
15.2

Dynamic Hardwardsoftware Partitioning: A First
Approach

Greg Stitt, Roman Lysecky, Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
*Also with the Center for Embedded Computer System at UC lrvine

{gstitt I rlysecky I vahid)@cs.ucr.edu, http://www.cs.ucr.edu/-vahid

ABSTRACT
Partitioning an application among software running on a
microprocessor and hardware co-processors in on-chip
configurable logic has been shown to improve performance and
energy consumption in embedded systems. Meanwhile, dynamic
software optimization methods have shown the usefulness and
feasibility of runtime program optimization, but those
optimizations do not achieve as much as partitioning. We
introduce a first approach to dynamic hardware/software
partitioning. We describe our system architecture and initial on-
chip tools, including profiler, decompiler, synthesis, and
placement and routing tools for a simplified configurable logic
fabric, able to perform dynamic partitioning of real benchmarks.
We show speedups averaging 2.6 for five benchmarks taken from
Powerstone, NetBench, and our own benchmarks.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems] : Real-
time and embedded systems.

General Terms

Keywords

Algorithms, Performance, Design.

Hardware/software partitioning, FPGA, synthesis, platforms,
system-on-a-chip, dynamic optimization, codesign, self-
improving chips, embedded systems.

1. INTRODUCTION
Hardware/so%are partitioning is the process of dividing an
application into software running on a microprocessor and
hardware co-processors. Partitioning is a well-known technique
that can achieve results superior to software-only solutions.
Partitioning can improve performance
[2][4][5][7][10][15][16][26] and even reduce energy consumption
[13][14][22][23][28]. The appearance of single-chip platforms
incorporating a microprocessor and FPGA (field-programmable
gate array) on a single chip [6][25][27] has recently made
hardwardsohare partitioning even more attractive. Such
platforms yield more efficient communication between the
microprocessor and FPGA than two chip designs, resulting in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2003, June 2-6,2003, Anaheim, California, USA.
Copyright 2003 ACM 1-581 13-688-9/03/0006.. .$5.00.

improved performance and reduced power. In fact, such single-
chip platforms encourage partitioning by designers who might
have otherwise created a sofhare-only design. By treating the
FPGA as an extension of the microprocessor, a designer can move
critical software regions from the microprocessor onto FPGA
hardware, resulting in improved performance and usually reduced
energy consumption [23].

Hardware/software partitioning has had limited commercial
success due in part to tool flow problems. First, a designer must
use an appropriate profiler to detect regions that contribute to a
large percentage of program execution. Second, a designer must
use a compiler with partitioning capabilities to partition the
software source. Such compilers are rare and often resisted
because companies may have trusted compilers. Third, the
designer must apply a synthesis tool to convert the partitioning
compiler’s hardware description output to an FPGA
configuration. A tool flow requiring integration of profilers,
special compilers, and synthesis is far more complicated than that
of typical software design, requiring extra designer effort that
most designers and companies are not willing to carry out. Thus,
the more transparent one can make hardware/software
partitioning, the more successful hardware/software partitioning
may be.

A dynamic partitioning approach could solve these problems.
An ideal dynamic partitioner would monitor a microprocessor’s
executing binary program, detect critical code regions, decompile
those regions, synthesize them to hardware, place and route that
hardware onto on-chip configurable logic, and update the binary
to communicate with the logic. All these parts of the partitioner
would be entirely on-chip. The partitioning process would be
transparent, requiring no extra designer effort, and causing no
disruption to standard tool flows. Therefore, companies could
continue to use their existing compilers while gaining the ability
to partition. In addition to transparency, dynamic partitioning can
tune a system to its actual usage and data values, which may not
be known statically by a compiler (even if profiling is used). If
the usage changes over time, dynamic partitioning could adapt to
the new usage. Furthermore, dynamic partitioning also supports
legacy programs for which only binaries exist.

One drawback of dynamic partitioning could be less
optimized performance and energy of the partitioned designs.
However, we will show that dynamic partitioning actually does a
good job for speeding up inner loops of common embedded
system benchmarks.

People familiar with synthesis and place and route tools will
likely cringe at the idea of implementing such tools on-chip, as
those tools usually use much time and memory on powerful
workstations. However, we will show that, because dynamic
partitioning deals with much smaller regions of code (typically
just tens of lines of inner loop code), lean versions of those tools
that can execute on-chip are indeed feasible. While even those
lean versions result in area overhead on chip, as SOCs approach

250

Authorized licensed use limited to: University of Florida. Downloaded on March 10,2010 at 16:49:47 EST from IEEE Xplore. Restrictions apply.

mailto:vahid)@cs.ucr.edu
http://www.cs.ucr.edu/-vahid

Figure 1: Dynamic hardwarehoftware partitioning system architecture: (a) overall architecture, (b) dynamic partitioning module architecture,
and (c) configurable logic architecture.

processor
application
software)

Memory

Profiler

Partitioning

Profiler

Partitioning

L

Configurable
Logic

Configurable
Logic

Fabric

billions of gates and incorporate dozens of processors, the size
overhead of an on-chip dynamic partitioning tool (which can be
shared by processors) becomes less and less significant.

This paper provides results of our first approach to dynamic
hardwarehoftware partitioning - including a working prototype
set of tools. Section 2 surveys related work. Section 3 describes
our single-chip architecture capable of supporting dynamic
partitioning. Section 4 describes the lean tools that we developed
to dynamically partition and create hardware on an FPGA.
Section 5 highlights our dynamic hardwarekoftware partitioning
showing an average speedup of 2.6 for several benchmarks from
Powerstone [19], NetBench [21] and our own benchmarks.

2. RELATEDWORK
Previously, designers have utilized dynamic software
optimizations to improve software performance. Such approaches
are especially effective because they are transparent, requiring no
extra designer effort or special tools. However, since
optimizations are restricted to software, improvements are very
limited. An example is Dynamo [l], a dynamic binary optimizer
developed by Hewlett Packard. BOA [9] is a similar optimizer for
the PowerPC. Related efforts include Transmeta’s Crusoe [17], a
VLIW processor that dynamically translates x86 instructions into
VLIW instructions. “Just-in-time’’ (JIT) compilers [181 can also
dynamically improve the performance of interpreted languages
such as Java.

Run-time reconfigurable systems achieve better speedups than
dynamic software optimization but require hardware regions to be
pre-determined statically with designer effort. DISC [29] is an
example of a run-time reconfigurable system that dynamically
swaps in hardware regions into an FPGA when needed during
software execution. Chimaera [l I] is a similar approach that treats
the configurable logic as a cache of reconfigurable functional
units. Other examples of run-time reconfiguration include
Dynamically Programmable Gate Arrays (DPGA) [121 used to
rapidly reconfigure the system to perform one of several pre-
programmed configurations, and PipeRench [8] .

We introduced binary-level hardware/software partitioning
[24] as a more transparent solution compared to traditional
source-level partitioning methods. Binary partitioning has the
advantages of working with any software compiler and any high-
level language. In addition, binary partitioning considers
assembly code and object code as hardware candidates. Software
estimation is also more accurate in a binary-level approach.

Furthermore, we showed that binary partitioning achieved similar
speedups to source-level partitioning for numerous benchmarks.

Given that binary-level partitioning yields good speedup
results, we can consider performing partitioning dynamically on a
binary, thus making partitioning completely transparent. Dynamic
partitioning can achieve better results than dynamic software
optimizations. A dynamic hardwarehoftware partitioning
approach is of course difficult, but we show in this paper that such
partitioning is in fact quite feasible. Note that for a dynamic
hardwarehoftware partitioning approach to be successful,
improvements do not have to occur for every example.
Furthermore, one can use dynamic software optimization in
conjunction with dynamic hardwarelsoftware partitioning to
improve examples not suitable for hardware implementation.

3. SYSTEM ARCHITECTURE
Figure l(a) shows our overall architecture for dynamic
hardwarekoftware partitioning. The architecture consists of a
standard embedded microprocessor and memory for normal
application software execution. The architecture also includes on-
chip configurable logic. The dynamic partitioning module
dynamically detects the most frequently-executed software
regions and reimplements those regions as hardware on the
configurable logic. We based our architecture on existing
platforms like the Triscend A7, which runs the microprocessor
and configurable logic at 60 MHz. Of course, we could consider
faster processor speeds.

Figure I(c) shows the architecture for the configurable logic.
The configurable logic uses a DMA (direct memory access)
controller to access memory. When reading from memory, a 32-
bit input register (RO-Input) stores the data. Additionally, the
configurable logic uses a 32-bit register (R1-InOut) for input and
output. The configurable logic stores output data in the R1-InOut
register before the DMA controller writes the data back to
memory. To allow for easy routing to the R1-InOut register, we
use a fixed 32-bit channel connecting the output fro6 the
configurable logic fabric to the R1-InOut register. We will
discuss the details of the configurable logic fabric later.

Our architecture is currently simpler than existing commercial
platforms, as this work is a first attempt at dynamic partitioning.
Currently, the configurable logic implements combinational logic
only. Due to the lack of sequential logic support, the loops that we
implement must have a body that we can implement in a single
cycle. We also limit memory accesses to sequential addresses
because we can implement sequential addresses efficiently with a

25 1

Authorized licensed use limited to: University of Florida. Downloaded on March 10,2010 at 16:49:47 EST from IEEE Xplore. Restrictions apply.

Figure 2: Configurable logic fabric architecture: (a) overall CLF architecture, (b) switch matrix architecture, and (c) LUT architecture.

ConJigurable Logic Fabric

...

II I I I I I I I I I I

Switch Matrkc (SM) j Look-Up Table (LUT)
0 1 2 3

DMA block request. Another limitation of our architecture is that
the number of loop iterations must be determined before the loop
executes, in order to specify the DMA block size request. The
number of iterations can either be determined statically, in the
case of constant bounds, or dynamically, which requires extra
instructions to configure the size of the DMA block request before
the hardware execution starts. Even with the above limitations, we
found that we can significantly speedup up several benchmarks
using dynamic partitioning. We plan to extend the architecture in
future work.

Figure 1@) shows the architecture of the dynamic partitioning
module. The module includes a partitioning co-processor and
memory to run a program that decompiles and synthesizes
selected binary regions for hardware implementation. We
currently use a MIPS [20] microprocessor for the partitioning co-
processor. The module also includes a profiler component that
detects the most frequently executed application software loops.

While the dynamic partitioning module may seem to impose
much size overhead compared with the main microprocessor, be
aware that the co-processor in the module may be much leaner
than the main processor. Furthermore, a platform may contain
several or even dozens of main processors that share a single
dynamic partitioning module - so the overhead becomes smaller
as platforms continue to grow in complexity.

Instead of choosing an existing general configurable logic
fabric (CLF) capable of handling the most complex designs, we
chose to design a simplified configurable logic fabric suitable for
implementing typical inner loops. Mapping, placing, and routing a
design to a general configurable logic fabric is time consuming.
The logic necessary to implement software inner loops is
typically much simpler than general logic functions and thus well
suited to a simplified configurable logic. Therefore, we sought to
simplify the place and route tasks by developing a simple CLF.

Figure 2(a) shows our CLF architecture, consisting of a
matrix of simple 3-input 2-output look-up tables (LUTs)
surrounded by switch matrices (SMs) for routing. Figure 2(c)
shows the architecture of the LUTs. Each LUT simply consists of
an 8-word 2-bit wide SRAM. Furthermore, we can connect each
LUT to the routing channels from either side of the LUT.
However, we can only connect the outputs of a LUT at the bottom
of the LUT. Figure 2(b) shows the architecture of our switch
matrix for routing. The switch matrix design is similar to that of
the Xilinx Spartan XL device [30]. Each switch matrix is
connected with four routing channels on each side of the switch
matrix. However, routing through the switch matrix can only
connect a wire from one side with a given channel to another wire
on the same channel but a different side of the switch matrix.
Designing the switch matrix in this manner simplifies the routing

0 1 2 3
(b)

e
+Inputs
e

algorithm since we can only route a wire using a single channel
throughout the configurable logic fabric. While simplifying the
routing algorithm, situations in which a wire must switch channels
can arise. Such cases occur at the lower boundary of the
configurable logic fabric when we must make a connection to the
output register on a different channel. To handle this situation, we
add a special connection matrix at the bottom of the CLF that
allows us to route a wire on any one channel to any other channel.

4. TOOL OVERVIEW
Figure 3 shows the tool flow for our dynamic hardwarelsoftware
approach. The loop projZer detects regions of software that
should be implemented as hardware. Typical profilers instrument
code, thus changing program behavior and requiring extra tools.
However, our profiler is non-intrusive, working by monitoring
instruction addresses on the memory bus. Whenever a backward
branch occurs, the profiler updates a cache entry that stores the
branch frequency. The profiler uses a small cache of only a few
dozen entries, with a small amount of associativity, to save area
and power. We have shown this method to be accurate while
imposing less than 1% power and area overhead for a MIPS
microprocessor.

Decompilation converts the software loops into a high-level
representation more suitable for synthesis. Decompilation first
converts each assembly instruction into equivalent register
transfers. A register transfer is an assignment statement that
defines the value for a particular register or memory location.
Decompilation tools use register transfers to provide an
instruction-set independent method of decompilation. We
represent each register transfer as a semantic string that represents
the register transfer expression. Once instructions have been
converted to register transfers, the decompilation tool builds a
control flow graph for the software region, and then constructs a
data flow graph by parsing the semantic strings for each register
transfer. The parser builds trees for each register transfer and then
combines the trees into a full data flow graph through definition-
use and use-definition analysis. After creating the control and data
flow graphs, the decompiler applies standard compiler
optimizations to remove the overhead introduced by the assembly
code and instruction set.

The D M con$guration tool maps the memory accesses of
the decompiled loop onto our Dh4A architecture. This process
involves detection of readdwrites, increment and decrement
address updates, and single and block request modes. As
previously stated, the number of loop iterations must be
determined before the loop executes. Therefore, during DMA
configuration, we can remove loop counters and exit conditions
for the decompiled loop. In addition, since memory accesses are

252

Authorized licensed use limited to: University of Florida. Downloaded on March 10,2010 at 16:49:47 EST from IEEE Xplore. Restrictions apply.

Figure 3: Tool flow for dynamic hwlsw partitioning.

Tool -

Decompilation
DMAConfig.
RT Synthesis
Logic Synthesis
Tech. Mapping

Binary +%- Loop Profiling
Code Binary Data
Size size size Time

(Lines) (Kbytes) (Kbytes) (s)

7,203 125 452 0.05

4,695 88 360 1.04

Loops

Decompilation

Configuration

RT and Logic

[Tech.]

Place & Route
Binary

Modification
Bitfile Creation

Updated 5 R Binary

limited to sequential locations, we can remove all address
calculations from the decompiled loop. After we detect all DMA
settings, we can determine how to configure the DMA controller
for the given loop. Initially, the DMA controller will transfer data
that is needed before the loop starts. This DMA transfer is started
by the hardware enable signal. After the DMA controller reads the
initialization data, the hardware starts a block request that will
fetch one memory location per cycle in the case of a read, or write
one location per cycle in the case of a write. Since loop bodies are
limited to a single cycle, a DMA block request is able to fetch
data at the exact rate needed by the hardware. After the block
request is finished, the hardware uses a final DMA transfer to
write back any results.

Register-transfer (RT) synthesis converts each output bit into
a Boolean expression by traversing the dataflow graphs of the
software region. Currently, we require that loop bodies must be
implemented in a single cycle. If loops could execute in multiple
cycles, we would have to perform behavioral synthesis to
schedule the loop operations - a task we are presently working
on.

Logic synthesis followed by technology mapping, place, and
route convert the Boolean equations into a netlist. Starting with
the Boolean equations, logic synthesis creates a directed acyclic
graph (DAG) of the Boolean logic network. The internal nodes of
the DAG correspond to simple logic gates, namely AND, OR,
XOR, and invert. Logic synthesis then optimizes the logic
network using a simplified two-level logic minimization
algorithm. Starting with the input nodes, we traverse the logic
network in a breadth first manner and apply logic minimization at
each node. The logic minimization algorithm uses a single expand
phase to achieve good optimization. While a more robust two-
level logic minimizer could achieve better optimization for larger

Table 1: Dynamic partitioning tools.

IPlace & Route I
examples, our simplified algorithm is better suited for on-chip
execution.

After logic synthesis, technology mapping traverses the DAG
backwards starting with the output nodes and combines nodes to
create LUT nodes corresponding with 3-input single-output
LUTs. Once we identify the single-output LUT nodes, we further
combine the nodes wherever possible to form the final 3-input 2-
output LUTs, which are a direct mapping to the underlying
configurable logic fabric.

We then place the LUT nodes onto the configurable logic
fabric. We perform placement of the LUT nodes in two steps. The
first step determines a relative placement of the nodes to each
other, by determining the critical path and placing this path into a
single horizontal row. We analyze the remaining non-placed
nodes to determine the dependency between the non-placed nodes
and the nodes already placed. Based upon these dependencies, we
place each node either above (input to placed-node) or below
(uses output +om placed-node) as close as possible to the
dependent node. Once we’ve determined the relative placement of
LUT nodes, we superimpose this placement onto the center of the
configurable logic fabric.

Finally, we peiform routing between inputs, outputs, and
LUTs using a simple greedy algorithm. We employ a greedy
routing algorithm that routes wires in the most direct fashion. We
perform routing in three steps: first, we route the wires between
input nodes and LUTs, followed by routing wires from LUTs to
the outputs, and finally we route the wires connecting LUTs
together. To route the necessary wires within the configurable
logic fabric, we make routing decisions at the switch matrices.
When a partially routed wire has reached a switch matrix, our
algorithm attempts to create a route towards the destination LUT
node. However, when the routing process reaches a switch matrix
that is not available for routing, the algorithm will back track to
the previous switch matrix and attempt to route the wire in the
opposite direction to find an alternate route.

Bitfile creation combines the placed and routed hardware
description with the DMA configuration information into a single
bitfile that we use to initialize the configurable logic.

Binary modijkation handles updating the software binary to
utilize the hardware for the loops. We replace the original
software instructions for the loop with a jump to hardware
initialization code. The initialization code first enables the
hardware by writing to a memory mapped register or port that is
connected to the hardware enable signal. The enable instruction is
followed by code responsible for shutting down the
microprocessor into a power-down sleep mode. When the
hardware finishes execution, the hardware asserts a completion
signal that causes a software interrupt. This interrupt wakes up the
microprocessor, which resumes normal execution. Finally, we add
a jump instruction at the end of the hardware initialization code
that jumps to the end of the original software loop.

253

Authorized licensed use limited to: University of Florida. Downloaded on March 10,2010 at 16:49:47 EST from IEEE Xplore. Restrictions apply.

Typical tools for decompilation, synthesis, and place and
route require powerful workstations. To enable on-chip execution,
we have developed our tools to be very lean so they can execute
on the partitioning co-processor. Table 1 summarizes the sizes of
our tools, which we’ve grouped into two sub-tools. The first tool
handles decompilation, DMA configuration, and RT-level
synthesis. The second tool performs logic minimization,
technology mapping, and place and route. Code Size is the
number of lines of C code used to implement each tool. Binaly
Size is the size in kilobytes of the tools compiled to a MIPS
binary. The total lines of C was 11,898, far less than similar
desktop tools. Data size is the maximum data memory needed
during tool execution. Time is the execution time of each tool on a
60 MHz MIPS. The maximum data memory required was 452
kilobytes. The total execution time to partition one example was
1.09 seconds. The combined binary sizes were 213 kilobytes.

We obtained the MIPS data by executing our tools on
SimpleScalar [3], which is a MIPS superset. We multiplied the
reported dynamic instruction count by 1.5 cycles per instruction,
and by the cycle time of a 60 MHz clock.

Dynamic hardware/software partitioning is feasible if the
partitioning module can fit in a small enough area. The die size of
a MIPS M4K core in 0.13 micron is less than 1 mm2, which is
quite small in comparison to the size of a SOC platform.
Examining die photos of platforms from Altera, Xilinx and
Triscend, for example, we observe that the microprocessor
occupies around 10% or less of total area - instead, most of the
area is FPGA. Furthermore, the Xilinx platform can presently
have up to four processors. The partitioning co-processor could
even be implemented using a soft core processor on the FPGA.
Our profiler’s area is also quite small, requiring only 2,300 logic
gates plus a small 2-way set-associative16-entry (note: 16 entries,
not Kbytes) cache where each entry holds a 16-bit frequency.

The partitioning software tools require about 500 Kbytes of
data memory, as shown in Table 1. Presently, 500 Kbytes is a lot
of data memory to expect to find on a platform. Triscend’s A7 has
only 16 Kbytes of on-chip RAM, and Altera’s Excalibur has up to
384 Kbytes, and Xilinx’s Virtex I1 Pro has up to about 1 Mbyte.
As Moore’s Law continues though, in a few years 500 Kbytes
will be considered a small memory and will easily fit.

Power of the dynamic partitioning module is small compared
to overall chip power. The profiler consumes an average of 43
mW at 60 MHz. The MIPS M4K partitioning co-processor
consumes approximately 66 mW at 60 MHz. The extra memory
will also consume power, but can be shutdown when we are not
performing partitioning. We have measured the power of existing
Triscend platforms and determined that the power consumption
ranges from 0.5 W to 1 W. Based on these numbers, the power
increase of the dynamic partitioning module is only 10-20%. This
overhead only occurs when the partitioner is activated, which may
only be a small fraction of the time. Also, bear in mind that future
platforms may have dozens of processors that can share a single
dynamic partitioning module, making the size and power
overheads even less significant.

If using a separate processor is not feasible for some reason,
as an alternative, we could create the partitioning module as a
process that shares an existing processor with an application. In
this scenario, when the profiler has detected a region to
implement in hardware, the processor performs a context switch
and starts executing the partitioning process. Once the partitioning
process has finished, the original application can restart
execution. In this approach, we could replace the entire dynamic
partitioning module with only a profiler, thus saving chip area, at
the expense of temporarily slower application speed.

Example
brev

5. EXPERIMENTS
Table 2 highlights the benchmarks we used. Total Ins is the total
number of instructions for each example. Loop Ins is the total
number of instructions used by the loops that we implement in
hardware. Loop Time% is the percentage of total software
execution time that is spent in the implemented loops. Loop Size%
is the percentage of the total instructions that the loop required.
Ideal Speedup is the maximum possible speedup assuming that
the loops were executing in zero time. brev is a small program
that reverses the bits of 32-bit values in memory. The loop we
implemented in hardware reverses the bits for each value in an
array. This loop is interesting because the body synthesizes
completely to wires. g 3 f a l and g3fax2 are the same group three
fax decode benchmark. For g3fa1, we implemented a small loop
that accumulates the values from an array in memory, requiring
only an adder in the configurable logic. g3fax2 re-implements a
loop that writes a value to every location in a memory block. This
loop doesn’t need the configurable logic and can be completed
with a single DMA block write. brev and g3fax are both from the
Powerstone [I91 benchmarks. url is from NetBench [21]. The
implemented loop for url writes a value to each location in an
array. logmin is our own benchmark that is part of an on-chip
logic minimization kernel. The implemented loop consists of
AND, OR, and XOR logic operations. For all the examples, the
considered loops averaged 55% of execution time and thus had an
ideal speedup of 2.8. The static size of the loops was only 2% of
the total instructions, and the loops required little area in the
configurable logic.

We generated results by running the tools described in
Section 4 on the benchmark binaries. The entire tool flow is
automated except for binary modification, which is presently done
manually.

For our experiments, we measured application software
performance using a MIPS simulator. We determined hardware
performance as the product of the total loop iterations and total
loop executions. Since all loop bodies were limited to a single
cycle, this product represents the total cycles spent in the loop.
We also added in the required time to initialize the loop and write

Ins Ins Tim% Size% Speedup
992 104 70.0% 10.5% 3.3

Table 2: Benchmark information.

Example
brev

I I Total Loop Loop Loop Ideal I

Time Time Time Time S
0.05 0.03 0.001 0.02 3.1

g3faxl

13526 17 79.9% 0.1%

Avg: 55.3% 2.4% 2.8

Table 3: Dynamic partitioning results.

sw Hw
Sw Loop Loop SwlHw

1”; g3faxl 1 23::; 16.98 1.4
g3fax2 17.61 1.3

379.90 303.74 13.29 89.45 4.2
lo min 16.32 10.42 0.21 6.12 2.7

Avg : 65.78 3.16 26.03 2.6

254

Authorized licensed use limited to: University of Florida. Downloaded on March 10,2010 at 16:49:47 EST from IEEE Xplore. Restrictions apply.

back any results. We determined the delay of the hardware by
calculating the delay through all transistors along the critical path.
For all examples, this delay was small enough to run the
configurable logic at the required 60 MHz.

Table 3 shows our dynamic hardwarehoftware partitioning
results. Sw Time is the execution time of the examples when
running completely in software. Sw Loop Time is the time
required by the implemented loop to run in software. Hw Loop
Time is the time of the loop when implemented in hardware.
Hw/Sw Time is the execution time of the example after dynamic
partitioning. S represents the speedup after dynamic
hardwarehoftware partitioning. All time values are in
milliseconds. We excluded partitioning tool runtime since that
time is amortized over all executions of the partitioned system
(partitioning is only run once).

Average speedup for the four examples was 2.6, which is very
close to the ideal speedup of 2.8. Notice that the hardware
execution of the loop was 20 times faster on average than the
software execution of the loop. Thus, we would still obtain good
speedups even with a faster processor clock.

6. CONCLUSIONS
A dynamic hardware/software partitioning approach has many
advantages over traditional partitioning approaches. Dynamic
partitioning can be transparent, meaning a designer can achieve
the benefits of partitioning while writing regular software and
using standard software tools and flows. Dynamic partitioning can
also adapt to an application's actual usage at run time.

We presented first results of dynamic hardware/software
partitioning. We discussed the architecture and lean tools needed
for dynamic partitioning. We presented results for several
benchmarks, showing an average speedup of 2.6, which was near
the ideal speedup of 2.8.

Future work consists of extending the architecture and tools.
We will extend our configurable logic to handle sequential logic,
and extend our tools to handle a wider variety of loops, including
loops requiring multiple cycles in hardware and having more
complex memory access patterns.

7. ACKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation, grants CCR-9876006 and CCR-0203829, by the
Semiconductor Research Corporation, and by a Dept. of
Education GAANN fellowship.

8. REFERENCES
[I] V. Bala, E. Duestenvald, S. Banerjia. Dynamo: A

Transparent Dynamic Optimization System. Proc. of the
ACM SIGPLAN '00 Conference on Programming Language
Design and Implementation, pp. 1-12,2000,

[2] A. Balboni, W. Fomaciari, D. Sciuto. Partitioning and
Exploration in the TOSCA CO-Design Flow. International
Workshop on Hardware/Software Codesign, pp. 62-69, 1996.

[3] D. Burger, T.M. Austin. The SimpleScalar Tool Set, Version
2.0. University of Wisconsin-Madison Computer Sciences
Department Technical Report #1342, June 1997.

[4] P. Eles, Z. Peng, K. Kuchchinski, A. Doboli. System Level
Hardware/Software Partitioning Based on Simulated
Annealing and Tabu Search. Kluwer's Design Automation
for Embedded Systems, Vol. 2 No. 1, pp. 5-32, Jan. 1997.

[5] R. Emst, J. Henkel, T. Benner. Hardware-Software
Cosynthesis for Microcontrollers. IEEE Design & Test of
Computers, pp. 64-75, Octoberhlecember 1993.

[6] Excalibur, Altera Corp., http://www.altera.com.
[7] D.D. Gajski, F. Vahid, S. Narayan, J. Gong. SpecSyn: An

Environment Supporting the Specify-Explore-Refine
Paradigm for Hardware/Software System Design. IEEE

Transactions on VLSI Systems, Vol. 6, No. 1, pp. 84-100,
1998.

[8] S. C. Goldstein, H. Schmit, M. Budiu, M. Moe, R. R. Taylor.
PipeRench: A Reconfigurable Architecture and Compiler,
Computer, Vol. 33, pp. 70-77, April 2000.

[9] M. Gschwind, E. Altman, S . Sathaye, P. Ledak, D.
Appenzeller. Dynamic and Transparent Binary Translation.
IEEE Computer Magazine Vol. 33 No. 3. pp.54-59, March
2000.

[101 R. Gupta, G. De Micheli. Hardware-Software Cosynthesis
for Digital Systems. IEEE Design & Test of Computers,
pages 29-41, September 1993.

[l 13 S. Hauck, T. W. Fry, M. M. Hosler, J. P. Kao. The Chimaera
Reconfigurable Functional Unit. IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 87-96, 1997.

[121 A. DeHon. DPGA-Coupled Microprocessors: Commodity
ICs for the Early 21st Century. Proc. FCCM, 1994.

[I31 J. Henkel. A Low Power Hardware/Software Partitioning
Approach for Core-Based Embedded Systems. Proceedings
of the 36th ACMAEEE Conference on Design Automation

[I41 J. Henkel, Y . Li. Energy-conscious HW/SW-partitioning of
embedded systems: A Case Study on an MPEG-2 Encoder.
Proceedings of Sixth Intemational Workshop on
Hardware/Software Codesign, pp. 23-27, March 1998.

[15] J. Henkel, R. Emst. A HardwareEoftware Partitioner Using
a Dynamically Determined Granularity. Design Automation
Conference, 1997.

[I61 A. Kalavade, E. Lee. A Global CriticalityLocal Phase
Driven Algorithm for the Constrained Hardware/Software
Partitioning Problem. International Workshop on
Hardware/Software Codesign, pp. 42-48, 1994.

[17] A. Klaiber. The Technology Behind Crusoe Processors.
Transmeta Corporation White Paper, January 2000.

[181 A. Krall. Efficient J a v a W Just-In-Time Vompilation, in
Proceedings of the Intemational Conference on Parallel
Architectures and Compilation Techniques, pp. 54--61, 1998.

[19] A. Malik, B. Moyer, D. Cermak. A Low Power Unified
Cache Architecture Providing Power and Performance
Flexibility. International Symposium on Low Power
Electronics and Design, June 2000.

(DAC), pp. 122-127,1999.

[20] MIPS Technologies, Inc., http://w.mips.com.
[2 11 NetBench, http://cares.icsl.ucla.edu/NetBench/.
[22] G. Stitt, B. Grattan, J. Villarreal, F. Vahid. Using On-Chip

Configurable Logic to Reduce Embedded System Software
Energy. IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM), 2002.

[23] G. Stitt, F. Vahid. Energy Advantages of Microprocessor
Platforms with On-Chip Configurable Logic. IEEE Design &
Test of Computers, pp.36-43, Nov.-Dec. 2002.

[24] G. Stitt, F. Vahid. Hardware/Software Partitioning of
Software Binaries. IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 164-170, Nov. 2002.

[25] Triscend Corporation, httu://www.triscend.com, 2003.
[26] G. Vanmeerbeeck, P. Schaumont, S . Vemalde, M. Engels, I.

Bolsens. Hardware/Software Partitioning of Embedded
System in OCAPI-XI. Intemational Symposium on
Hardware/Software Codesign, pp. 30-35,2001.

[27] Virtex I1 Pro, Xilinx Corp., http://www.xilinx.com.
[28] M. Wan, Y . Ichikawa, D. Lidsky, J. Rabaey. An Energy

Conscious Methodology for Early Design Exploration of
Heterogeneous DSPs. Proceedings of the IEEE 1998 Custom
Integrated Circuits Conference, Santa Clara, pp. 11 1-1 17,
May 1998.

[29] M. Wirthlin, B. Hutchings. DISC: The Dynamic Instruction
Set Computer. FPGAs for Fast Board Development and
Reconfigurable Computing. Proc. SPIE 2607, pp. 92-103,
1995.

[30] Xilinx Corporation, httu://www.xilinx.com.

255

Authorized licensed use limited to: University of Florida. Downloaded on March 10,2010 at 16:49:47 EST from IEEE Xplore. Restrictions apply.

http://www.altera.com
http://w.mips.com
http://cares.icsl.ucla.edu/NetBench
http://httu://www.triscend.com
http://www.xilinx.com
http://httu://www.xilinx.com

