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Profiling-Based Hardware/Software Co-Exploration
for the Design of Video Coding Architectures

Heiko Hübert and Benno Stabernack

Abstract—The design of embedded hardware/software systems
is often subject to strict requirements concerning its various
aspects, including real-time performance, power consumption,
and die area. Especially for data intensive applications, the
number of memory accesses is a dominant factor for these
aspects. In order to meet the requirements and design a well-
adapted system, the software parts need to be optimized and an
adequate system and processor architecture needs to be designed.
In this paper, we focus on finding an optimized memory hierarchy
for bus-based architectures. Additionally, useful instruction set
extensions for application-specific processor cores are explored.
For complex applications, this design space exploration is dif-
ficult and requires in-depth analysis of the application and its
implementation alternatives. Tools are required which aid the
designer in the design, optimization, and scheduling of hardware
and software. We present a profiling tool for fast and accurate
performance, power, and memory access analysis of embedded
systems. This paper shows how the tool can be applied for an
efficient hardware/software co-exploration within the design flow
of processor-centric architectures. This concept has been proven
in the design of a mixed hardware/software system with multiple
processing units for video decoding.

Index Terms—Computational complexity, optimization, perfor-
mance evaluation, video coding.

I. Introduction

THE PROCESSING of visual data is often very demanding
in terms of processing power and data transfers. In order

to find an appropriate implementation of these algorithms as
embedded system-on-chips (SoCs), it is very important to
adapt the system to the application in order to find an efficient
solution. Additionally, the different algorithmic alternatives
need to be explored in their implementation efficiency on the
various system setups. This exploration has to take place in
an early design phase in order to keep the design space broad.

The evaluation of the influences of the different algorithmic,
software coding, and hardware architecture alternatives on
the system’s performance and efficiency requires an in-depth
analysis of the system. When changing a parameter in one
of these alternatives, the influence is not always obvious.
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For example, the influence of caches depends on the type of
memory accesses and may vary highly across the application.
However, it is crucial to recognize the parts of the system
that benefit or suffer from a specific change in order to
adapt the system properly. In complex applications with up to
100 000 lines of code, identifying these influences is difficult
and requires tools to pinpoint the locations. Besides the
computational complexity, especially in video computing data
transfers have a huge influence on the performance. Therefore,
a memory access analysis is required in addition to clock cycle
distribution analysis across the application.

II. State of the Art

Nowadays, SoCs for video signal processing are built
around an increasing number of processors, with each pro-
cessor taking over a dedicated task in the overall process of
the particular signal processing flow. In contrast to hardwired
architectures, which have been mainly used in the late 1990s
and the beginning of the 21st century, these architectures offer
a lot of advantages over the traditional architectures, e.g.,
flexibility, programmability, faster time to market, enhanced
power reduction mechanisms, etc. The drawback of processor-
based architectures is their inherently suboptimal behavior
with respect to data or memory access due to the memory
bound nature of data processing. On the other hand, it has been
shown that the combination of programmable architectures
with dedicated accelerator functions, e.g., application specific
processor cores tends to solve these problems, with the pro-
cessors taking over the task of control flow and coprocessors
being used for data intensive parts of the signal processing
algorithms. These heterogeneous architectures can be found
predominantly for applications in the mobile domain, where
a complete system is built around a so-called application
processor. Typical state-of-the art examples of these architec-
tures are NVIDIA Tegra, STMicroelectronic Nomadik ST8820
[1], or Broadcom BCM2820 [2]. To increase the available
processing power for more demanding applications, e.g., high
definition decoders in set-top boxes, the trend is moving from
heterogeneous systems toward homogeneous multiprocessor
architectures with a growing number of processor cores [3], so-
called many core computing fabrics. Depending on the number
of processor cores, these architectures are characterized by
the used communication topology [4]. Up to a number of
eight processor cores, shared memory architectures can be
efficiently used. With a growing number of processor cores,
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TABLE I

Profiling Tool Comparison

Cycles Memory
Accesses

Power Per Function Per Line Callgraph Instrumentation Accuracy CPUs

Gprof + − − + + + + 10 ms 4 Many
ARM Profiler + + − + + + − µs/ns 4&estimation ARM
ATOMIUM + + − + − + + Generic
VTune + + − + + +1 − 4 Xscale
HDL Profiling2 + + + − − − − ns Any HDL
Valgrind + + − + + + − Cycle5 x86/PPC
SimpleScalar + + + − +3 − − Cycle5 Synthetic
MEMTRACE + + + + + − − Cycle Any ISS

1 not for embedded processors, 2 very slow, 3 per assembly address, 4 sampling based, 5 simulated CPU.

network architectures are better suited as a communication
structure.

The performance of such architectures is highly dominated
by the accompanying application code. Therefore, the need
for software-centric profiling tools arises. Besides the classical
profiling methodologies of the software execution, the data
transfer to memories and other processing units as well as the
resulting bus load needs to be analyzed.

Numerous tools exist for this purpose as given in
Table I. On a high abstraction level, tools such as SkillsInsight
Tool (SIT). SIT [5] or ATOMIUM [6] can be used. These
are especially well suited for analyzing the complexity and
data intensity of an application. SIT and ATOMIUM use
instrumentation code, and use abstract models. SIT adds a
highly adjustable memory subsystem simulator. In [7] and [8],
methodologies are described for dataflow profiling. These are
also very useful for estimating the computational complexity,
architecture exploration, and parallelization by analyzing the
dependences within the computation. However, all these tools
cannot provide timing analysis due to the level of abstrac-
tion, as they either use an abstract hardware architecture [5],
[6] or are restricted to dataflow analysis [7], [8]. In [9], a
methodology is presented which combines high level profiling
with a cycle-accurate timing database. It profiles the number
of executions of algorithmic processing kernels, such as in-
verse discrete cosine transform (IDCT), of an application and
creates platform specific performance estimation by database
mapping of these numbers to their execution times on the
specific platform. The methodology requires instrumentation
of the software code and cannot provide data access profiling
results.

Performance profiling [10]–[15] solutions especially have
been available for decades. Memory profiling [6], [13]–[15] for
embedded systems has become a major issue within the last ten
years. However, the existing tools either cover only parts of the
required information [6], [10], [11], [14], [15] or the statistics
are not provided in the required level of detail [10], [11], [15]
or are restricted to a specific processor architecture [11]–[13].
Some of the tools provide results only for the entire application
and not on a function or source code line level. This restricts
the optimization potential, as the cause of a performance loss
cannot be localized. Other tools suffer from a restricted level
of accuracy [6], [10], [11], [15]. Results are based on generic
processor architectures or taken with a low sample rate, or

the source code is instrumented. Available highly accurate
profiling mechanisms suffer from a long simulation time which
makes a comprehensive analysis unfeasible.

In order to overcome the restrictions of existing profiling
tools, a novel methodology has been developed that combines
fast, accurate, and comprehensive profiling, incorporating the
specification of the applied processor and memory architec-
ture. This paper describes the technique and its implementation
as the MEMTRACE profiling tool.

MEMTRACE delivers cycle-accurate profiling results on a
C function level. The results include clock cycles, various
memory access statistics, and optionally energy consumption
estimation for reduced instruction set computer (RISC)-based
processors. A focus is placed on memory access analysis, as
for data-intensive applications this aspect has a high potential
for increasing system efficiency.

Additionally to targeting software optimization, hardware
specific exploration is also supported. Besides the exploration
on the system level, the profiling has shown that the tool can
be used for defining and optimizing an application specific
instruction set. Using this technique, a RISC-like application
specific processor has been developed. In order to cover
codesign issues, the profiling technique has been expanded
to analyze bus-based hardware/software systems.

This paper shows how co-exploration can be applied within
the design flow for efficient hardware/software systems. This
concept has been proven in the design of a system with
multiple processing units for video decoding.

III. MEMTRACE: A Performance

and Memory Profiler

MEMTRACE [16] is a nonintrusive profiler, which ana-
lyzes the memory accesses and real-time performance of an
application without the need of instrumentation code. The
application is executed on a cycle-accurate system simulator
to obtain the profiling results. The specification of this system,
e.g., the processor or memory type, is provided manually
by the designer. Any system can be specified for which
processor simulation models are available and incorporated
in the profiler, as later described in Section III-C.

Thus the results of the profiling reflect the application’s
complexity when implemented on a specific processor, so the
results are platform specific. However, taking the influence of
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Fig. 1. MEMTRACE profiling toolflow performed in three steps.

the architecture into account is very important for a system
architecture exploration, as also considered in [9].

The influence of the architecture can be based on many
architectural features, for example, the usage and type of
caches highly influence the performance or applying single
instruction, multiple data (SIMD) instructions can accelerate
video applications significantly. Profiling of such influences
is essential for making a profound decision on adding these
features to the system architecture.

A. Tool Structure and Usage

The performance analysis with MEMTRACE is carried out
in three steps: the initialization, the performance analysis, and
the postprocessing of the results, as shown in Fig. 1.

During initialization, MEMTRACE extracts the names of
all functions and variables of the application and writes them
to the analysis specification file.

In the second step, the performance analysis is carried out,
based on the analysis specification and the system specifica-
tion. The system specification includes the processor, cache,
and memory type definitions (see the next section for a detailed
description of this step). MEMTRACE applies an instruction
set simulator (ISS) for the simulation of the user application
and writes the analysis results of the functions and variables
to files. Table II shows an excerpt of the profiling results. The
output files serve as a database for the third step, where user-
defined data is extracted from these tables.

In the third step, a postprocessing of the results can be per-
formed. MEMTRACE allows the generation of user-defined

TABLE II

Excerpt of a Result Table for Function Profiling

f ca cyl ls ld st cm BI BC E · · ·
f1 8 215 75 22 52 5 123 92 1.45 · · ·
f2 2 295 39 35 14 9 55 153 1.78 · · ·
f3 2 432 78 68 10 17 143 289 3.21 · · ·

Abbreviations: f = function name; ca = calls; cyl = bus (clock) cycles; ls = all
load/store accesses from the core; ld = all loads; st = all stores; cm = cache
misses; BI = bus idle cycles; BC = core bus cycles; E = energy (in µJ).

Fig. 2. Software structure of the interface between MEMTRACE backend
and ISS (here ARMulator).

tables, which contain specific results of the analysis, e.g., the
load memory accesses for each function.

Furthermore, the results of several functions can be accu-
mulated in groups to compare the results of entire application
modules. The user-defined tables are written to files in a tab-
separated format. Thus they can be further processed, e.g., by
spreadsheet programs for creating diagrams.

B. Profiling Data Acquisition

During the performance analysis (i.e., second) step the
profiling data acquisition takes place. The user initializes this
step for each system setup of interest by choosing a processor
type, memory setup and hardware accelerators. The processor
must be available in MEMTRACE as cycle-accurate ISS or
generated as described in Section III-C. The hardware accel-
erators are supported by simple timing-annotated C-models,
see Section IV-D.

MEMTRACE communicates with the ISS via its backend.
Fig. 2 shows the implementation of the MEMTRACE backend
for the ARMulator [17] ISS from ARM Ltd. The backend
is implemented as DLL and provides six interface methods.
These are introduced to the ARMulator’s tracer module as call-
back functions. Additionally, the memory model (mapfile.dll)
is extended by a mechanism for identifying the status of each
bus cycle. This status can either be CORE, direct memory
access (DMA) or IDLE depending on the bus usage.

At startup time the ISS calls the interface method init() to
initialize the profiler. The method creates a list of all functions
and global variables. For each function a data structure is
created, which contains the function’s start address and coun-
ters for collecting the analysis results. If the executable was
created in debug mode, i.e., including source code information,
a table for mapping assembly code lines to source code lines
is created.
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Fig. 3. Profiling toolflow incorporating CoWare Processor Designer, Verila-
tor, and MEMTRACE.

Each time the program counter changes, the ISS calls the
interface method nextInstruction(). The method checks if the
program execution has changed from one function to another.
If so, the cycle count of the previous function is recalculated
and the call count of the new function is incremented.

For each access that occurs on the data bus (to the data
cache or tightly coupled memory), the memory access counters
of the current function are incremented in interface method
memoryAccess(). Depending on the information provided by
the ISS, it is decided if a load or store access was performed,
and which bit-width (8, 16, or 32-bit) was used.

For each bus cycle (on the external memory bus) the method
busActivity() identifies the bus status (idle cycle, core access
or DMA access) and increments the appropriate counter of the
current function.

If a data cache is available in the processor, each time
a cache miss occurs the method cacheMiss() is called. It
increments the number of data cache misses for the current
function and also for the accessed variable.

The interface method finish() is called when the ISS ter-
minates the simulation. It writes the profiling results to the
output files.

C. MEMTRACE with a Processor Model Generator

MEMTRACE has been used successfully with the ARMu-
lator ISS. For profiling other processors, cycle-accurate ISSes
are required. The toolchain given in Fig. 3 has been developed
to create such models from processors described in a high-level
description language.

The design procedure starts with a processor description
in the LISA language [18]. This description is processed by
the CoWare Processor Designer [19] to generate a Verilog
description of the processor and the required software de-
velopment tools, such as an assembler and a linker. The
Verilog description generated is further processed by the
Verilator [20] to generate a C++ simulation model. This
model is then compiled with the MEMTRACE backend and
the miniDebugger libraries to form the combined simulator,
debugger, and profiler. In order to ease the retargeting process,
a generic interface between the simulation model and the
debugger is defined. Therefore, the simulation model needs to
be enclosed by a wrapper mapping the processor signals to the
MEMTRACE backend interfaces functions. Fig. 4 illustrates

Fig. 4. Interconnection of the C++ processor model with the MEMTRACE
backend and miniDebugger and with further system components.

this interconnection in more detail. The right-hand side shows
the C++ simulation model generated by the Verilator. A
wrapper, which acts as a terminal board, is used to provide a
generic interface to other system and simulation modules. This
interface provides access to the most common and important
parts of the processor, including the instruction and data
busses, register file, program counter and status register, as
well as clock, reset and interrupt signals. The mandatory sys-
tem extension is a model of the data and instruction memory
connected to the system bus. Multiprocessor systems can be
generated by adding further processor models, including their
debuggers and profilers, as shown in Fig. 4 on the left-hand
side. Even hierarchical bus systems can be created within
this environment. The processor simulation is controlled by a
debugger, e.g., the rudimentary MEMTRACE miniDebugger,
which could also be replaced by a full-featured debugger, e.g.,
as a plugin to the Eclipse software development platform.
The simulation environment described here allows a simple
retargeting of the profiler to any processor that is available as
a C source code model. The Verilator extends the supported
processor range to Verilog models.

In contrast to the VLIW-SIM [21] tool, the described usage
of the LisaTek/Verilator tools ensures a coherency between the
hardware description and the simulation model. The VLIW-
SIM environment integrates a parameterizable processor simu-
lator with a commercial SoC simulation environment and also
provides basic profiling results, such as overall cycles, memory
accesses and cache misses, however not on a per function
basis.

D. Incorporating Energy Estimation in the Profiler

A power model [22] has been incorporated into the profiler,
for estimating the energy consumption of each function. The
model is based on power measurement of an ARM processor.

E. Simulation Platform Requirements

The MEMTRACE profiler runs on PC platforms. The pro-
filing speed depends on the ISS used, e.g., with ARMulator it
is in the range of a few MIPS on a 3 GHz PC. The influence
of the profiler on the simulation performance depends on the
profiler features applied, e.g., instruction profiling, and leads
to a reduction of the ISS speed by a factor of 1.1 to 3.
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Fig. 5. Typical embedded system design flow.

IV. MEMTRACE Within the Design Flow

This section describes how the profiler can be applied during
the design of embedded systems. Fig. 5 shows a typical design
flow for such hardware/software systems.

Starting from a functionally verified system description
in software, this software is profiled with an initial system
specification, in order to measure the performance and see if
the (real-time) requirements are met. If not, an iterative cycle
of system partitioning, optimization, and scheduling starts. In
this process, detailed profiling results are crucial for all steps
in the design cycle.

A. System Partitioning and Design Space Exploration

For the definition of a starting point of a system architecture,
an initial design space exploration should be performed. These
steps include a variation of the following parameters:

1) processor types and quantity;
2) cache size and organization and tightly coupled memory;
3) bus and memory system and timing [dynamic random

access memory (DRAM), static random access memory
(SRAM)];

4) coprocessors and DMA controller.
MEMTRACE can be run in batch mode and thus different

system configurations can be tested and profiled. Thus, the
influence of the system architecture on the performance can
be evaluated. This initial profiling also reveals the hot-spots
of the software. The most time consuming functions are
good candidates for either software optimization or offloading
to application specific instruction set processors (ASIPs) or
hardware coprocessors. Especially computationally intensive
functions are well-suited for hardware acceleration in a co-
processor. Thus, this information can lead to an initial system
partitioning into hardware and software, which can then be
profiled in order to evaluate its overall performance.

Control-intensive functions are better suited for software im-
plementation on ASIPs, as a hardware implementation would
lead to a complex state machine, which requires long design
time and often does not allow parallelization. With support
of a DMA controller, even the burden of data transfers can
be taken from the processor. In order to get a first idea of
the influence of hardware acceleration, a factor (determined

by well-educated guess) can be defined for each hardware
candidate function. This factor is used by MEMTRACE in
order to manipulate the profiling results.

B. Software Profiling and Optimization

After the system is partitioned into several processors and
hardware coprocessors, the software parts can be optimized.
Numerous techniques exist that can be applied for optimizing
software, such as loop unrolling, loop invariant code mo-
tion, common subexpression elimination or constant folding
and propagation. For computational intensive parts, arithmetic
optimizations or SIMD instructions can be applied, if such
instructions are available in the processor. If the performance
of the code is significantly influenced by memory accesses,
as is mainly the case in video applications, the number of
accesses has to be reduced or the accesses must be accelerated.
The profiler gives a detailed overview of the memory accesses
and allows therewith the identification of their influence.

C. Profiling-Based Hardware Optimization

The profiling information can be applied to adjust the
processor and memory architecture. In the next section, a
method is described for configuring and using fast on-chip
cache and memory efficiently. Section II shows how the
instruction set and the address generation modes of a processor
can be adjusted to the needs of the application.

1) Memory Subsystem Optimizations: A well-defined
memory subsystem should be developed to minimize the
processor stalls caused by accesses to slow memory devices,
for example, external DRAM.

Especially for systems with slow memory, caches are
mandatory for achieving a reasonable performance. The spatial
and temporal locality of memory accesses and instructions
found in most applications can be used efficiently with caches.
Caches are very costly in terms of die area and power con-
sumption. Therefore, the size of the data and instruction caches
should be adjusted to the requirements of the application. The
detailed profiling results for cycle times, memory accesses,
and cache misses which are delivered by MEMTRACE allow
a comprehensive exploration of different cache sizes and their
influence on the performance.

In addition to using caches, the system performance can
be increased by using fast on-chip memory (SRAM). This
memory can be used to store frequently used data for fast
access. As SRAM is very costly in die area and power
consumption, it is usually small. Therefore, in order to use
it efficiently, the frequently accessed memory areas need to
be identified, these being adequately valuable candidates for
internal storage.

If caches are available in a system, not every load/store
access is passed to the slow external memory, but instead only
if a cache miss occurs. A cache miss leads to a halt of the
processor and increases the execution time. Thus, the number
of cache misses must be reduced to speed up the application.

The decision whether a specific data area should be stored
in on-chip or off-chip memory is quantified by the number
of cache misses due to accessing the data area. Therefore,
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an analysis of cache misses per data area (e.g., variable)
is required. The cost ratio, given in (1), expresses the ratio
between cache misses that occur when accessing a data area
and its size

cost ratio =
cache misses

data size
. (1)

The data areas with the most cache misses (profit) and the
smallest size (weight) should be stored in on-chip memory
according to solving algorithms of the knapsack problem [23].
This evaluation can be performed for several SRAM sizes and
thus an appropriate memory size can be found.

Numerous other techniques for optimizing the structure and
accesses to the memory subsystem are described in [24].

MEMTRACE uses the memory modeling of the ARMulator
for the simulation of the memory subsystem. It allows the
customization of cache sizes and line length, the bus speed as
a factor of the CPU speed, as well as a cycle-accurate timing
of the memories. The model simplifies the memory timing by
differentiating only between sequential and nonsequential read
and write accesses. When using other processor architectures,
generic cache simulators, such as Dinero IV [25] and Cheetah
[26] need to be integrated.

2) Instruction Set Architecture Optimizations: As their
name states, RISC processors come with a reduced instruction
set. However, some of the current RISC instruction sets
provide more than 100 instructions. If the instruction set of the
processor is customizable, such as with ARC [27], Tensilica
[28] or the CoWare Processor Designer [19], it can be helpful
for the processor designer to acquire information about the
actual instruction set and addressing mode usage.

An instruction set analysis can be performed by parsing
the compiler-generated assembly code. However, this static
analysis neglects the real instruction usage during program
execution, since not every assembly code line is executed
equally often. As many instructions can be replaced by a
series of other instructions, it can be helpful to see how
often a specific instruction is really used. This is important
as the replacement with other instructions often comes with
an overhead, and therefore the influence of the overhead can be
estimated already by this dynamic profiling. A reduced instruc-
tion set helps to minimize the complexity of the instruction
decoder. Frequently used instructions should be considered
as targets for optimization during the processor architecture
development.

Besides the instruction set, the supported addressing modes
also influence the complexity of a processor. The addresses
are either calculated in a separate address generation unit or
within the regular arithmetic logic unit. Depending on the
processor, a more or less wide range of addressing modes
for code and data is available. These modes include absolute,
PC-relative and register-indirect addressing for code access.
For data access, numerous modes supporting offsets, shifts,
indexes and arithmetical calculations based on immediate and
register values exist.

Supporting all these addressing modes has two major im-
pacts on the processor architecture. On one hand, the coding
of the modes in the instruction set requires a portion of the

instruction bit-width for encoding mode, offset register, shift
and immediate value. On the other hand, the required hardware
support for calculating the addresses leads to an overhead in
die area and power consumption. If a processor is targeted to
a specific application, the addressing mode profiling can be
used to adapt the architecture to the applications needs.

D. Hardware/Software Profiling

Besides the software profiling and optimization a system
simulation including the hardware accelerators needs to be
carried out in order to evaluate the overall performance.
Usually hardware components are developed in a hardware
description language (HDL) and tested with an HDL simulator.
This task requires long development and simulation times.
Therefore HDL modeling is not suitable for the early design
cycles, where exhaustive testing of different design alternatives
is important. Furthermore, if the system performance is data
dependent a huge set of input data should be tested to get
reliable profiling results. Therefore, a simulation and profiling
environment is required, which allows short modification and
simulation time.

For this purpose, we extended the ISS with simulators for
the hardware components of the system. The ARMulator ISS
provides an extension interface, which allows the definition
of a system bus and peripheral bus components. It provides a
bus simulator, which reflects the industry standard advanced
microprocessor bus architecture bus and a timing model for
access times to memory mapped bus components, such as
memories and peripheral modules.

1) Coprocessors/Hardware Accelerators: We supple-
mented this system with a simple template for coprocessors,
including local registers and memories and a cycle-accurate
timing. The functionality of the coprocessor can be defined as
C code. With this methodology the C code acts as a functional
simulation model of the hardware. Thus the software function
can be simulated as a hardware accelerator by copying the
software code to the coprocessor template without translation
or redefinition using another description language such as
SystemC.

The timing parameter can be used to define the delay of
the coprocessor between activation and result availability. The
timing value can be achieved either from reference found in
literature or by an educated guess of a hardware engineer.
The profiling of different implementations of a task can be
accomplished by varying the timing parameter and viewing
its influence on the overall performance. Thus a good trade-
off between hardware cost and speed-up can be found quickly.

In a later design phase, when the hardware/software par-
titioning is fixed and an appropriate system architecture is
found, the hardware component need to be developed in
a hardware description language and tested using a HDL
simulator, such as Modelsim. Finally, the entire system needs
to be verified including hardware and software components.
For this purpose the instruction set simulator and the HDL
simulator have to be connected. The codesign environment
PeaCE [29] allows such a connection with Modelsim.

2) DMA Controller: As data transfers can have a tremen-
dous influence on the overall performance, their burden can be
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Fig. 6. Bus usage for each function, depending on the memory type.

taken from the CPU by means of a DMA controller. Therefore,
the MEMTRACE hardware environment includes a DMA
controller model. It supports 1-D and 2-D-transfers, burst
transfers and multiple channels with activation first in, first
outs. Thus, the designer is enabled to determine the influence
of different DMA modes in order to find an appropriate trade-
off between controller complexity and required CPU activity.

E. Data Transfer Optimizations for System Scheduling

After the software and hardware tasks have been defined
a scheduling of these tasks is required. For increasing the
overall performance a high degree of parallelization should
be accomplished between the different processing units. In
order to find an appropriate scheduling for parallel tasks, their
dependencies, execution time and data transfer overhead need
to be considered.

Concerning the overhead for data transfers to the copro-
cessors its dependency on the bus usage must be considered.
Furthermore, side effects on other functions may occur if bus
congestion occurs or when cache flushing is required in order
to ensure cache coherency. In order to find these side-effects,
detailed profiling of the system performance and the bus usage
is necessary. MEMTRACE provides these results; for example
Fig. 6 shows the bus usage for each function depending on the
access time of the memory.

V. Application Example: SoC Design for Video

Signal Processing

The proposed design methodology has been applied to the
design of an H.264/AVC [30] video decoder as part of a mobile
digital TV receiver. Starting from an executable specification
of the video decoder a profiling-based partitioning of the
system in processor and coprocessors has been performed. The
hardware and software components of the system have been
optimized and scheduled for a high degree of parallelization. In
another case study, application specific processor architectures
have been developed tailored to the needs of video signal
processing. Appropriate instruction sets and addressing modes
have been defined based on the comprehensive profiling results
of the algorithms.

Fig. 7. Profiling results for the H.264/AVC software decoder.

A. H.264/AVC Video Compression

The H.264/AVC video compression standard is similar to its
predecessors, however it adds various new coding features and
refinements of existing mechanisms, which lead on one hand
to a two to three times increased coding efficiency compared
to MPEG-2. On the other hand the computational demands
and required data transfers have increased significantly.

The bitstream parsing and entropy decoding interpret the
encoded symbols and are highly control flow dominated. The
inter and intra prediction modes are used to predict image
data from previous frames or neighboring blocks, respectively.
Both methods require filtering operations, whereas the inter
prediction is more computational demanding. The residuals
of the prediction are received as transformed and quantized
coefficients. The reconstructed image is post processed by
a deblocking filter for reducing blocking artifacts. The filter
includes the calculation of the filter strength, which is control
flow dominated, and the actual filtering, which requires many
arithmetic operations.

B. Design and Optimizations

The H.264/AVC baseline decoder has been profiled with
MEMTRACE using a system specification typical for mobile
embedded systems comprising an ARM946E-S processor core,
a data and instruction cache (16 kB each) and an external
DRAM as main memory. The execution time for each module
of the decoder has been evaluated as depicted in Fig. 7. The
results show that the distribution over the modules differs
significantly between I and P-frames. Whereas in I-frames the
deblocking has the most influence on the overall performance,
in P-frames the motion compensation is the dominant part.

Based on the acquired profiling results several software and
hardware architectural optimizations are applied.

1) System Partitioning: In order to increase the system
efficiency and decrease power consumption and hardware costs
compared to a single processor implementation, a system with
tailored coprocessors can be developed. Following Amdahl’s
law [31], those parts of the system should be considered for
outsourcing and optimization first, which take up most of
the execution time. Fig. 7 shows that motion compensation,
deblocking, inverse transformation and memory functions are
those candidates.
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Fig. 8. System layout of the H.264/AVC decoder chip based on the profiling
results with a system bus and a separate video bus.

TABLE III

Comparison of the Execution Time in Hardware and Software

Implementation Deblocking Pixel
Interpolation

Inverse
Transform

Software 3000–7000 cycles 100–700 cycles 320 cycles
Hardware 232 cycles 16–34 cycles 30 cycles

Memory transfers are not included in cycle counts

All these components are rather demanding on an arithmeti-
cal than on a control flow level. Therefore, they are well suited
for hardware implementation as coprocessors, which can be
controlled by the main CPU. In order to ease the burden of
providing the coprocessors with data, a DMA controller can
be applied allowing memory transfers concurrently to the pro-
cessing of the CPU. The coprocessors should be equipped with
local memory for storing input and output data for processing
at least one macroblock at a time preventing fragmented DMA
transfers. As the video data is stored in the memory in a
2-D fashion, the DMA controller should feature 2-D memory
transfers.

2) System Design: The profiling and implementation
results of the previous sections lead to a mixed hard-
ware/software implementation of the video decoder, which is
given in Fig. 8.

An application processor is extended with a companion chip
for acceleration of the video decoding. The companion chip
contains the hardware accelerators for H.264/AVC decoding.
Table III shows a comparison of the required cycle times of
the accelerators with their software counterparts.

3) Memory Subsystem Optimization: Besides the process-
ing power of the system components the memory architecture
determines the overall performance. Caches have a huge
influence on the performance and are mandatory for most
applications. They are especially efficient for data areas with
frequent accesses to the same memory location, e.g., the stack.
The influence of the cache size needs to be considered during
the design of the memory architecture, as described later.
However for randomly accessed data areas, e.g., lookup tables,
a fast on-chip memory (SRAM) is more appropriate. As the
H.264/AVC decoder requires about 1.1 MB of data memory
(at QVGA video resolution), only small parts of the used data
structures (less than 3% with 32 kB of SRAM) can be stored in
the of on-chip memory. In order to find a useful partitioning of

TABLE IV

Profiling Results For Register Allocation Optimization:

Maximum Number of Memory Accesses to A Single Address

Function Calls Max Accesses Max Speed-Up
Accesses

Calls
flushBits 32 969 7 230 783 5 %
edgeLoopY−N 2376 57 135 432 5 %
itrans 5167 16 82 672 15 %
... ... ... ... ...

data areas between on-chip and off-chip memory, it is required
to profile the accesses to each data area of the decoder. Since a
data cache is instantiated, accesses to the memory only happen
if cache misses occur. Therefore, the cache misses have been
analyzed separately for each data area in the code including
global variables, heap variables and the stack. Afterward the
data partitioning has been performed as described in Section
IV-C.

4) Software Optimizations: The software of the system
was optimized by means of standard optimization techniques
as mentioned in Section IV. In order to prove their influence
on the performance to ensure the negative correlation between
source code modifications, a comprehensive profiling has been
performed during the development process.

Besides these optimization techniques, some specialized
memory-centric optimizations have been developed and ap-
plied, for example an optimized register allocation. As mem-
ory accesses are very time consuming, frequently accessed
variables should be kept in registers if possible, as described
in [32]. Compiler may allocate registers inefficiently if global
variables, pointers or pointer chains are used. As an indica-
tor for inefficient register allocation, the maximum number
of memory accesses to a single memory address has been
analyzed for each function. Multiplying this number with the
number of calls of the function provides an indicator for the
influence of these accesses on the overall performance, as
given in Table IV.

5) Hardware/Software Interconnection and Scheduling:
After the software optimization is performed and the copro-
cessors are implemented, a scheduling of the entire system
is required. The scheduling is static and controlled by the
software. The coprocessors are introduced step-by-step to
the system. Starting from the pure software implementation,
at first software functions are replaced by their coprocessor
counterparts. This also requires the transfer of input data to
and output data from the coprocessors. These transfers are at
first executed by load-store operations of the processor and
in a next step replaced by DMA transfers. This might also
require flushing the cache or cache lines, which may decrease
the performance of other software parts. Finally, parallelization
of the coprocessor and software tasks takes place. All decision
taken in these steps are based on detailed profiling results.

The following example, results are given in Fig. 9, shows
how the hardware accelerator for the deblocking is inserted
into the software decoder.

The coprocessor only includes the filtering process of the
deblocking stage; filter strength calculation is performed in
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Fig. 9. Clock cycle comparison of different deblocking implementations.

software, because it is rather control intensive and therefore
more suitable for software implementation. The filter processes
the luminance and chrominance data for one macroblock at a
time. It requires the pixel data and filter parameters as an input
and provides filtered image data as an output. Fig. 9 shows the
results for the pure software implementation, when using the
filter coprocessor with data transfer managed by the processor,
and when additionally using the DMA controller.

As can be seen, if data is transferred by the processor, the
performance gain of the coprocessor is dissipated by the data
transfers; only in conjunction with the DMA controller the
coprocessor can be used efficiently.

6) Implementation: To fully evaluate the proposed concept,
the complete SoC architecture has been implemented as an
application-specific integrated circuit design [33] using UMC’s
L180 1P6M GII logic technology.

C. Profiling for Design Reuse (Scalable Video Coding (SVC)
Decoding Example)

In a second step the profiling methodology is applied
for evaluating if the before mentioned SoC design can be
reused for an efficient implementation of the new video
coding standard SVC [34]. SVC is the scalable extension to
H.264/AVC based on a layered approach representing different
modes of scalability in a single bitstream. The scalability
modes provided by the codec are temporal, spatial and quality
(SNR) scalability and any possible combination of these three
base modes. The base layer found in the bitstream is fully
compatible to H.264/AVC. A more detailed description of
SVC can be found in [35].

The real-time performance of the decoder has been analyzed
with MEMTRACE. Fig. 10 shows the results of a profiling
run, given in numbers of bus clock cycles differentiated by the
various function groups in the decoder for quality scalability.
We performed a profiling of the SVC software and compared
the decoding of four different bitstreams with similar bit
rates. The first stream (single layer) has only a H.264/AVC
compliant base layer, without any quality enhancement layers.
Furthermore, three bitstreams with one to three enhancement
layers (CGS 1 EL to CGS 3 EL) were applied.

As can be seen in Fig. 10, except for inter-layer prediction
data backup (Memory predDataBackup), the number of clock
cycles for most function groups show only a small increase
for additional quality layers. The reason for this result is

Fig. 10. Profiling results for the SVC decoder: clock cycles per frame for
each software component of the SVC decoder for quality scalability.

that the inter-layer prediction signal needs to be updated for
each additional layer separately, whilst many of the other
functions like deblocking, motion compensation and inverse
transformation are only performed once at the reconstruction
layer.

As can be seen in Fig. 10, base layer (H.264/AVC) and
enhancement layer (SVC) decoding show similar hot spots
and results. This is due to the fact that SVC uses the same
coding tools as H.264/AVC. Thus the hardware accelerators
used for H.264/AVC are perfectly suited to accelerate the SVC
decoder as well. For the motion-compensated prediction and
the integer transformation, no changes need to be applied. For
the deblocking, a modified filter strength value computation is
proposed by the SVC standard. Anyway, this is no problem
for the current hardware implementation, because these filter
strength values are always computed in software and transmit-
ted as configuration values to the hardware deblocking filter.
Nevertheless, we expect to have a lower overall performance
due to the inter-layer dependencies which raise the amount of
memory accesses. Also, for spatial scalability accelerating the
upsampling process is mandatory.

The major difference between SVC and H.264/AVC is
located in the control flow. Therefore, in order to reuse an
H.264/AVC implementation for SVC, the control flow needs
to be adapted, which can be done easily, if the control flow
is implemented in software. This shows that the proposed
hardware/software architecture is very well suited for the
video coding domain, as modifications and extensions to codec
standard are very common.

D. Application Specific Processor Architecture Exploration

Taking an optimized system architecture into account the
next possible candidate for an optimization is the used pro-
cessor core itself. In most cases the processor core is fixed
in its architecture and instruction set, e.g., the ARM946E-
S, which is only available as a predefined IP core. Using
a configurable processor core, e.g., ARC or Tensilica, it is
possible to build the system upon an application specific
optimized processor core. In the before mentioned example
the commercially available ARC 610 [36] has been cho-
sen due to its configurability of the instruction set and the
number of additional registers. The ARC 610 has a 32-bit
load/store architecture with 16 to 32 32-bit registers and a
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TABLE V

Extension Instructions and Their Performance Gain

Area (Comp. to ARC) No. of CE81 Cells Gate Count Min. Performance Gain Max. Performance Gain
ARC with XALU 100 % 1 808 120 45 203
Bitstream processing 25.3 % 456 560 11 414 1.8 % 4.4 %
ALIGN 0.5 % 9480 237
INTERPOLATE 2 % 35 360 884 5.7 % 30 %
ADD CLIP 1.9 % 34 360 859 1.8 % 7 %
IDCT 94.8 % 1 713 760 42 844 30 % 35 %

Fig. 11. SIMD extension instruction INTERPOLATE.

set of basic instructions, which can be found in similar RISC
processors.

Additionally it is possible to extend the given instruction
set by means of instruction slots. These instruction slots can
be filled with application specific instructions e.g., bitstream
extraction or SIMD like instructions. Fig. 11 shows an example
of a SIMD extension.

The shown SIMD instruction can be applied for the inter-
polation of four pixels in parallel as used by standard video
compression algorithms in the motion compensation.

Table V gives an overview of a number of user-defined
instructions, their performance gain in respect to the overall
performance of the application and the gate count of the data
path part of the instruction [37].

To evaluate the performance of an implemented extension
instruction it is needed to profile a base system which runs the
pure software implementation of the given algorithm. Using
the profiler each instruction can be profiled for itself and the
performance gain of the optimized function using a specialized
instruction can be evaluated.

1) Instruction Set Architecture Definition: The definition
of instruction set architectures suited for application specific
tasks in heterogeneous multiprocessor systems often starts
with a base instruction set, which will be modified, extended
and/or reduced according to the needs of the specific ap-
plication. As described in Section III, the results for each
source code function of the application profiling, the profiler
delivers information concerning the instruction set usage.
In this example we have implemented a basic 32-bit RISC
processor core named embedded systems group RISC suited
for application specific tasks in the image processing domain
especially for H.264/AVC. The design of the core is based on

TABLE VI

Instruction Profiling Results For Decoding Two Frames of the

Sequence ‘‘Stefan 256 kb’’ (CIF Resolution)

Instr. Executed As % of All
Exe. Instr.

Skipped As % of Decoded
Instr.

LDR 4 984 793 27.85 % 70 353 1.39 %
ADD 3 717 539 20.77 % 123 891 3.23 %
MOV 1 917 986 10.72 % 192 936 9.14 %
STR 1 752 056 9.79 % 47 106 2.62 %
SUB 1 365 637 7.63 % 13 703 0.99 %
CMP 976 494 5.46 % 16 756 1.69 %

B 642 921 3.59 % 443 651 40.83 %
... ... ... ... ...

sum 17 896 454 100 % 1 158 402 6.08 %

the definition of a generic instruction set architecture, which
has been implemented using LISA for the first evaluations.
Based on this LISA description a simulation model of the
processor has been derived as described in Section III-C.

Table VI shows instruction profiling results as provided by
the profiler for the execution of an H.264/AVC decoder. The
source code of the decoder, which includes more than 20 000
lines of code, is translated to a usage of only 23 assembly
instructions. Thus, an applications specific processor design
with only these instructions would be sufficient to execute
the code. Furthermore it can be seen that five instructions
(LDR, ADD, MOV, STR, and SUB) are responsible for more
than 75% of the decoded instructions. So, the processor
architecture, including the instruction set and decoder, pipeline
and memory interface should be designed such that these
instructions require a low latency.

In order to test the suitability of this processor for other
video coding applications, an H.264/AVC encoder, the SVC
decoder and a system for gesture and facial characteristics
recognition have also been profiled. The video encoder and
decoders show a very similar instruction profile, whereas the
recognition system utilizes a different instruction set. There,
the instruction set is dominated by control flow and logical
instructions, the five top-most instructions are MOV, ADD, B,
ORR and CMP, which cover 53% of the decoded instructions.

2) Choosing Appropriate Addressing Modes: Table VII
shows the results for addressing mode profiling. For each of
the load and store operations one of the addressing modes is
used, either with no offset at all, a program counter relative
offset or a pre or post-indexed offset. These offsets can be
either an immediate value or taken from a register value.
Furthermore, the register value can be shifted by a given value
and a specific shift operation.
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TABLE VII

Address Mode Profiling Results For Decoding Two Frames of

the Sequence ‘‘Stefan 256 kb’’ (CIF Resolution)

Details on Load and Store Operations
Loads 5 055 146
Stores 1 799 162

Address Type
Zero-offset 1 205 709
Program counter-relative 324 642
Pre-indexed 4 974 457
Post-indexed 349 500

Detail on Indexed Modes
Immediate offset 3 340 911
Register offset 1 983 046

As can be seen, here most of the memory accesses are to
pre-indexed addresses with an immediate offset value. Post-
indexed and program counter-relative addressing is only used
for 5% to 6% of memory accesses. It could be considered to
abandon these addressing modes for data memory accesses.

VI. Conclusion and Future Work

The design of an efficient system for applications with high
demands on real-time performance requires the selection of an
appropriate system architecture and incorporated hardware and
software components. For this decision, detailed knowledge of
the computational demands of the application is mandatory.
Furthermore, for data intensive applications, the influence of
memory accesses also has to be taken into account. We have
presented a profiling tool which provides this information and
have shown how it can be integrated in the design flow. The
tool aids the designer in taking the right decision during each
step of the design, including the system partitioning, the op-
timization of the components, and the system scheduling. We
have applied this methodology for the development of an SoC
for video decoding and for the definition and implementation
of application specific processor architectures.

Future work includes the co-exploration of programming
models suited for many-core systems, e.g., component-based,
and their corresponding multiprocessor system-on-chip archi-
tectures. Additionally, the energy estimation metrics will be
extended in order to strengthen the design space exploration
process.
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