
Autonomous Agents for Air-Traffic Deconfliction

Michal Pěchouček, David Šišlák, Dušan Pavlı́ček and Miroslav Uller
Gerstner Laboratory – Agent Technology Group

Department of Cybernetics, Czech Technical University
Technická 2, Prague, 166 27, Czech Republic

pechouc@labe.felk.cvut.cz

ABSTRACT
This contribution presents a deployment exercise of multi-
agent technology in the domain of deconflicted air-traffic
control among several autonomous aerial vehicles (manned
as well as unmanned). Negotiation based deconfliction algo-
rithm have been developed and integrated in the agent-based
model of the individual flight. Operation of the underlying
multi-agent system has been integrated with freely available,
geographical and tactical data sources in order to demon-
strate openness of the technology. An additional, web client
visualization and access component has been developed in
order to facilitate a multi-user, platform independent use
of the system. The features and application design is illus-
trated in the demonstration video clip1.

1. INTRODUCTION
In the future warfare and humanitarian relief operations

(especially in the surveillance and monitoring domains) there
will be a strong potential for integration of the technologies
and mechanisms supporting coordinated flight among the
collective of autonomous manned and unmanned aerial ve-
hicles. In this paper we argue that agent technology, relying
on collective decision making among several autonomous in-
telligent agents, can provide solution for such a challenge.
Even though this is not a fundamental research paper, this
contribution provides good evidence of practical applicabil-
ity of agent technology by reporting on a technology deploy-
ment exercise in this specific domain.

According to [11] the current air traffic control methods
based on rigidly structured airspace have shown to be ineffi-
cient even for the future coordination of the piloted aircraft.
This is true mainly due to: (i) inefficiency of airspace utili-
sation that is based on fixed predefined flight corridors, (ii)
increased air traffic workload given by ever increasing air
traffic density and (iii) use of obsolete technologies, that are
in many cases 30 years old.

1http://agents.felk.cvut.cz/atg-videos/
atc video divx titles.avi

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

In the future these will be important for both UAVs and
manned aircraft:

− requirements to increase flexibility of the vehicles op-
erations,

− requirements to fly higher number of vehicles in sub-
stantially smaller airspace and

− requirements for higher precision of the flight plan and
its accomplishment.

Due to the first two reasons of inefficiency listed above, the
classical air traffic control methods are not very suitable for
coordination of higher numbers of dynamically tasked aerial
vehicles. In our work, we have built on top of the concept
of free flight [9], [4] – an approach to autonomous routing
of the aircraft and continuous self-optimization of the flight
trajectory complemented by the peer-to-peer deconfliction
mechanism.

The presented work resulted in a demonstration prototype
(ATC) of a multi-agent system modeling deconflicted free-
flight of collective of fully autonomous aircraft.

ATC has not been primarily designed as flight planner
producing a set of deconflicted route plans for a number
of aerial vehicles. There is a central planning component
that provides (during the planning phase) the flight plans
without consideration of possible operation of other aircraft.
This planning process can be easily distributed among the
individual aircraft and thus no central planner would be
necessary. The plans are likely to contain possible colli-
sions. Working with no-collisions makes planning consider-
ably faster and much more flexible. This also results in sub-
stantial scalability improvement affording to operate higher
number of aerial vehicles in condensed airspace (can be used
e.g. in situation where a higher number of unmanned aerial
vehicles carries out rapid surveillance tasks).

Following the planning phase, ATC performs the simula-
tion phase, where the aircraft implement the provided flight
plans in a free-flight fashion. In a danger of possible col-
lisions, the embedded deconfliction mechanism makes sure
that aircraft negotiate deconfliction maneuvers, while still
optimizing their operation.

2. DECONFLICTION BY NEGOTIATION
ATC is designed to operate in distributed manner, which

is why the deconfliction technology (while developed within
the multi-agent ATC model) is ready for deployment on au-
tonomous vehicles without any central point of control.

The aircraft are modeled by agent containers hosting sev-
eral agents. In this contribution we will be referring to

 1498

agents representing an aircraft auto-pilot. This agent is
a self-interested entity that is in charge of (i) preparing a
detailed flight plan for the airplane respecting time-specific
waypoints for the airplane’s mission and (ii) executing the
flight plan by performing the flight.

Airplane A Airplane B

subscribe local FP part

agree

FP update

request a longer part

the plan is too short

FP update

Detect future
collisions

Change FP

Test for collision
with known FPs

collision found

no collision

send updates
to all subscribers

unsubscribe

done

Detect future
collisions

Board Radar
notification alert:
Airplane B
entered the range

Board Radar
notification alert:
Airplane B
left the range

Figure 1: Negotiation protocol

Each simulated aircraft is surrounded by a number of con-
centric spherical zones: Communication, Alert, Safety
and Collision zones. The communication zone is the
outermost one. It represents the communication range of
the data transmitter onboard the aircraft. Using this data,
the aircraft can send data packets to other aircraft that are
positioned within the specified spherical zone defined by its
radius. The alert zone defines the operation range of the
radar onboard the aircraft. If another aircraft is located
within the alert zone, the aircraft are periodically notified
about its relative position and its flight code. The safety
zone encapsulates the area around an aircraft that other
aircraft are not allowed to enter in order to minimize the
mutual influence of the aircraft movements, e.g. airspace
turbulence. If two aircraft do enter each other’s safety range,
they can still continue flying but their flight path may be
influenced by e.g. turbulence. This is not the case when
two or more airplanes fly together in a close formation. The
collision zone is the innermost zone. It defines the critical

contact area. When the mutual distance between two air-
craft is smaller than the sum of their collision zone radiuses,
the physical collision happens.

Cooperative deconfliction. In the simulation phase the
ATC system solves collisions cooperatively by negotiation be-
tween the aircraft, see Figure 1. Let us suppose an aircraft A
to fly along its planned optimal flight path through its mis-
sion waypoints. An airplane B enters the alert zone of the
airplane A. The pilot agent of the aircraft A is notified about
its position and flight code by the on board radar system.
The pilot agent of the aircraft A tries to establish negotia-
tion connection with the pilot agent of B. In the case when
the connection cannot be established or the communication
is not trusted, the pilot agents should use non-cooperative
approach, described later in this section. If the connection
was established successfully, the pilot agent A subscribes for
a local area flight plan of the aircraft B (representation of
the flight plan is described in Section 5.1). The pilot agent
of aircraft B sends an update to the subscriber every time it
changes its own flight plan. The update contains the part of
the flight plan of the aircraft for the specified amount of time
depending on the flight speed. The update is also sent when
the time span of the previous update was not long enough
and it needs to be updated again. When the pilot agent A

receives an update from the pilot agent B, it executes the
collision detection process on its own flight plan and the
received one.

time
1

time
2

A

B

Figure 2: Flight plan collision interval

The collision detection process is a linear algorithm that
analyses two flight paths and tests the condition of safe
flights. If there is a specific point in time detected when
the distance between the positions of the aircraft is smaller
than the maximum of the safety ranges of the aircraft (see
Figure 2), the detection process returns time1 and time2

which represent the first and the last collision point between
the two flight plans. This information is needed by the pilot
agent for better handling of the situation.

If the detection test is negative, both flight paths are safe
for flying. If a collision is found, the airplanes A and B must
modify their flight paths. The first prototype of the designed
system uses a rule-based approach for modifying flight plans
described in Section 2.1.

Non-cooperative deconfliction: The distributed decon-
fliction approach is open to be extended to non-cooperative
deconfliction. The non-cooperative deconfliction is useful
in situations when an airplane has a malfunctioning trans-
mitter/receiver on its board or in the situation when there
is an intruder/enemy airplane with adversarial behavior [7]

 1499

which intentionally sends incorrect future flight path parts
to the others. The most suitable approach to the non-
cooperative deconfliction is the game theory. In this case
the pilot agent tries to change its own flight plan in a way
that would guarantee a minimal collision risk for any future
position of the other airplane. To determine all possible fu-
ture positions of the other plane, information about its cur-
rent position, direction and information about its type can
be used. The monitored object’s flight path is always con-
tinuous but there are also certain restrictions that depend
on the airplane type – e.g. minimal/maximal flight speed,
minimal radius of turning, etc. When the pilot agent wants
to identify whether or not it should use the non-cooperative
deconfliction for a particular airplane, it can integrate a spe-
cial detection module. The detection module compares the
notification received from the board radar with the known
flight plan part of the aircraft in the radar range.

2.1 Collision Avoidance Mechanism
The specific collision type is determined based on the an-

gle between the direction vectors of the concerned planes at
time1 projected to the ground plane (defined by X and Y
axes), see Figure 3.

direction
vector

flight path
center line

2 × 30°2 × 30°

Sector 1

Sector 2

Sector 4

Sector 3

Figure 3: Identification of the collision type

Depending on the computed angle, the airplane B falls into
one of four sectors surrounding the airplane A. Depending on
that sector, one of the following rules is applied on the flight
plan of the airplane A to avoid the collision:

− Sector 1 – head-on collision, in this case the airplanes
avoid each other by both of them turning to the right.
The flight plan is changed as shown in Figure 4. The
pilot agent shifts the plan points at time1 and time2 to
the right, perpendicularly to the old direction vector.
The length of the shift is equal to a minimum of safety
ranges of both airplanes. Beyond time2, the flight plan
follows the shortest way to the next mission waypoint.

− Sector 2 – rear collision, there are two subcases: i)
the front aircraft is faster – airplanes do not change
their current flight plans; ii) the rear airplane is faster
– it has to change its flight plan so that it turns to
the right and passes the front airplane without endan-
gering it. The flight plan is similar to that in Figure
4. To achieve this, the rear airplane shifts its flight
plan points at time1 and time2 to the right, perpen-
dicularly to the old direction vector. The length of the
shift is at least 1.1 times of the safety range.

− Sector 3 – side collision, the airplane B has higher
traffic priority. The aircraft A needs to slow down its
speed so that it reaches the collision point at time1

later than the airplane B. If this is not possible due
to the minimal flight speed defined for each airplane
type, the airplane A slows down as much as possible
and shifts its flight plan point at time1 to the right so
that there is no collision between the two flight plans.

− Sector 4 – side collision, the airplane B has lower traf-
fic priority. The aircraft A changes its flight plan by
increasing its flight speed so that it passes the colli-
sion point before the airplane B. The airplane A only
accelerates as much as needed.

new flight path

old flight path
time

1
time

2

Figure 4: Change of the flight plan.

The above rule-based changes to the flight plan are car-
ried out by both planes independently because each aircraft
detects the possible collision with the other airplane from its
own point of view. After applying the changes to the flight
plan, the airplane sends an updated local flight plan part
to all airplanes that subscribed for it. The change is also
verified against all other known flight plans of all aircraft
monitored by the board radar system. If another collision is
detected, new changes are applied.

The pilot agent internally uses the flight plan wrapper in-
terface for manipulation with its flight plan. The requests
for each plan modification are handled as a special set of
solver time-constrained waypoints. A special handling algo-
rithm takes care of the execution of each modification that
overrides the previous one.

3. A-GLOBE: MULTI-AGENT PLATFORM
The agent-based part of the designed prototype of the

Air Traffic Control (ATC) system runs on the A-globe Java
multi-agent platform [10, 1]. A-globe is a fast and lightweight
platform with agent mobility and inaccessibility support.
Besides the functions common to most of agent platforms
it provides Geographical Information System-like ser-
vice to the user. Therefore, the platform is ideally suited
for testing experimental scenarios featuring agents’ posi-
tion, position dependent environment simulation and com-
munication inaccessibility. The platform provides support
for permanent and mobile agents, such as communication
infrastructure, storage, directory services, agent migration
(including library migration with version handling), service
deployment, etc.
A-globe is optimized to consume just a limited amount

of resources. A-globe platform is not fully compliant with
the FIPA [3] specifications, still it implements most proto-
cols and respects the spirit of the specification. It does not
support communication between different agent platforms
(e.g. with JADE, JACK, etc.). For large scale scenarios,
the problems with system performance that interoperability

 1500

brings (memory requirements, communication speed) out-
weigh any advantages, as heterogenous environment is of
limited interest for simulations.

The A-globe operation is based on several core compo-
nents: The Agent Platform provides the basic components
necessary to run one or more agent containers, the container
manager and the library manager. The Agent Container
is a skeleton entity that provides basic functions such as
communication, storage and management for agents. The
services provide common functions for all agents in a con-
tainer. The agents have two means of communication with a
service – either via standard messages or by using a service
shell – a special proxy object that interfaces service function
to a client so that they appear to be synchronous function
calls, but the calls are actually handled in the service thread
thereby preventing deadlocks and synchronization overhead.

The A-globe platform is primarily aimed at large scale,
real world simulations with fully fledged agents. To support
this goal, it includes a special infrastructure for environ-
mental simulation. Actor agents play roles in the simulated
world, while Environment Simulation (ES) agents imple-
ment the simulated world itself. ES agents only rarely use
messages to communicate with actor agents. Instead, they
communicate via topic messaging.

Topic messaging implements container to container mes-
saging reserved for easy environmental simulation. Topic
messaging is built on top of standard messages and is man-
aged by the Geographic Information System (GIS) Services
– server and clients. GIS services provide distribution and
subscription mechanism for the agents. ES agents can be re-
sponsible for nearly any simulation layer, depending on the
wishes of the developers. Accessibility agent, which controls
the availability of communication links between containers
holding the actor agents, is one of the most important of ES
agents. A-globe messaging layers use the information pro-
vided by the accessibility agent to prevent sending messages
between inaccessible nodes. Accessibility simulated by the
system can depend on many factors, typically including the
distance and simulated link reliability.

4. PROTOTYPE STRUCTURE OVERVIEW
Air Traffic Control (ATC) system is mainly written in

Java except for the real-time visualization component which
is written in C++. Agent-based part of the system runs on
the A-globe Java multi-agent platform. The system con-
sists of several components, see Figure 5:
− ATC core is a mandatory component of the system re-
sponsible for aircraft simulation and airways planning. The
component also provides interfaces for connecting a num-
ber of real-time visualization components and remote web
clients. See Section 4 for details.
− Real-time 2D/3D visualizer is an optional compo-
nent that provides the user with a real-time overview of the
simulation state with all important information in a 3D/2D
environment. See Section 7 for details.
− Remote web client is an optional component allow-
ing a remote user to connect and interact with the ATC
core system via a client application executed from an inter-
net browser. If necessary, all communication data can be
secured using asymmetric cryptography but it comes with
higher processor load requirements. See Section 7 for details.

Agent-based core system encapsulates one server compo-
nent (described in Section 4.1) and one or more platform

ATC core
agent-based system running on A-globe

Server

Platform with
airplanes

Platform with
airplanes

Real-time 2D/3D
state visualizer

#1

Real-time 2D/3D
state visualizer

#N

Remote web
client #1

Remote web
client #N

Intranet / Internet

. . . .

HTTP + Applet protocol

l
oc

ot
or

p
oisi

V

Figure 5: ATC System Structure Overview

components, Figure 5. The platform component is used as
a registration unit for starting the simulated aircraft con-
tainer (described in Section 4.2) inside Java Virtual Machine
(JVM). When ATC system is used for planing/simulation of
a huge number of aircraft, it is highly recommended to use
several host computers with their own JVMs and platform
components. The number of running aircraft is proportion-
ally split between the registered platform components. This
enables the ATC system to balance the overall load between
all registered computers.

Server Container

Plane
Manager

Agent

Applet
Server
Agent

Plane
Simulator

Agent

Zone
Manager

Agent

Universal
Sensor
Agent

Visio
Agent

Configuration
Agent

Distance
Agent

Visibility
Collision Agent

Scenario Player

Platform Admin

Plane Admin

HTTP Server

Applet Data Server

Layer Providers

Ground No-flight Zones

Special No-flight Zone Groups

Plane Physical Models

Flight States

Visualizer Connections
Sensor Characteristics

Registered Sensors

Topic Messaging

Client Containers

Remote Web
Clients

Real-time
Visualizers

External Data
Sources

Figure 6: Server component of the ATC Core system

4.1 Server Component
The server component of the ATC core system is a sole

central element of the system. It simulates positions of air-
craft and other objects in the simulated world, aircraft hard-
ware, weather conditions, communication ranges given by
the ranges of board data transmitters, etc. It is also re-
sponsible for acquiring information about all airplanes and
provides them to both types of visualizers. If the proposed
distributed agent system for flying on deconflicted airways
was used to control real aircraft, this server component could
be removed from the system.

The server component, Figure 6, consists of several agents.
Configurator Agent loads initial configurations from the
specified configuration files and distributes them to other
agents. Plane Manager Agent administrates connected

 1501

JVM platforms and running aircraft containers, it spawns
new airplanes and removes the existing ones, and assigns
initial flight missions to the airplanes. New airplanes can
be started automatically as specified in the scenario script.
The server also acts as a load balancer between connected
platform components. Plane Simulator Agent computes
the current position of the aircraft in the simulated world.
It contains all physical models for all plane types and keeps
all current flight plans and states of the running aircraft.
When a plane pilot agent changes some part of the flight
plan, the change is propagated via the plane agent to the
plane simulator agent in the form of a difference flight plan
update. The agent can be asked for the current airplane
position by the pilot agent. Distance Agent calculates
Euclidian distances between each pair of existing aircraft
using their current positions. Visibility Collision Agent
prepares A-globe visibility updates [10] for controlling com-
munication restrictions between airplanes. It also detects
whether there has been a physical collision between flying
aircraft. The airplanes that have collided with any other
object are uncontrollable and they fall down to the ground.
Falling aircraft can endanger any airplane that flies under
it. Universal Sensor Agent represents all radar sensors
on aircraft boards. Zone Manager Agent takes care of
no-flight zones. It transforms any defined no-flight zones to
a compressed octant tree. The ground surface is also rep-
resented as a special no-flight zone. This allows to use the
planning mechanism even for generating flight plans that do
not collide with the ground surface. No-flight zones can be
dynamically changed during the planning/simulation. Vi-
sio Agent is an interface between the Core agent system
and the C++ real-time visualizers. To ensure fast communi-
cation between them, a special binary communication proto-
col defined is used. Applet Server Agent runs the HTTP
server, Applet Data server and all external data providers.
It provides a communication interface between the agent
system and the remote web client (described in Section 7).

All server agents communicate together using A-globe
topic messaging described in [10].

Flight plan
Executor

Radar

Mission
Keeper

Time
Provider

Collision
Detector

Collision
Solver

Precise flight path planner
with respect to no-flight zones

Plane
Agent

Pilot
Agent

Platform
Agent

Platform Container Plane Container

Platform with airplanes

Agent communication language messaging
between Plane Agents and Pilot Agents

Communication with server
via Topic messaging

Figure 7: Platform Architecture

4.2 Platform Component
The platform container is used as a registration unit for

starting containers with agents simulating aircraft behavior.
Design of the platform component is shown in the Figure
7. The only agent running in the platform container is the

platform agent. The agent acts as a control bridge between
the plane manager agent and the local JVM on which it
is running. Through this agent the plane container can be
started or removed. Many plane containers can run in each
platform component (inside one JVM) or there can be no
plane containers at all.

Each running plane container hosts two agents. Plane
Agent provides high-level airplane functions, such as flight
plan execution in cooperation with the plane simulator agent,
radar and detector readings, airplane configuration and time
synchronization ticks. Pilot Agent is the main control unit
of the simulated aircraft handling negotiation based decon-
fliction as described in Section 2. It processes notifications
about every new visible objects on the radar and tries to
communicate with the respective pilot agent if there is any.
It generates a detailed flight plan based on the initial mission
specification given by the plane manager agent with respect
to the no-flight zones (Section 5), described in Section 5.2.

The airplane container agents communicate with the server
container via A-globe topic messaging, while together
they communicate using standard agent communication lan-
guage (ACL) messages.

5. FLIGHT MODELING
The modeling of flights in our system proceeds in two main

phases: the planning of the flight plans for each airplane and
the simulation of these flight plans. In this section, we give
a brief description of the planner component and other key
concepts related to the flight modeling. We use a very simple
physical model of the airplanes: they are modeled as mass
points moving along a previously planned trajectories.

straight element

horizontal turn

vertical turn

spiral element

segment elements:

segment
1

segment
2

Figure 8: Flight plan, segments, elements

5.1 The Structure of Flight Plan
The flight plan describes a trajectory which the plane

follows during its flight. Its principal building blocks are
waypoints, segments and elements. A waypoint is an impor-
tant navigational point used for rough definition of the flight
route; it represents a certain location and also specifies the
time interval when the airplane should fly through it. The
waypoints serve as an input to the planner, which gener-
ates the precise flight path consisting of the segments and
elements. A segment is a portion of a planned flight path

 1502

between two adjacent waypoints. The segments are com-
posed of elements, which constitute the most basic parts of
a flight plan with a simple geometry.

Our planner is able to generate flight paths from four
types of elements: straight elements, turns (horizontal and
vertical), spirals and a warp element. The warp element is a
special kind of element allowing for an abrupt change of cer-
tain parameters of the flight route (e.g. position, direction
or velocity). Without warp elements, the flight trajectory
is always continuous and smooth and each element is con-
nected smoothly to the adjacent ones. This is desirable in
most cases; exceptions to this rule will be mentioned later.
An example of a flight plan is shown in Figure 8.

5.2 Flight Path Planning
By the flight path planning we mean creating a smooth

and continuous path passing through all input waypoints,
which will also satisfy the time constraints associated to
the waypoints. The planning proceeds in three phases: the
computation of the actual path without regard to the time
constraints, the adjustment of the flight plan to satisfy the
time criteria and the replanning of the plan in the parts
where it collides with no-flight zones (if defined).

During the Path Planning, the planner generates a de-
tailed flight path which passes through all the waypoints.
For each couple of successive waypoints, a segment is cre-
ated, initially without any elements. A segment represents
the smallest part of a flight plan which can be planned in-
dependently on the other parts of the plan. By planning,
we mean filling of a segment with elements; the planned
segment is typically composed of 2 to 8 elements.

After that, the Time Planning follows. For each seg-
ment, the actual flight plan is adjusted so that the time of
flight through the segment matches the time intervals de-
fined in the start and end waypoints belonging to the seg-
ment. The adjustment is done in two ways: through stretch-
ing the segment by altering some of its parameters (so that
it becomes longer and thus the flight takes more time) and
through setting the velocity of the plane at the beginning of
the segment. For this reason, we place a warp element at
the start of each segment, which allows for a step change of
velocity at the segment boundaries. By using this simplifi-
cation, our planning algorithm is very fast.

The flight path for an airplane can be planned with re-
spect to predefined no-flight zones (such as areas around
power plants, military facilities or natural terrain obstacles).
Avoiding the no-flight zones is done as follows: the seg-
ments of the flight plan generated in previous phases are
tested for collisions with the no-flight zones. If any seg-
ment intersects a no-flight zone, it is replaced with a flight
path which bypasses the respective no-flight zone(s). This
is accomplished through finding suitable ”bypassing” way-
points, which roughly define the collision-free flight route,
and through planning a flight path through them. The sit-
uation is shown in Figure 9.

The problem of finding the bypassing path is thus equiva-
lent to finding suitable waypoints that define it. These way-
points have no time constraints. Our approach to finding
these waypoints is based on a spatial subdivision of the area
of interest by an octal tree to a set of cubic cells. The cells
intersected by a no-flight zone are marked as full, while the
rest of them is marked as empty. By using the well-known
A∗ algorithm we find a sequence of empty cells, connecting

segment elements:

straight element

horizontal turn

vertical turn

a) before

b) after

Figure 9: Avoiding the no-flight zone.

the cells containing the start and end waypoints of the re-
planned segment; this sequence forms a continuous ”tunnel”
which bypasses the no-flight zones. The waypoints are then
placed in the ”tunnel”. . This approach is similar to that
described in [6].

6. REAL DATA INTEGRATION
The designed ATC system integrates four data sources:

− National Aeronautics and Space Administra-
tion (NASA) – a mosaic of Landsat7 images2 at the
maximum resolution of approximately 50 meters per
pixel was used as an underlying ortophoto map of the
United States

− U.S. Geological Survey (USGS)3 – detailed vec-
tor shapes of 50 U.S. state boundaries; a set of more
than 650 U.S. airports, including their names, GPS co-
ordinates with the corresponding average numbers of
enplanements per year; a set of more than 26 thousand
major U.S. highway segments

− Geographic Names Information System (GNIS)
database4 – a set of more than 24 thousand U.S. pop-
ulated places, including their names, GPS coordinates
with the corresponding population; a set of more than
80 U.S. powerplants, including their names with GPS
coordinates to act as the no-flight zones

− ATC flight data – airplanes including position and
direction; rough flight plans in the form of series of
points in space through which the airplane is supposed
to fly on its way; detailed flight plans

7. FLIGHT VISUALIZATION
The real-time visio allows the user to overview the en-

tire simulation in a 2D/3D environment, to efficiently nav-
igate through it, but also to provide the user with all the
important data and information at the same time.

An open-source 3D game engine CrystalSpace [2] was used
as a platform on top of which the visualization component
is built. For efficiency and performance reasons, the en-
tire visualizer is written in C++ and it internally utilizes
the OpenGL graphics engine. A binary-coded network com-
munication protocol has been defined and implemented to
allow fast data exchange between the core system and the
visualizer component.

2http://onearth.jpl.nasa.gov
3http://seamless.usgs.gov
4http://geonames.usgs.gov

 1503

The communication is duplex: by sending messages to the
visualizer, the core system notifies the visio that an airplane
has been spawned, destroyed, it has changed its position etc.
On the other hand, the visualizer sends messages to the core
system e.g. when it requests specific information about a
certain airplane upon user’s demand, such as its flight plans.
In response to this request, the simulation system selectively
sends the required data. This behavior was introduced to
reduce the amount of data that need to be sent over the
network – instead of sending all the data continuously even
if they are not needed.

The visualizer provides two main display modes: a two-
dimensional (2D) view (Figure 10) and a three-dimensional
(3D) view (Figure 11). They both work with the same un-
derlying data, only the way of depicting them differs.

Figure 10: Real-time visualizer: 2D view

The 2D mode provides a radar-like top view of the scene.
Airplanes present in the system are displayed as 2D icons
that visualize both current position and direction of each
airplane. Once the airplane is selected, the camera starts
following it so that it stays in focus. A set of zones is dis-
played around the selected airplane as a group of concentric
circles. Most importantly, these refer to the collision range
(innermost) and the visibility range (outermost) of each air-
plane. The current flight plan can be displayed for the se-
lected airplane and/or for all airplanes that are visible to it.
Flight plans in 2D view are represented by solid polylines
that interpolate through the intended route.

The 3D mode (see Figure 11) is useful for observing the
entire simulation in a natural 3D environment that allows
the user to get a better insight of the spatial relations be-
tween airplanes, the actual 3D shapes and possible collisions
of flight plans, series of waypoints etc. In 3D, flight plans are
displayed as three-dimensional semitransparent corridors of
a rectangular profile. As the visio is required to cope with as
many as hundreds of airplanes, massive optimizations of vi-
sualization of 3D space have been implemented. One of the
key features in this respect is the incorporation of multiple
levels of detail (LOD) for all 3D models.

Another important feature of real-time visualizer is the
ability to interactively control the speed of the simulation.
The visualizer displays the current speed of the simulation
in the top left-hand corner of the screen, together with the

Figure 11: Real-time visualizer: 3D view

current simulation time.
The simulation can also be accessed using a remote web

client, a Java application (see Figures 12 and 13) that con-
nects via network to the simulation system which acts as a
server and provides all its clients with regular data updates.
This way a number of users can concurrently observe and
interact with the same simulation. Accessing the simula-
tion system via network is as simple and straightforward as
opening a web browser and entering the IP address of the
computer on which the core system is currently running.

Figure 12: Remote client GUI overview

Before the user can access the simulation, he needs to log
in the system by entering a valid combination of username
and password. Remote client authentication procedure is
secured using one-time hashes for password validation. To
minimize network traffic between the remote client and the
ATC core system, a combination of HTTP and a special
binary protocol is used.

The ATC core system uses a Java Web Start application
for loading and starting the client. The client is built on top
of JOGL libraries (Java binding for OpenGL [5]) which are

 1504

used for accessing graphics 3D acceleration.
The icon palette located in the top right hand corner of the

client window gives the user access to application controls,
e.g. data layer menu, zooming to a named region, zooming
to a selection, zooming to a particular airplane, GPS locator,
coordinate grid control and the logout button.

As the user changes the view, the appropriate data seg-
ment of the virtual map is requested and downloaded from
the server, and therefore at any moment the client needs to
keep only a minimal amount of data, which results in its fast
and efficient performance.

Figure 13: Flight plans avoiding no-flight zones

8. CONCLUSION
In the paper we present how agents can be used for the

negotiation-based deconfliction in the Air-Traffic Control.
We describe the prototype of the ATC system where we in-
tegrate our agent-based solution with several external data
sources. The external online data sources provide neces-
sary information about ground surface, airport locations,
weather conditions, no-flight zones and area boundaries for
the ATC system. We introduce two types of system visual-
ization: real-time and remote using an internet browser.

The ATC prototype has only simple deconfliction rule-
based mechanism for the flight plan changes which assumes
that all airplanes use the same deconfliction rules. The sys-
tem will be extended so that airplanes that detected future
collisions would iterate through monotonic concession pro-
tocol (MCP) to find new flight plans that are collision free.
The monotonic concession protocol is a simple protocol de-
veloped by Zlotkin and Resenschein for automated agent to
agent negotiations [12, 8]. Both airplanes prepare a set of
possible flight plan changes scored by the utility function.
The utility function includes pilot’s own intentions including
flight priority, fuel restrictions, time restrictions, etc. From
all collision free combinations of flight plan pairs, the pos-
sible solution set is created. The iteration protocol results
in a commonly accepted solution of the collision. Then each
airplane applies the respective flight plan changes. How-
ever, the iteration solution can lead to a situation when the
solution is not found fast enough. The process has to be
extended with an emergency solution that is used when the

iteration process does not lead to any fast solution. As the
emergency solution, the game theory approach can be used.

Acknowledgement

Effort sponsored by the Air Force Office of Scientific Re-
search, Air Force Material Command, USAF, under grant
number FA8655-04-1-3044-P00001 extension of the FA8655-
04-1-3044. The U.S. Government is authorized to reproduce
and distribute reprints for Government purpose notwith-
standing any copyright notation thereon5.

9. REFERENCES
[1] A-globe. A-globe Agent Platform.

http://agents.felk.cvut.cz/aglobe, 2005.

[2] CrystalSpace. Crystal Space 3D – opensource game
engine. http://www.crystalspace3d.org, 2004.

[3] FIPA. Foundation for intelligent physical agents.
http://www.fipa.org, 2004.

[4] J. C. Hill, F. R. Johnson, J. K. Archibald, R. L. Frost,
and W. C. Stirling. A cooperative multi-agent
approach to free flight. In AAMAS, pages 1083–1090,
2005.

[5] JOGL. Java Bindings for OpenGL.
http://jogl.dev.java.net, 2005.

[6] S. Kambhampati and L. Davis. Multiresolution Path
Planning for Mobile Robots. IEEE Journal of Robotics
and Automation, RA-2(3):135–145, 1986.

[7] M. Rehák, M. Pěchouček, and J. Tožička. Adversarial
behavior in multi-agent systems. In M. Pechoucek,
P. Petta, and L. Z. Varga, editors, Multi-Agent
Systems and Applications IV: 4th International
Central and Eastern European Conference on
Multi-Agent Systems, CEEMAS 2005, number 3690 in
LNCS, LNAI, 2005.

[8] J. S. Rosenschein and G. Zlotkin. Rules of Encounter.
The MIT Press, Cambridge, Massachusetts, 1994.

[9] R. Schulz, D. Shaner, and Y. Zhao. Free-flight
concept. In Proceedings of the AiAA Guidance,
Navigation and Control Conference, pages 999–903,
New Orelans, LA, 1997.

[10] D. Šǐslák, M. Rehák, M. Pěchouček, M. Rollo, and
D. Pavĺıček. A-globe: Agent development platform
with inaccessibility and mobility support. In
R. Unland, M. Klusch, and M. Calisti, editors,
Software Agent-Based Applications, Platforms and
Development Kits, pages 21–46, Berlin, 2005.
Birkhauser Verlag.

[11] C. Tomlin, G. Pappas, and S. Sastry. Conflict
resolution for air traffic management: A case study in
multi-agent hybrid systems. IEEE Transactions on
Automatic Control, August 1997.

[12] G. Zlotkin and J. S. Rosenschein. Negotiation and
task sharing among autonomous agents in cooperative
domains. In N. S. Sridharan, editor, Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence, pages 912–917, San Mateo, CA, 1989.
Morgan Kaufmann.

5The views and conclusions contained herein are those of the
author and should not be interpreted as representing the official
policies or endorsements, either expressed or implied, of the Air
Force Office of Scientific Research or the U.S. Government.

 1505

