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ABSTRACT 
Partitioning an application among software running on a 
microprocessor and hardware co-processors in on-chip 
configurable logic has been shown to improve performance and 
energy consumption in embedded systems. Meanwhile, dynamic 
software optimization methods have shown the usefulness and 
feasibility of runtime program optimization, but those 
optimizations do not achieve as much as partitioning. We 
introduce a first approach to dynamic hardware/software 
partitioning. We describe our system architecture and initial on- 
chip tools, including profiler, decompiler, synthesis, and 
placement and routing tools for a simplified configurable logic 
fabric, able to perform dynamic partitioning of real benchmarks. 
We show speedups averaging 2.6 for five benchmarks taken from 
Powerstone, NetBench, and our own benchmarks. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems] : Real- 
time and embedded systems. 

General Terms 

Keywords 

Algorithms, Performance, Design. 

Hardware/software partitioning, FPGA, synthesis, platforms, 
system-on-a-chip, dynamic optimization, codesign, self- 
improving chips, embedded systems. 

1. INTRODUCTION 
Hardware/so%are partitioning is the process of dividing an 
application into software running on a microprocessor and 
hardware co-processors. Partitioning is a well-known technique 
that can achieve results superior to software-only solutions. 
Partitioning can improve performance 
[2][4][5][7][10][15][ 16][26] and even reduce energy consumption 
[13][14][22][23][28]. The appearance of single-chip platforms 
incorporating a microprocessor and FPGA (field-programmable 
gate array) on a single chip [6][25][27] has recently made 
hardwardsohare partitioning even more attractive. Such 
platforms yield more efficient communication between the 
microprocessor and FPGA than two chip designs, resulting in 
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improved performance and reduced power. In fact, such single- 
chip platforms encourage partitioning by designers who might 
have otherwise created a sofhare-only design. By treating the 
FPGA as an extension of the microprocessor, a designer can move 
critical software regions from the microprocessor onto FPGA 
hardware, resulting in improved performance and usually reduced 
energy consumption [23]. 

Hardware/software partitioning has had limited commercial 
success due in part to tool flow problems. First, a designer must 
use an appropriate profiler to detect regions that contribute to a 
large percentage of program execution. Second, a designer must 
use a compiler with partitioning capabilities to partition the 
software source. Such compilers are rare and often resisted 
because companies may have trusted compilers. Third, the 
designer must apply a synthesis tool to convert the partitioning 
compiler’s hardware description output to an FPGA 
configuration. A tool flow requiring integration of profilers, 
special compilers, and synthesis is far more complicated than that 
of typical software design, requiring extra designer effort that 
most designers and companies are not willing to carry out. Thus, 
the more transparent one can make hardware/software 
partitioning, the more successful hardware/software partitioning 
may be. 

A dynamic partitioning approach could solve these problems. 
An ideal dynamic partitioner would monitor a microprocessor’s 
executing binary program, detect critical code regions, decompile 
those regions, synthesize them to hardware, place and route that 
hardware onto on-chip configurable logic, and update the binary 
to communicate with the logic. All these parts of the partitioner 
would be entirely on-chip. The partitioning process would be 
transparent, requiring no extra designer effort, and causing no 
disruption to standard tool flows. Therefore, companies could 
continue to use their existing compilers while gaining the ability 
to partition. In addition to transparency, dynamic partitioning can 
tune a system to its actual usage and data values, which may not 
be known statically by a compiler (even if profiling is used). If 
the usage changes over time, dynamic partitioning could adapt to 
the new usage. Furthermore, dynamic partitioning also supports 
legacy programs for which only binaries exist. 

One drawback of dynamic partitioning could be less 
optimized performance and energy of the partitioned designs. 
However, we will show that dynamic partitioning actually does a 
good job for speeding up inner loops of common embedded 
system benchmarks. 

People familiar with synthesis and place and route tools will 
likely cringe at the idea of implementing such tools on-chip, as 
those tools usually use much time and memory on powerful 
workstations. However, we will show that, because dynamic 
partitioning deals with much smaller regions of code (typically 
just tens of lines of inner loop code), lean versions of those tools 
that can execute on-chip are indeed feasible. While even those 
lean versions result in area overhead on chip, as SOCs approach 
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Figure 1: Dynamic hardwarehoftware partitioning system architecture: (a) overall architecture, (b) dynamic partitioning module architecture, 
and (c) configurable logic architecture. 
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billions of gates and incorporate dozens of processors, the size 
overhead of an on-chip dynamic partitioning tool (which can be 
shared by processors) becomes less and less significant. 

This paper provides results of our first approach to dynamic 
hardwarehoftware partitioning - including a working prototype 
set of tools. Section 2 surveys related work. Section 3 describes 
our single-chip architecture capable of supporting dynamic 
partitioning. Section 4 describes the lean tools that we developed 
to dynamically partition and create hardware on an FPGA. 
Section 5 highlights our dynamic hardwarekoftware partitioning 
showing an average speedup of 2.6 for several benchmarks from 
Powerstone [19], NetBench [21] and our own benchmarks. 

2. RELATEDWORK 
Previously, designers have utilized dynamic software 
optimizations to improve software performance. Such approaches 
are especially effective because they are transparent, requiring no 
extra designer effort or special tools. However, since 
optimizations are restricted to software, improvements are very 
limited. An example is Dynamo [l], a dynamic binary optimizer 
developed by Hewlett Packard. BOA [9] is a similar optimizer for 
the PowerPC. Related efforts include Transmeta’s Crusoe [17], a 
VLIW processor that dynamically translates x86 instructions into 
VLIW instructions. “Just-in-time’’ (JIT) compilers [ 181 can also 
dynamically improve the performance of interpreted languages 
such as Java. 

Run-time reconfigurable systems achieve better speedups than 
dynamic software optimization but require hardware regions to be 
pre-determined statically with designer effort. DISC [29] is an 
example of a run-time reconfigurable system that dynamically 
swaps in hardware regions into an FPGA when needed during 
software execution. Chimaera [l I] is a similar approach that treats 
the configurable logic as a cache of reconfigurable functional 
units. Other examples of run-time reconfiguration include 
Dynamically Programmable Gate Arrays (DPGA) [ 121 used to 
rapidly reconfigure the system to perform one of several pre- 
programmed configurations, and PipeRench [8] .  

We introduced binary-level hardware/software partitioning 
[24] as a more transparent solution compared to traditional 
source-level partitioning methods. Binary partitioning has the 
advantages of working with any software compiler and any high- 
level language. In addition, binary partitioning considers 
assembly code and object code as hardware candidates. Software 
estimation is also more accurate in a binary-level approach. 

Furthermore, we showed that binary partitioning achieved similar 
speedups to source-level partitioning for numerous benchmarks. 

Given that binary-level partitioning yields good speedup 
results, we can consider performing partitioning dynamically on a 
binary, thus making partitioning completely transparent. Dynamic 
partitioning can achieve better results than dynamic software 
optimizations. A dynamic hardwarehoftware partitioning 
approach is of course difficult, but we show in this paper that such 
partitioning is in fact quite feasible. Note that for a dynamic 
hardwarehoftware partitioning approach to be successful, 
improvements do not have to occur for every example. 
Furthermore, one can use dynamic software optimization in 
conjunction with dynamic hardwarelsoftware partitioning to 
improve examples not suitable for hardware implementation. 

3. SYSTEM ARCHITECTURE 
Figure l(a) shows our overall architecture for dynamic 
hardwarekoftware partitioning. The architecture consists of a 
standard embedded microprocessor and memory for normal 
application software execution. The architecture also includes on- 
chip configurable logic. The dynamic partitioning module 
dynamically detects the most frequently-executed software 
regions and reimplements those regions as hardware on the 
configurable logic. We based our architecture on existing 
platforms like the Triscend A7, which runs the microprocessor 
and configurable logic at 60 MHz. Of course, we could consider 
faster processor speeds. 

Figure I(c) shows the architecture for the configurable logic. 
The configurable logic uses a DMA (direct memory access) 
controller to access memory. When reading from memory, a 32- 
bit input register (RO-Input) stores the data. Additionally, the 
configurable logic uses a 32-bit register (R1-InOut) for input and 
output. The configurable logic stores output data in the R1-InOut 
register before the DMA controller writes the data back to 
memory. To allow for easy routing to the R1-InOut register, we 
use a fixed 32-bit channel connecting the output fro6 the 
configurable logic fabric to the R1-InOut register. We will 
discuss the details of the configurable logic fabric later. 

Our architecture is currently simpler than existing commercial 
platforms, as this work is a first attempt at dynamic partitioning. 
Currently, the configurable logic implements combinational logic 
only. Due to the lack of sequential logic support, the loops that we 
implement must have a body that we can implement in a single 
cycle. We also limit memory accesses to sequential addresses 
because we can implement sequential addresses efficiently with a 
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Figure 2: Configurable logic fabric architecture: (a) overall CLF architecture, (b) switch matrix architecture, and (c) LUT architecture. 
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DMA block request. Another limitation of our architecture is that 
the number of loop iterations must be determined before the loop 
executes, in order to specify the DMA block size request. The 
number of iterations can either be determined statically, in the 
case of constant bounds, or dynamically, which requires extra 
instructions to configure the size of the DMA block request before 
the hardware execution starts. Even with the above limitations, we 
found that we can significantly speedup up several benchmarks 
using dynamic partitioning. We plan to extend the architecture in 
future work. 

Figure 1@) shows the architecture of the dynamic partitioning 
module. The module includes a partitioning co-processor and 
memory to run a program that decompiles and synthesizes 
selected binary regions for hardware implementation. We 
currently use a MIPS [20] microprocessor for the partitioning co- 
processor. The module also includes a profiler component that 
detects the most frequently executed application software loops. 

While the dynamic partitioning module may seem to impose 
much size overhead compared with the main microprocessor, be 
aware that the co-processor in the module may be much leaner 
than the main processor. Furthermore, a platform may contain 
several or even dozens of main processors that share a single 
dynamic partitioning module - so the overhead becomes smaller 
as platforms continue to grow in complexity. 

Instead of choosing an existing general configurable logic 
fabric (CLF) capable of handling the most complex designs, we 
chose to design a simplified configurable logic fabric suitable for 
implementing typical inner loops. Mapping, placing, and routing a 
design to a general configurable logic fabric is time consuming. 
The logic necessary to implement software inner loops is 
typically much simpler than general logic functions and thus well 
suited to a simplified configurable logic. Therefore, we sought to 
simplify the place and route tasks by developing a simple CLF. 

Figure 2(a) shows our CLF architecture, consisting of a 
matrix of simple 3-input 2-output look-up tables (LUTs) 
surrounded by switch matrices (SMs) for routing. Figure 2(c) 
shows the architecture of the LUTs. Each LUT simply consists of 
an 8-word 2-bit wide SRAM. Furthermore, we can connect each 
LUT to the routing channels from either side of the LUT. 
However, we can only connect the outputs of a LUT at the bottom 
of the LUT. Figure 2(b) shows the architecture of our switch 
matrix for routing. The switch matrix design is similar to that of 
the Xilinx Spartan XL device [30]. Each switch matrix is 
connected with four routing channels on each side of the switch 
matrix. However, routing through the switch matrix can only 
connect a wire from one side with a given channel to another wire 
on the same channel but a different side of the switch matrix. 
Designing the switch matrix in this manner simplifies the routing 
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algorithm since we can only route a wire using a single channel 
throughout the configurable logic fabric. While simplifying the 
routing algorithm, situations in which a wire must switch channels 
can arise. Such cases occur at the lower boundary of the 
configurable logic fabric when we must make a connection to the 
output register on a different channel. To handle this situation, we 
add a special connection matrix at the bottom of the CLF that 
allows us to route a wire on any one channel to any other channel. 

4. TOOL OVERVIEW 
Figure 3 shows the tool flow for our dynamic hardwarelsoftware 
approach. The loop projZer detects regions of software that 
should be implemented as hardware. Typical profilers instrument 
code, thus changing program behavior and requiring extra tools. 
However, our profiler is non-intrusive, working by monitoring 
instruction addresses on the memory bus. Whenever a backward 
branch occurs, the profiler updates a cache entry that stores the 
branch frequency. The profiler uses a small cache of only a few 
dozen entries, with a small amount of associativity, to save area 
and power. We have shown this method to be accurate while 
imposing less than 1% power and area overhead for a MIPS 
microprocessor. 

Decompilation converts the software loops into a high-level 
representation more suitable for synthesis. Decompilation first 
converts each assembly instruction into equivalent register 
transfers. A register transfer is an assignment statement that 
defines the value for a particular register or memory location. 
Decompilation tools use register transfers to provide an 
instruction-set independent method of decompilation. We 
represent each register transfer as a semantic string that represents 
the register transfer expression. Once instructions have been 
converted to register transfers, the decompilation tool builds a 
control flow graph for the software region, and then constructs a 
data flow graph by parsing the semantic strings for each register 
transfer. The parser builds trees for each register transfer and then 
combines the trees into a full data flow graph through definition- 
use and use-definition analysis. After creating the control and data 
flow graphs, the decompiler applies standard compiler 
optimizations to remove the overhead introduced by the assembly 
code and instruction set. 

The D M  con$guration tool maps the memory accesses of 
the decompiled loop onto our Dh4A architecture. This process 
involves detection of readdwrites, increment and decrement 
address updates, and single and block request modes. As 
previously stated, the number of loop iterations must be 
determined before the loop executes. Therefore, during DMA 
configuration, we can remove loop counters and exit conditions 
for the decompiled loop. In addition, since memory accesses are 
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Figure 3: Tool flow for dynamic hwlsw partitioning. 
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limited to sequential locations, we can remove all address 
calculations from the decompiled loop. After we detect all DMA 
settings, we can determine how to configure the DMA controller 
for the given loop. Initially, the DMA controller will transfer data 
that is needed before the loop starts. This DMA transfer is started 
by the hardware enable signal. After the DMA controller reads the 
initialization data, the hardware starts a block request that will 
fetch one memory location per cycle in the case of a read, or write 
one location per cycle in the case of a write. Since loop bodies are 
limited to a single cycle, a DMA block request is able to fetch 
data at the exact rate needed by the hardware. After the block 
request is finished, the hardware uses a final DMA transfer to 
write back any results. 

Register-transfer (RT) synthesis converts each output bit into 
a Boolean expression by traversing the dataflow graphs of the 
software region. Currently, we require that loop bodies must be 
implemented in a single cycle. If loops could execute in multiple 
cycles, we would have to perform behavioral synthesis to 
schedule the loop operations - a task we are presently working 
on. 

Logic synthesis followed by technology mapping, place, and 
route convert the Boolean equations into a netlist. Starting with 
the Boolean equations, logic synthesis creates a directed acyclic 
graph (DAG) of the Boolean logic network. The internal nodes of 
the DAG correspond to simple logic gates, namely AND, OR, 
XOR, and invert. Logic synthesis then optimizes the logic 
network using a simplified two-level logic minimization 
algorithm. Starting with the input nodes, we traverse the logic 
network in a breadth first manner and apply logic minimization at 
each node. The logic minimization algorithm uses a single expand 
phase to achieve good optimization. While a more robust two- 
level logic minimizer could achieve better optimization for larger 

Table 1: Dynamic partitioning tools. 

IPlace & Route I 
examples, our simplified algorithm is better suited for on-chip 
execution. 

After logic synthesis, technology mapping traverses the DAG 
backwards starting with the output nodes and combines nodes to 
create LUT nodes corresponding with 3-input single-output 
LUTs. Once we identify the single-output LUT nodes, we further 
combine the nodes wherever possible to form the final 3-input 2- 
output LUTs, which are a direct mapping to the underlying 
configurable logic fabric. 

We then place the LUT nodes onto the configurable logic 
fabric. We perform placement of the LUT nodes in two steps. The 
first step determines a relative placement of the nodes to each 
other, by determining the critical path and placing this path into a 
single horizontal row. We analyze the remaining non-placed 
nodes to determine the dependency between the non-placed nodes 
and the nodes already placed. Based upon these dependencies, we 
place each node either above (input to placed-node) or below 
(uses output +om placed-node) as close as possible to the 
dependent node. Once we’ve determined the relative placement of 
LUT nodes, we superimpose this placement onto the center of the 
configurable logic fabric. 

Finally, we peiform routing between inputs, outputs, and 
LUTs using a simple greedy algorithm. We employ a greedy 
routing algorithm that routes wires in the most direct fashion. We 
perform routing in three steps: first, we route the wires between 
input nodes and LUTs, followed by routing wires from LUTs to 
the outputs, and finally we route the wires connecting LUTs 
together. To route the necessary wires within the configurable 
logic fabric, we make routing decisions at the switch matrices. 
When a partially routed wire has reached a switch matrix, our 
algorithm attempts to create a route towards the destination LUT 
node. However, when the routing process reaches a switch matrix 
that is not available for routing, the algorithm will back track to 
the previous switch matrix and attempt to route the wire in the 
opposite direction to find an alternate route. 

Bitfile creation combines the placed and routed hardware 
description with the DMA configuration information into a single 
bitfile that we use to initialize the configurable logic. 

Binary modijkation handles updating the software binary to 
utilize the hardware for the loops. We replace the original 
software instructions for the loop with a jump to hardware 
initialization code. The initialization code first enables the 
hardware by writing to a memory mapped register or port that is 
connected to the hardware enable signal. The enable instruction is 
followed by code responsible for shutting down the 
microprocessor into a power-down sleep mode. When the 
hardware finishes execution, the hardware asserts a completion 
signal that causes a software interrupt. This interrupt wakes up the 
microprocessor, which resumes normal execution. Finally, we add 
a jump instruction at the end of the hardware initialization code 
that jumps to the end of the original software loop. 
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Typical tools for decompilation, synthesis, and place and 
route require powerful workstations. To enable on-chip execution, 
we have developed our tools to be very lean so they can execute 
on the partitioning co-processor. Table 1 summarizes the sizes of 
our tools, which we’ve grouped into two sub-tools. The first tool 
handles decompilation, DMA configuration, and RT-level 
synthesis. The second tool performs logic minimization, 
technology mapping, and place and route. Code Size is the 
number of lines of C code used to implement each tool. Binaly 
Size is the size in kilobytes of the tools compiled to a MIPS 
binary. The total lines of C was 11,898, far less than similar 
desktop tools. Data size is the maximum data memory needed 
during tool execution. Time is the execution time of each tool on a 
60 MHz MIPS. The maximum data memory required was 452 
kilobytes. The total execution time to partition one example was 
1.09 seconds. The combined binary sizes were 213 kilobytes. 

We obtained the MIPS data by executing our tools on 
SimpleScalar [3], which is a MIPS superset. We multiplied the 
reported dynamic instruction count by 1.5 cycles per instruction, 
and by the cycle time of a 60 MHz clock. 

Dynamic hardware/software partitioning is feasible if the 
partitioning module can fit in a small enough area. The die size of 
a MIPS M4K core in 0.13 micron is less than 1 mm2, which is 
quite small in comparison to the size of a SOC platform. 
Examining die photos of platforms from Altera, Xilinx and 
Triscend, for example, we observe that the microprocessor 
occupies around 10% or less of total area - instead, most of the 
area is FPGA. Furthermore, the Xilinx platform can presently 
have up to four processors. The partitioning co-processor could 
even be implemented using a soft core processor on the FPGA. 
Our profiler’s area is also quite small, requiring only 2,300 logic 
gates plus a small 2-way set-associative16-entry (note: 16 entries, 
not Kbytes) cache where each entry holds a 16-bit frequency. 

The partitioning software tools require about 500 Kbytes of 
data memory, as shown in Table 1. Presently, 500 Kbytes is a lot 
of data memory to expect to find on a platform. Triscend’s A7 has 
only 16 Kbytes of on-chip RAM, and Altera’s Excalibur has up to 
384 Kbytes, and Xilinx’s Virtex I1 Pro has up to about 1 Mbyte. 
As Moore’s Law continues though, in a few years 500 Kbytes 
will be considered a small memory and will easily fit. 

Power of the dynamic partitioning module is small compared 
to overall chip power. The profiler consumes an average of 43 
mW at 60 MHz. The MIPS M4K partitioning co-processor 
consumes approximately 66 mW at 60 MHz. The extra memory 
will also consume power, but can be shutdown when we are not 
performing partitioning. We have measured the power of existing 
Triscend platforms and determined that the power consumption 
ranges from 0.5 W to 1 W. Based on these numbers, the power 
increase of the dynamic partitioning module is only 10-20%. This 
overhead only occurs when the partitioner is activated, which may 
only be a small fraction of the time. Also, bear in mind that future 
platforms may have dozens of processors that can share a single 
dynamic partitioning module, making the size and power 
overheads even less significant. 

If using a separate processor is not feasible for some reason, 
as an alternative, we could create the partitioning module as a 
process that shares an existing processor with an application. In 
this scenario, when the profiler has detected a region to 
implement in hardware, the processor performs a context switch 
and starts executing the partitioning process. Once the partitioning 
process has finished, the original application can restart 
execution. In this approach, we could replace the entire dynamic 
partitioning module with only a profiler, thus saving chip area, at 
the expense of temporarily slower application speed. 

Example 
brev 

5. EXPERIMENTS 
Table 2 highlights the benchmarks we used. Total Ins is the total 
number of instructions for each example. Loop Ins is the total 
number of instructions used by the loops that we implement in 
hardware. Loop Time% is the percentage of total software 
execution time that is spent in the implemented loops. Loop Size% 
is the percentage of the total instructions that the loop required. 
Ideal Speedup is the maximum possible speedup assuming that 
the loops were executing in zero time. brev is a small program 
that reverses the bits of 32-bit values in memory. The loop we 
implemented in hardware reverses the bits for each value in an 
array. This loop is interesting because the body synthesizes 
completely to wires. g 3 f a l  and g3fax2 are the same group three 
fax decode benchmark. For g3fa1,  we implemented a small loop 
that accumulates the values from an array in memory, requiring 
only an adder in the configurable logic. g3fax2 re-implements a 
loop that writes a value to every location in a memory block. This 
loop doesn’t need the configurable logic and can be completed 
with a single DMA block write. brev and g3fax are both from the 
Powerstone [I91 benchmarks. url is from NetBench [21]. The 
implemented loop for url writes a value to each location in an 
array. logmin is our own benchmark that is part of an on-chip 
logic minimization kernel. The implemented loop consists of 
AND, OR, and XOR logic operations. For all the examples, the 
considered loops averaged 55% of execution time and thus had an 
ideal speedup of 2.8. The static size of the loops was only 2% of 
the total instructions, and the loops required little area in the 
configurable logic. 

We generated results by running the tools described in 
Section 4 on the benchmark binaries. The entire tool flow is 
automated except for binary modification, which is presently done 
manually. 

For our experiments, we measured application software 
performance using a MIPS simulator. We determined hardware 
performance as the product of the total loop iterations and total 
loop executions. Since all loop bodies were limited to a single 
cycle, this product represents the total cycles spent in the loop. 
We also added in the required time to initialize the loop and write 

Ins Ins Tim% Size% Speedup 
992 104 70.0% 10.5% 3.3 

Table 2: Benchmark information. 

Example 
brev 

I I Total Loop Loop Loop Ideal I 

Time Time Time Time S 
0.05 0.03 0.001 0.02 3.1 

g3faxl 

13526 17 79.9% 0.1% 

Avg: 55.3% 2.4% 2.8 

Table 3: Dynamic partitioning results. 

sw Hw 
Sw Loop Loop SwlHw 

1”; g3faxl 1 23::; 16.98 1.4 
g3fax2 17.61 1.3 

379.90 303.74 13.29 89.45 4.2 
lo min 16.32 10.42 0.21 6.12 2.7 

Avg : 65.78 3.16 26.03 2.6 
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back any results. We determined the delay of the hardware by 
calculating the delay through all transistors along the critical path. 
For all examples, this delay was small enough to run the 
configurable logic at the required 60 MHz. 

Table 3 shows our dynamic hardwarehoftware partitioning 
results. Sw Time is the execution time of the examples when 
running completely in software. Sw Loop Time is the time 
required by the implemented loop to run in software. Hw Loop 
Time is the time of the loop when implemented in hardware. 
Hw/Sw Time is the execution time of the example after dynamic 
partitioning. S represents the speedup after dynamic 
hardwarehoftware partitioning. All time values are in 
milliseconds. We excluded partitioning tool runtime since that 
time is amortized over all executions of the partitioned system 
(partitioning is only run once). 

Average speedup for the four examples was 2.6, which is very 
close to the ideal speedup of 2.8. Notice that the hardware 
execution of the loop was 20 times faster on average than the 
software execution of the loop. Thus, we would still obtain good 
speedups even with a faster processor clock. 

6. CONCLUSIONS 
A dynamic hardware/software partitioning approach has many 
advantages over traditional partitioning approaches. Dynamic 
partitioning can be transparent, meaning a designer can achieve 
the benefits of partitioning while writing regular software and 
using standard software tools and flows. Dynamic partitioning can 
also adapt to an application's actual usage at run time. 

We presented first results of dynamic hardware/software 
partitioning. We discussed the architecture and lean tools needed 
for dynamic partitioning. We presented results for several 
benchmarks, showing an average speedup of 2.6, which was near 
the ideal speedup of 2.8. 

Future work consists of extending the architecture and tools. 
We will extend our configurable logic to handle sequential logic, 
and extend our tools to handle a wider variety of loops, including 
loops requiring multiple cycles in hardware and having more 
complex memory access patterns. 
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