRAM bits are used for the program
code, the mitigated BRAM error cross-sections should also be
divided by 14. Therefore, the BRAM error cross sections are
adjusted and divided by a factor of 3.5 as shown in column 4 of
Table IV.

Table IV shows that at a flux, at least 17% of the
runaway resets are due to errors in the BRAM code, while at a

flux, 23% of them are caused by code corruption.
Some of these code errors cause exceptions. The percentages of
runaway resets that are caused by exceptions and their depen-
dence with the flux and the test design are shown in Table V.

Table V shows that an average of 64% of the unrecovered
resets has been detected by exceptions in the case of Design 1
(64% at the flux 1 and 80% at the flux 2). It is clear that the
percentage of runaway resets that are detected by exceptions in-
crease with the flux. Indeed, as the number of upsets increase in
the same portion of the circuit a bigger code corruption could
have occurred. In the case of Design 2, exceptions were ob-
served only after an increase of two orders of magnitude of the
flux and only 25% of the runaway resets have been
detected. At a lower flux , although seven resets
have been observed, no exceptions have been detected, which
shows that not all the illegal states are detected by the exception
mechanism. This could be due to the fact that the MicroBlaze
was optimized to fit in the Xilinx FPGAs and the exception cir-
cuitry has been designed to detect only major illegal operations.

It should be mentioned also that only the unaligned memory
access, division by zero and illegal op-code exceptions were
observed and for any exception, the one caused by a division by
zero is always invoked (single or simultaneously with another
exception). Note that all the exceptions occur continuously each
time the corrupted code is encountered resulting in a runaway
reset until reconfiguration of the DUT.

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:24 from IEEE Xplore. Restrictions apply.

REZGUI et al.: COMPLEX UPSET MITIGATION APPLIED TO A RE-CONFIGURABLE EMBEDDED PROCESSOR 2473

TABLE IV
PROTON-INDUCED CROSS SECTIONS OF THE BRAM MITIGATION DESIGN AT VARIOUS FLUXES COMPARED TO THE RUNAWAY RESETS ERROR RATES

TABLE V
PERCENTAGE OF RUNAWAY RESETS CAUSING EXCEPTIONS.

From Table V, at least 64% of the unrecoverable reset errors
when the BRAM is not scrubbed (Design 1) are due to a corrup-
tion in the BRAM code as detected by processor exceptions. Be-
cause not all exceptions are detected, this is a minimum number.
The erroneous instruction is not being corrected because in the
case of Design 1, the BRAM content is not refreshed, while in
the case of Design 2, the voters assume that it is a valid instruc-
tion. In addition, fewer exceptions have been detected in con-
junction with a runaway reset in the case of Design 2. It is likely
that at the same flux, the code for Design 2 would be corrupted
but not as in the case where the BRAM is not scrubbed. This
means that the code might have been corrupted but not till the
point where the executed instruction becomes illegal to invoke
an exception. This result is valid only at a high flux (when we
overwhelm the TMR scheme by having many upsets per scrub
cycle), which should not be the case in space applications.

Note the following points that helped to explain the occurrence
of the runaway resets that have not been detected by exceptions.

1) Not all the noncoded instructions could be detected by
the illegal op-code exception.

2) Modification of an instruction in the code to another one
that is still in the MicroBlaze instruction set but enough
to modify the execution of the program. For instance, the
two instructions bri imm (unconditional branch to an ad-
dress given by the imm value) and br rb (unconditional
branch to an address stored in the register rb) differ only
in one bit but both of them are legal. Such a modification
is enough to make the program jump to a different part of
the code, modify the content of the register rb, miss some
of the handshaking between the two FPGAs and therefore
cause a runaway reset since the code is not corrected.

3) Each subroutine of the C program code uses at least one
or two GPR registers to store the return address. If one bit
of the return address is upset, the probability of having the
MicroBlaze lose sequence or miss any of the handshaking
is high. Note that for optimum fault detection many check
points have been inserted in the service FPGA logic so
even a jump to the next instruction would desynchronize
the two FPGAs.

4) Any code that modifies itself (i.e., dynamically registered
interrupt handlers or temporary data storage in mixed

code/data sections) could be a source of code corruption.
For space applications it would be better to use only static
code that could be refreshed by partial reconfiguration
(via the configuration scrubber). If resources allow, sep-
arate BRAM storage areas should be used for code and
data to prevent the possibility of temporary data values
overwriting instructions through upsets in the address.

5) Not all illegal operations or states of the MicroBlaze will
result in exceptions. This is because the MicroBlaze has
been designed to fit in smaller FPGAs and run at a high
speed. Indeed, if every illegal state were detected, the
exception detection circuitry would occupy a bigger part
of the FPGA logic and run slower.

In summary, in any of the studied cases (various particle fluxes),
the device error cross section (all type of errors counted) in the
case of the fully mitigated design was estimated to be lower than

. None of these runaway resets have been detected at
fluxes comparable to space fluxes. The obtained results prove
successfully the efficacy of the TMR methodology applied in
Virtex-II FPGAs to mitigate transient faults likely to occur in
space applications.

V. CONCLUSION

In this paper, we have tested a complete solution to miti-
gate an embedded processor implemented on a Xilinx Virtex II
FPGA. This solution is based on continuous external configu-
ration scrubbing, functional-block design triplication, and inde-
pendent internal BRAM scrubbing (also triplicated). We found
that the rate of processor exceptions and resets was kept low and
that the use of BRAM scrubbing to protect the code greatly re-
duced the occurrence of code corruption even at the accelerated
fluxes used in beam testing.

The new proposed technique was specifically developed for
Virtex FPGAs to cope with transient faults in the user combi-
national and sequential logic. Its implementation details have
been presented as well as the impact on the design performances
(device area, frequency of execution and penalty in power con-
sumption). While the low obtained error cross sections prove
the high efficacy of this solution, it demonstrates also that the

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:24 from IEEE Xplore. Restrictions apply.

2474 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005

TMR fault tolerance technique comes with high area and power
dissipation penalties.

REFERENCES

[1] F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, “A fault
injection analysis of virtex FPGA TMR design methodology,” presented
at the Radiation and Its Effects on Components and Systems, Sep. 2001.

[2] F. Lima(de), S. Rezgui, E. F. Cota, M. Lubaszewski, and R. Velazco,
“Designing and testing a radiation hardened 8051-like micro-controller,”
presented at the Military and Aerospace of Programmable Devices and
Technologies Conf., Laurel, MD, Sep. 2000.

[3] G. Swift et al., “Dynamic testing of xilinx virtex-II field programmable
gate array’s (FPGA’s) Input Output Blocks (IOB’s),” IEEE Trans. Nucl.
Sci., vol. 51, no. 6, pp. 3469–3474, Dec. 2004.

[4] C. Carmichael, B. Bridgford, and J. Moore, “Triple module redundancy
scheme for static latch-based FPGAs,” presented at the Military and
Aerospace of Programmable Devices and Technologies Conf., Laurel,
MD, Sep. 2004.

[5] Triple Module Redundancy Design Techniques for Virtex FPGAs,
Xilinx Appl. Note XAPP197, C. Carmichael. (2001, Nov.). [Online].
Available: http://www.xilinx.com/bvdocs/appnotes/xapp197.pdf

[6] MicroBlaze Processor Reference User Guide, Xilinx, Inc., Aug. 2004.
Embedded Development Kit (EDK 6.3), UG081, Version 4.0.

[7] FFT C Code, T. Roberts and M. Slaney. (1994, Dec.). [Online]. Avail-
able: http://www.jjj.de/fft/int_fft.c

[8] TMR Tool User Guide, Xilinx, Inc., UG156, Version 6.2.3 (2004,
Sep.). [Online]. Available: http://support.xilinx.com/products/mi-
laero/ug156.pdf

[9] Triple Module Redundancy Design Techniques for Virtex FPGAs, Nov.
2001. Xilinx Appl. Note 197.

Authorized licensed use limited to: University of Florida. Downloaded on January 27, 2010 at 15:24 from IEEE Xplore. Restrictions apply.

	toc
	Complex Upset Mitigation Applied to a Re-Configurable Embedded P
	Sana Rezgui, Gary Swift, Kevin Somervill, Jeffrey George, Carl C
	I. I NTRODUCTION
	II. E XPERIMENTAL A PPROACH AND T ARGET P ROCESSOR
	A. MicroBlaze Soft IP Internal Architecture
	B. DUT Test Design
	C. DUT Test Software

	Fig.€1. Test Setup at the Cyclotron of Texas A&M University.
	III. P ROCESSOR U PSET M ITIGATION

	Fig.€2. MicroBlaze core block diagram [6] .
	IV. P ROTON T EST R ESULTS

	Fig.€3. Block diagram of the microblaze single-string design (be
	Fig.€4. BRAM mitigation block diagram.
	TABLE I C OMPARISON B ETWEEN THE S INGLE -S TRING AND THE T HREE
	TABLE II P ROTON -I NDUCED C ROSS S ECTIONS OF THE D ESIGN 1 AT
	TABLE III P ROTON -I NDUCED C ROSS S ECTIONS OF THE D ESIGN 2 AT
	TABLE IV P ROTON -I NDUCED C ROSS S ECTIONS OF THE BRAM M ITIGAT
	TABLE V P ERCENTAGE OF R UNAWAY R ESETS C AUSING E XCEPTIONS .
	V. C ONCLUSION
	F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, A f
	F. Lima(de), S. Rezgui, E. F. Cota, M. Lubaszewski, and R. Velaz
	G. Swift et al., Dynamic testing of xilinx virtex-II field progr
	C. Carmichael, B. Bridgford, and J. Moore, Triple module redunda
	Triple Module Redundancy Design Techniques for Virtex FPGAs, Xil

	MicroBlaze Processor Reference User Guide, Xilinx, Inc., Aug. 20
	FFT C Code, T. Roberts and M. Slaney . (1994, Dec.). [Online] .

	TMR Tool User Guide, Xilinx, Inc., UG156, Version 6.2.3 (2004, S
	Triple Module Redundancy Design Techniques for Virtex FPGAs, Nov

