
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001 269

Video Coding for Streaming Media Delivery
on the Internet

Gregory J. Conklin, Member, IEEE, Gary S. Greenbaum, Member, IEEE, Karl O. Lillevold,
Alan F. Lippman, Member, IEEE, and Yuriy A. Reznik, Member, IEEE

Invited Paper

Abstract—We provide an overview of an architecture of today’s
Internet streaming media delivery networks and describe various
problems that such systems pose with regard to video coding.
We demonstrate that based on the distribution model (live or
on-demand), the type of the network delivery mechanism (unicast
versus multicast), and optimization criteria associated with partic-
ular segments of the network (e.g., minimization of distortion for
a given connection rate, minimization of traffic in the dedicated
delivery network, etc.), it is possible to identify several models of
communication that may require different treatment from both
source and channel coding perspectives. We explain how some of
these problems can be addressed using a conventional framework
of temporal motion-compensated, transform-based video com-
pression algorithm, supported by appropriate channel-adaptation
mechanisms in client and server components of a streaming media
system. Most of these techniques have already been implemented
in RealNetworks® RealSystem® 8 and its RealVideo® 8 codec,
which we are using throughout the paper to illustrate our results.

Index Terms—Internet media delivery networks, scalable video
coding, streaming media, video compression.

I. INTRODUCTION

SINCE its introduction in early 1990s, the concept of
streaming mediahas experienced a dramatic growth

and transformation from a novel technology into one of the
mainstream manners in which people experience the Internet
today. For example, according to recent statistics cf., [1], over
350 000 hours of live sports, music, news, and entertainment
are broadcast over the Internet every week, and there are also
hundreds of thousands of hours of content (predominantly in
RealAudio® or RealVideo® formats) available on-demand.

Indeed, such a phenomenal growth would not be possible
without adequate progress in the development of various core
technologies utilized by streaming media software, and in par-
ticular, video coding. In this paper, we briefly review some of the
important stages in the development of this field, explain various
specific requirements that streaming poses for video coding al-
gorithms, and describe solutions to some of these problems in
today’s industry-standard streaming media delivery systems.

Manuscript received June 15, 2000; revised December 7, 2000. This paper
was recommended by Guest Editors M. R. Civanlar, A. Luthra, S. Wenger, and
W. Zhu.

The authors are with RealNetworks, Inc., Seattle, WA 98121 USA (e-mail:
gregc@real.com; garyg@real.com; karll@real.com; yreznik@real.com,
alanl@real.com).

Publisher Item Identifier S 1051-8215(01)02235-2.

II. EVOLUTION OF STREAMING MEDIA TECHNOLOGIES

The concept ofstreaming mediacame at a time when basic
multimedia technologies had already established themselves on
desktop PCs. Audio and video clips were digitized, encoded
(e.g., using MPEG-1 compression standard [2]), and presented
as files on the computer’s file system. To view the information
recorded in such files, PC users ran special software designed
to decompress and render them on the screen.

The first and most natural extension of this paradigm on the
Internet was the concept ofdownloadable media. Compressed
media files from the Web were expected to be downloaded on
local machines, where they could be played back using the stan-
dard multimedia software. However, this was not a satisfactory
solution for users with limited amounts of disk space, slow con-
nection speeds and/or limited patience. This essentially created
the need forstreaming media, a technology that enabled the user
to experience a multimedia presentation on-the-fly, while it was
being downloaded from the Internet.

A. HTTP-Based Streaming

The design of some early streaming media programs, like
VivoActive 1.0 [3], was based on the use of the standard (HTTP-
based [4]) Web servers to deliver encoded media content. Since
all HTTP server-client transactions are implemented using a
guaranteed-delivery transport protocol, such as TCP [5], the de-
sign of these programs was very simple. For example, VivoAc-
tive used a combination of the standard H.263 [6] video and
G.723 [7] audio codecs, and a simple multiplexing protocol to
combine the audio and video streams in single file. These codecs
came from desktop video conferencing, and only minor algo-
rithmic changes (mostly related to rate control) were required
to make such a system work.

However, being originally designed for serving static docu-
ments, HTTP protocol was not particularly suited for real-time
streaming. For example, the lack of control over the rate at
which the Web server pushes data through the network, as well
as the use of the guaranteed-delivery transport protocol (TCP),
caused substantial fluctuation in the delivery times for the frag-
ments of the encoded data. This is why the VivoActive player
used a quite large (5–20 s)preroll bufferthat was meant to com-
pensate for the burstiness of such a delivery process. Neverthe-
less, if for some reason the delivery of the next fragment of
data was delayed by more than the availablepreroll time, the

1051–8215/01$10.00 © 2001 IEEE

270 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001

Fig. 1. Communication between RealAudio server and RealAudio player.

player had to suspend rendering until the buffer was refilled.
This so-calledrebufferingprocess was a frequent cause of di-
minished user experience.

Some other challenges of using standard Web servers were
streaming of live presentations and implementing VCR-style
navigation features such as seek, fast-forward, and rewind for
on-demand streaming.

B. First Servers and Protocols for Streaming Media

The first complete streaming media package that featured
both server and client components was RealAudio 1.0, intro-
duced in March 1995 [8]. As shown on Fig. 1, the process
of communication between RealAudio server and RealAudio
player was based on a suite of dedicated, TCP- and UDP-based
network protocols, known as Progressive Networks Architec-
ture (PNA). These protocols allowed the transmission of the
bulk of compressed audio packets to be done via a low-over-
head, unidirectional UDP transport, and reduced the use of
TCP to basic session control needs.

While the use of UDP transport enabled a better utilization
of the available network bandwidth and made the transmission
process much more continuous (compared to TCP traffic), it
also introduced several problems such aslost, delayed, or de-
livered out of orderpackets.

To combat the damage caused by these effects, RealAudio
used several mechanisms. First, both client and server imple-
mented the Automatic Repeat-Request (ARQ) mechanism. This
procedure allowed the client to re-request missed packets, and
if they were successfully delivered within the available preroll
time, the loss was recovered. Second, in case ARQ failed, a
frameinterleavingtechnique was used to minimize thepercep-
tual damagecaused by the loss of packets [9]. For example, be-
fore interleaving, a network packet may contain 10 continuous
audio frames representing second of audio signal. The loss
of such packet results in the loss of second of audio, which
is clearly noticeable. On the other hand, after interleaving, this
packet may contain 10 audio frames randomly collected from
the last 10 seconds of audio. If such a packet is lost, the damage
is spread across these 10 seconds, leading to a much less notice-
able type of disruption.

C. First Video Codecs for Streaming Media

As we already mentioned, video codecs in VivoActive and
some other early programs were directly derived from the ITU-T

H.261 [10] or H.263 [6] standards. These codecs have been orig-
inally designed for low-latency, bit-level transmission scenarios
in POTS-based desktop videoconferencing. However, the need
to address many different requirements specific to UDP-based
streaming delivery have resulted in the proprietary design of the
RealVideo codec [11].

One of the most problematic initial requirements was the need
to produce compressed data that can be streamed at somefixed
bit rate. Normally, dynamic video clips have fragments that are
hard to encode, such as scene changes, transitions, etc., inter-
leaved with more or less static or slow-motion scenes, that can
be compressed efficiently. This results in very unequal distri-
bution of bits between frames when they are encoded with the
same level of distortion.

In order to maintain a constant bit rate, the encoder has ei-
ther to introduce unequal distortion when encoding frames, or
skip encoding some frames (which, again increases distortion,
unless the video is still), or do both. This appears to be an in-
teresting optimization problem on its own, and while a dynamic
programming-based algorithm for solving it has recently been
found (cf. [12]), such a solution may still leave substantial dis-
tortions in the reconstructed signal.

Fortunately, with the availability of the preroll buffer, the
constant bit rate requirement can be substantially weakened.
Thus, we now only need to maintain the required bit rateon
average, allowing the actual number of bits per frame to fluc-
tuate within the bounds provided by the space available in the
preroll buffer. These considerations have eventually led to the
design of the variable-bit-rate (VBR) rate-control algorithm in
RealVideo codec. A variant of such technique, calledbandwidth
smoothing, has been recently studied in [13].

Another difficult requirement was the need to supportrandom
accessto video frames in a compressed file. Such access was
needed to let users join live broadcasts or to let them rewind,
seek, and fast forward on-demand video clips. To solve this
problem, RealVideo codec periodically inserted Intra frames
and modified the rate-control mechanism in a way that fluctua-
tions in the quality of the encoded frames were minimized.

On the channel side, RealVideo codec had to deal with pack-
etization and packet loss. Due to the large sizes of video frames,
simple loss-distributiontechniquessuchasinterleavingcouldnot
beapplied directly. Instead,RealVideo codecuseda combination
of forward error correction codesto protect the most sensitive
parts of the compressed bitstream and various built-inerror con-
cealmentmechanisms. Such combination of techniques is com-
monly referred to asunequal error protection[14].

CONKLIN et al.: VIDEO CODING FOR STREAMING MEDIA DELIVERY ON THE INTERNET 271

Fig. 2. Streaming protocols used by RealSystem G2, and its interoperability with other standards-based systems.

D. The Need for Scalable/Adaptive Streaming

Since the first programs for streaming media were only con-
cerned with delivering streaming media content at some fixed
bit rate (e.g., 14 or 28 kbits/s), it was only sufficient to serve
the needs of users with identical speeds of Internet connection.
Users with faster connections could not experience any benefits
of extra bandwidth, while those with slower connections were
not been able to view the content at all.

A preliminary solution to this problem was to create and serve
multiple versions of the same content, encoded for some specific
classes of the Internet audience. For example, a publisher of a
streaming media presentation had to create separate versions of
it for users of 28K and 56K modem connections, ISDN lines,
etc.

Undoubtedly, this solution had many obvious problems. First,
it was based on the assumption that the actual bandwidth of the
channel between server and client is bounded only by the last
link in the chain (i.e., client’s connection to the ISP), which
is not always true. Also, it did not address the possibility of
dynamic changes in channel bandwidth and loss statistics.

To maintain connection when bandwidth changes early
streaming media servers implemented so-called streamthin-
ning mechanism. When a server was notified that packets were
delivered to the client slower than real-time, it began skipping
transmission of some of the packets. Such a technique certainly
introduced the loss of data, but it was sufficient to prevent
players from rebuffering or losing connections.

E. RealSystem G2

A much more comprehensive solution to the problem of
serving multiple audiences and making such servingadaptive
was provided by RealSystem G2 and its SureStream™ tech-
nology, introduced in 1998 [15], [16].

The key idea of SureStream is to use the encoder to pro-
duce multiple representations (orstreams) of the original con-
tent, optimized for various channel conditions. These encoded
streams are then stored in singleSureStreamfile, in a form
that facilitates their efficient retrieval by the server. During the
streaming session, a client (RealPlayer G2) monitors the ac-
tual bandwidth and loss characteristics of its connection, and
instructs the server to switch to the stream, whose transmission
over the current channel would yield the minimum distortion in
the reconstructed signal.

The use of client-side processing offered at least two major
benefits. First, it greatly reduced the complexity of server-side
processing needed to support stream selection, and thus,
increased the number of simultaneous connections the server
would be able to maintain. Second, it allowed a very simple
extension of SureStream mechanism formulticastdelivery: if
encoded streams are assigned to different multicast addresses,
all the client has to do is to subscribe and unsubscribe them dy-
namically using the same rate distortion minimization process.

It is important to note that the implementation of SureStream
services in RealSystem G2 is not tied to any particular file
format or video coding algorithm. In Section VI, we will pro-
vide a more detailed description of the SureStream framework,
and will show how it can be used to take advantage of various
scalable video codingtechniques, for channel adaptation.

In addition to many other technological advances, Real-
System G2 marked an important phase in the development of
Internet streaming infrastructure, being the first system built
on the IETF and W3C standards for Internet multimedia. As
illustrated in Fig. 2, in place of the proprietary PNA protocol,
RealSystem G2 used the standard RTSP protocol [17] for ses-
sion control, and supported the RTP standard [18] for framing
and transporting of data packets. RealSystem G2 was also one
of the first systems that embraced the W3C SMIL standard [19]
for multimedia presentations.

F. Distributed Media Delivery Networks

In spite of the dramatic progress in improving the perfor-
mance of software and hardware for streaming media servers, it
become apparent that a single server is capable of serving only
a very limited subset of the potential Internet audience. More-
over, a single server-based delivery system faces several major
problems from network utilization point of view. The amount
of traffic it pushes through the public IP network is always a
linear function of the number of subscribed clients. Even if the
information sent to all clients is the same (e.g., transmission of
a live video event), it still has to be sent individually. Besides
of generating large quantities of redundant IP packets, this also
creates a strongly asymmetric (centered around the server) dis-
tribution of load on local network infrastructure. Under certain
circumstances, all these factors can cause network congestion,
which in turn, degrades the quality of service provided by such
a system, or even worse makes it completely nonfunctional.

272 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001

In certain cases, such as distribution of live content, the load
on the streaming media server can be reduced if the network sup-
portsmulticast routing. The server only sends a single stream,
and multicast routers replicate it to all subscribed clients. Unfor-
tunately, in spite of being an area of very active and challenging
research in the past few years, the practical use of multicast still
remains very limited. In part this could be explained by the costs
and slow deployment rates of the required multicast equipment,
as well as by the existence of various reliability problems re-
lated to this distribution method.

This motivated the development of so-calledapplica-
tion-level multicast networks, that use multiple intermediate
servers that re-broadcast incoming packets to their respective
clients. A well-known early example of such a network used for
videoconferencing was the Multicast Backbone (MBone) [20].

Similar to MBone, today’sstreaming media delivery net-
works employ multiple, geographically distributed servers.
They differ however, in the ways they implement the dis-
tribution of the encoded content between these servers, and
the mechanisms they use for redirecting clients to their local
(and/or least busy) servers.

Thus, in the simplest case, a delivery network may be
composed of various distributed servers, which do not have
any information about each others’ existence. Such servers are
typically installed by ISPs and large corporations to minimize
the amount of traffic coming into their local networks. This
is achieved either bysplitting incoming live streams to all
subscribed clients on the local network, or bycachingmost
frequently used on-demand content on local storage.

A more comprehensive (and more commonly used) solution
is provided by delivery networks that usededicated(guaran-
teed-bandwidth) connections between their servers. Typically,
there are certain costs associated with usage of dedicated chan-
nels, and the minimization of traffic in such networks becomes
a very important problem.

Another (and relatively new) way of building streaming
media delivery networks is based on the use of multiple-access
transmissions over the public Internet. In its simplest form, such
a delivery system sends the requested information from several
different locations concurrently, and collects packets that arrive
first (or arrive at all) at the receiver end. In a more general case,
such a system may employ special distributed coding, such that
receiving and joint decoding of the information from multiple
transmitters yields a lower level of distortion than any one of
the individual streams.

G. Video Coding and the Next-Generation Media Delivery
Systems

Overall, today’s streaming media distribution involves trans-
fers of audio and video information through a number of inter-
mediate servers before it reaches subscribed clients. The final
stage in this process, the server–client transmission, has long
been a central problem for streaming media systems. However,
with the growth of the Internet infrastructure and intensive de-
ployment of streaming media delivery networks the focus is
now shifting toward optimizing the overall quality of service
provided by such delivery systems. Typical constraints for such

optimization are topology of the network, bandwidth and main-
tenance costs of its internal channels, storage capacities of its
servers, etc.

Under certain restrictions (such as the use of lossless chan-
nels, use of intermediate servers only to replicate the incoming
data, etc.), analysis of flows in such networks can be viewed as
one of the well known graph-combinatorial problems [21]–[23].

A more complete settlement of this problem involves the
study of theinformation flow in such networks [24]. Some
recent results in this theory [25] explain, for example, that
simple multicast routing is not sufficient for achieving optimal
bandwidth usage. On the other hand, networks that employ
transcoding of the information at every node (router), can
potentially be optimal [25].

All these factors highlight some new ways video coding can
be used in the next generation streaming media delivery sys-
tems. Finding efficient solutions of the corresponding coding
problems will be increasingly important for further progress in
this field.

III. STREAMING MEDIA DELIVERY MECHANISMS

It is important to distinguish between two modes in which
video information can be distributed over the Internet, namely,
live broadcastingand on-demand streaming. Below, we con-
sider each of these models and the correspondingdelivery mech-
anismsused by modern streaming media systems.

A. Distribution of Live Video

A diagram illustrating various steps in the distribution of live
content is presented in Fig. 3. The source of live video infor-
mation (such as any standard analog video recorder) is con-
nected to theencoder. The encoding engine is responsible for
capturing and digitizing the incoming analog video informa-
tion, compressing it, and passing the resulting data down to the
server. Alternatively, the server can receive such information
from a Simulated Live Transfer Agent(SLTA), a software tool
that reads pre-encoded information from an archive and sends it
to a server as if it has just been encoded from a live source.

The server is responsible for dispersing the compressed infor-
mation from the encoder to all connectedsplittersand/orclients
who have joined the broadcast. Splitters are additional servers
that can be either part of a dedicated media delivery network,
or a public-IP-based multiple-access delivery network, or can
be embedded in network traffic caches, which in case of live
streaming broadcasts just pass the information through.

In its simplest form, the server (or splitter)unicaststhe en-
coded video information to each of the clients individually using
a one-way data stream (combined with two-way RTSP session
control). In this case, the parameters of the connection between
server and each client can be estimated at the beginning of each
session and can be systematically monitored during the broad-
cast.

In the case where a network is equipped with multicast-en-
abled routers, the server needs to send only onemulticast
stream, which is automatically replicated to all subscribed
clients on the network. Important limitations of multicasting

CONKLIN et al.: VIDEO CODING FOR STREAMING MEDIA DELIVERY ON THE INTERNET 273

Fig. 3. Delivery of live and/or simulated live content.

Fig. 4. Delivery of on-demand content.

are one-way transmission and nonguaranteed delivery of
information. In addition, the server does not typically know
how many clients are subscribed to the broadcast and/or their
actual connection statistics. A possible way to serve clients with
different connection speeds is tosimulcastseveral independent
encoded versions (streams) of the source targeted for different
bit rates, and let clients decide which stream to use.

In addition to the server-client transfers, streaming media net-
works also have to distribute encoded video information be-
tween their splitters. There are several possible ways such distri-
bution can be implemented by the network. In one possible im-
plementation, splitting is initiated by the source server, which
broadcasts information to all directly connected splitters, and
so on. We call such processpush splitting. Alternatively, split-

ting can be initiated by a client connecting to a local splitter (or
network cache acting as a splitter) which, if not active, trans-
fers request to an upper tier splitter, and so on, until it reaches
the nearest active splitter. Once such a splitter is found, it can
start transmission of the requested information down through
the chain of intermediate connections to the client. We call this
modelpull splitting. In the case where a splitter is used as part of
amultiple-accessdelivery network, it can establish connections
to several geographically distributed upper-tier splitters. We call
such a delivery processmultiple-accesssplitting.

B. On Demand Distribution

We illustrate the steps in another distribution model, on-de-
mand streaming, in Fig. 4. One of the major differences between

274 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001

this diagram and the one for live broadcast (see Fig. 3) is that
there is no direct connection between the encoder and the server.
Instead, a compressed video clip has to be recorded on disk first,
and then the server will be able to use the resulting compressed
file for distribution. This also allows remoteproxyservers to use
their local storage tocachethe most frequently used media clips.

Server–client communication for delivering on-demand con-
tent is essentially the same as unicast streaming of live content.
The main difference is that with on-demand content user is al-
lowed to rewind and/or fast forward the presentation, while such
controls are not available for live (or simulated live) broadcasts.

Unlike push- and pull-splitting of live content, the
server–proxy transfers can only be initiated by the client.
Moreover, at the time of the transfer, the proxy may already
have some information about the requested clip in the local
storage. Using proper coding techniques, such information can
be used to reduce the rate of the requested additional stream to
the proxy.

IV. PROBLEMS IN VIDEO CODING FORSTREAMING MEDIA

DELIVERY

As we have already described, today’s streaming media de-
livery is a complex process, involving various types of transmis-
sion of video information over distributed, heterogeneous net-
works. Based on the number of transmitters, receivers, and the
availability of the correlated information at the receiver’s end,
such transmissions may lead to different problems from source
coding and communication (characterization of the capacity re-
gion of the network) points of view. In turn, since all encoded
data are carried over an IP network, the characteristics of these
transmissions will depend on the actual parameters and state of
such network. Some other factors that pose additional constrains
on video coding are usage model (e.g., availability of rewind,
fast-forward, and seek functions), and processing power avail-
able to senders and receivers.

Below, we explain each of these aspects of streaming media
delivery, and describe specific problems they pose for video
coding.

A. Problems Imposed by the Type of Communication

We summarize some of the properties of the communication
processes introduces in Section III in Table I.

In the case ofunicast streaming, we clearly have a classic
point-to-point communication, which leads to (separable, under
certain conditions)sourceandchannelcoding problems.

In the case ofmulticast streaming, we have to deal with un-
known multiple receivers that may have different loss character-
istics of their connections. This problem is commonly known as
communication over thebroadcast channel[24].

Similar to multicast, information distributed viasplitting is
intended to be received by a number of clients with various
(and unknown to the sender) types of connections. However,
the intermediate transfers between splitters are the standard
point-to-point communication processes. In other words, if
splitters are not allowed to transcode the data they receive,
splitting requires a coding technique that is optimal for both
broadcast and point-to-point communication.

TABLE I
COMMUNICATION PROCESSES INSTREAMING MEDIA

An even more interesting coding problem arises withmul-
tiple-access splitting. Such splitters request and receive infor-
mation from multiple sources, which can be considered a form
of multiple-accesschannel [24]. In turn, the information re-
ceived by splitters is intended for multiple clients. The combi-
nation of both requirements leads to a variant of the problem of
source coding for multiterminal networks[26], [24].

Consideringserver-proxy communication, it is important to
study a case when the proxy contains some pre-cached infor-
mation about the requested video clip, or some other correlated
sequence. In the lossless case, the corresponding source coding
problem can be treated using theSlepian-Wolftheorem [27]. In
a lossy case, we have a problem ofsource coding with side in-
formation[28].

Finally, we need to consider communication betweenmul-
tiple-access proxies. Thus, if a multiple-access proxy needs to
get new data, it initiates several connections to two or more other
(geographically distributed) proxies, and hopes to use the data
it receives from all channels to minimize the distortion in the
reconstructed signal. This is a well knownmultiple description
coding problem [29]–[31].

B. Problems Associated with IP-Based Delivery

The heterogeneous and time-variant nature of today’s IP
networks presents a number of challenges for implementing
real-time communication systems. First, depending on the
actual network path, characteristics of routers and commu-
nication channels used to transmit packets from one point to
another, parameters of such connection can vary by several
orders of magnitude. For example, the bandwidth can vary
from hundreds of bits to megabits per second, the packet loss
probabilities can vary from near zero to tens of percent, and the
delivery delay can vary from milliseconds to seconds. Second,
all the above parameters can vary in time, depending on the
current distribution of load in the network.

A possible way to address some of these problems is based
on the idea ofadaptive client-driven serving(or receivingfor
multicast delivery) of streaming media content. Thus, in the ma-

CONKLIN et al.: VIDEO CODING FOR STREAMING MEDIA DELIVERY ON THE INTERNET 275

Fig. 5. Motion-compensated hybrid coder.

jority of cases clients can monitor the rate and loss statistics for
the arriving packets, and instruct the server on how to adjust en-
coding and/or transmission rate.

In the simplest case, used only for transmission rate adjust-
ments, such a technique may have a function ofcongestion con-
trol. This is a well known problem, and examples of works in
this direction include control schemes for layered multicast [32]
and TCP-friendly transmissions [33], [34].

Theerror control is another problem arising when the trans-
mission rate is given by the congestion control algorithm, and
the goal is to use this bandwidth to minimize effects of the
packet loss. A variant of this problem, in a context of the adap-
tive layered multicast system has been recently studied in [35].

Dynamic predictionof bandwidth and loss parameters is
an important integral component of both congestion- and
error-control schemes. Given sufficient temporal window
(preroll time), such algorithms can use a broad set of statistical
techniques, and/or some known empirical phenomena. For
example, it is well known that fluctuations of the Internet traffic
have a fractal-like scaling behavior over time scales [36].

C. Random Access

Both on-demand and live streaming require random access to
compressed video information. For on-demand video content,
the end-user should be able to fast forward, rewind, and seek
through the presentation. For live content, the end-user must be
able to connect to the broadcast throughout the event.

Random access may also be needed to implement adaptive
serving. For example, a server may have several pre-encoded
versions of the same content, and when it receives the request
to change transmission rate, it simply starts streaming one that
fits in the requested data range.

In the simplest case, random access capability can be im-
plemented by independent encoding of relatively small (1–5
seconds) blocks of the video content. In the framework of a
motion-compensated transform-based video coding, this trans-
lates in the insertion of I-frames at the boundaries of such in-
tervals. Unfortunately, this technique has a negative impact on
the achievable compression rates, and prevents the use of many

powerful universalandasymptotically optimaldata compres-
sion schemes.

An alternative to the use of I-frames is an architecture pro-
posed in [37]. This system uses special “S”-frames to implement
joining and switching between (continuously) encoded streams.

D. Heterogeneity of Processing Resources

Another, and not-yet mentioned aspect of the Internet is the
heterogeneity of the processing poweravailable at its termi-
nals. Streaming media presentations can be received on variety
of computing devices, ranging from powerful workstations and
desktop PCs to set-top boxes and low-power handhelds, such as
cellular phones and PDAs.

This creates the need for coding techniques that supportcom-
plexity-scalable decoding.

Availability of the processing power is also an important
factor for the design of the encoding algorithms. For example,
encoding of the on-demand presentations can typically be done
off line and the use of high complexity encoding algorithms
is possible and desirable in such a scenario. On the other
hand, content encoding for live broadcasts must be done in
real-time, frequently on a computer with limited resources, and
the encoding algorithms must be able to scale its complexity to
deliver best possible quality under such constrains.

V. MOTION-COMPENSATEDHYBRID VIDEO-CODING

ALGORITHMS FORSTREAMING MEDIA

During the last two decades, the problem of source coding of
video information has been an area of extremely active research,
leading to various successful deployments of such algorithms in
practice, and industry-wide standardization activities. A practi-
cally important result of these efforts was the selection of a mo-
tion-compensated hybrid transform-based compression scheme
as a basis for all currently adopted standards on video coding
(such as MPEG-1 [2], H.261 [10], H.263 [6], etc.).

We present the structure of a generic single-rate motion-com-
pensated hybrid codec in Fig. 5. Input video frames are passed to
the temporal preprocessor, which decides if a frame should be

276 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001

coded, detects scene cuts, selects a prediction model (unidirec-
tional, or bi-directional), etc. Themotion estimation enginenor-
mally performs an RD-constrained block-based motion search
in the field generated by thespatio-temporal prediction filter.
The block sizes used for motion search vary in different stan-
dards from to pixels. Likewise, implementations
of prediction filter can vary from a simple 1/2-pixel accurate bi-
linear spatial interpolation, to sophisticated spatio-temporal fil-
tering techniques [38]. The residues after motion estimation are
passed to an energy-compactingorthogonal transform. To im-
plement such a transform, most of the standard video codecs use
the DCT kernel [39]. The resulting transform coefficients
are quantized and sent to a lossless statisticalencoder.

To stay synchronized with the decoder, the encoder replicates
parts of the decompression loop, namely, dequantization, in-
verse transform, motion compensation engine and an adaptive
deblocking filter.

The rate-control algorithm is used to select the step of
quantization and also to provide input information for the
temporal pre-processor and motion compensation engine in
order to maintain output bit rate within certain limits.

A. Scalability Modes

It should be stressed that the first motion-compensated hy-
brid video coding algorithms have been designed to produce a
single-rate encoded version of the input signal. Being suitable
for point-to-point transmissions over stationary channels, such
algorithms do not address the needs of other communication
scenarios, such as multicast or multiple-access transmission. To
extend the range of applicability of these schemes, a number of
specialscalabilitymodes have been proposed.

In the simplest case, a communication system may encode
a given content several times, producing redundant, indepen-
dently encoded streams, specifically optimized for several pos-
sible types of channels. If the goal is to implement a scalable
multicast system, all these streams can be sent via multicast
channels simultaneously, and the clients would have to decide
which of the streams will work in the best way for their current
channel conditions. This technique is known assimulcast.

However, such a coding scheme may not be optimal for split-
ting, where it is also necessary to have the combined representa-
tion of all streams as small as possible. These requirements can
be addressed by using codes based on the principle ofsucces-
sive refinement[40]–[42].

In the context of motion-compensated hybrid video coding,
this idea led to the development of ascalablecoding technique,
based on spatio-temporal pyramid decompositions of the source
signal [43], [44], or factorization of the quantizer step sizes used.
For example, the H.263+, Annex 0 specification [45] describes
separate temporal (B-frames), spatial (resampling), and SNR
(quantizer size) scalability modes.

In practice, simple SNR scalability techniques of [45] do not
attain the performance of the redundant, multiple bit rate encod-
ings [46]. However, with the use of more advanced quantization
schemes proposed in [44], such differences can be made less
noticeable.

To address the needs of multiple-access communication, it is
necessary to employ multiple-description coding. Using the mo-

tion-compensated hybrid video-coding framework, such a goal
can be achieved by replacing its scalar quantization with an ap-
propriatemultiple-description quantizationscheme [47], [48].

B. Emerging Video-Coding Standards for Streaming Media

As we discussed earlier, streaming media poses various ad-
ditional problems for video coding. Problems associated with
IP-based delivery, availability of preroll delay, random access,
processing power scalability, etc., have not yet been addressed
by the existing standards for video communication.

One of the emerging standards that has a potential to cover
these issues is the ITU-T SG16/Q15 H.26L project [49]. The
corresponding requirements for this standard have already been
provided in [50].

Improved video coding technologies (cf. [51]–[53]) and tools
for supporting streaming media applications (Streaming Media
Profile) are also the focus of the ISO/IEC JTC1/SC29/WG11
MPEG Group.

VI. V IDEO PROCESSING INREALSYSTEM 8

As we have already pointed out in Sections II-D and
IV-B, it is necessary to perform anadaptivechannel (or joint
source/channel) encoding of the streaming content in order to
match the actual bandwidth and loss statistics of the channel. In
turn, since the channel information becomes available only at
the time of serving of the content, such adaptive source/channel
coding could only be done in the server.

However, there are certain restrictions on the complexity as-
sociated with maintaining each of the connections in the server.
For instance, today’s streaming media servers are designed to be
capable of serving thousands of clients per CPU, and thus, only
very simple types of processing can be done on the bitstream
level.

The last set of requirements is satisfied by distributing the ma-
jority of the actual source/channel coding work to theencoder,
and leaving the server only to complete the final stages of this
process. Some of the possible ways to accomplish partition of
the encoding process are:

• the use ofredundant, independently encoded streams,
specifically optimized for several possible channel condi-
tions, and the bandwidth/error rate prediction logic in the
client and/or the server that selects the stream to transmit
based on the actual behavior of the channel in the past;

• the use ofscalable source coding techniquesin the en-
coder, leaving the server an opportunity to trim the code
to the appropriate bit rate before the transmission;

• the use of themultiple-description codesfor multiple-ac-
cess distribution of the content.

To support efficient implementation of such types of adap-
tive video encoding/serving processes, RealSystem 8 offers an
extensive set of tools and public APIs, known as SureStream
technology [54]. The key components of this framework are:

• Adaptive Stream Management (ASM)protocol;
• SureStreamfile format access and rendering mechanisms;
• actualsource and channel coding algorithmsimplemented

by a set ofplug-ins(such as RealVideo 8 codec plug-in)
that can be attached to the system.

CONKLIN et al.: VIDEO CODING FOR STREAMING MEDIA DELIVERY ON THE INTERNET 277

Fig. 6. Adaptive Stream Management in RealSystem 8.

Fig. 7. The structure of the RealVideo 8 encoding module.

Fig. 8. Input filters in RealVideo 8.

A. ASM

ASM is a mechanism that allows the client (RealPlayer) to
communicate efficiently the type of the encoding that should be
“synthesized” by the server in order to minimize the distortion
of the received information.

We present the structure of the server’s and client’s com-
ponents involved in the ASM process in Fig. 6. Compressed
media files are accessed by server with the help of thefile system
andfile formatplug-ins. The file format plug-in has knowledge
about the way data are compressed and stored in the media file,
and is capable of producing various combinations of the en-
coded streams as they are requested by the client.

To produce such combinations, the file format plug-in uses
so-calledASM rules. These rules are based on a sophisticated,
fully programmable syntax and can be used to describe various
means of channel adaptation ranging from simple priorities as-
signed to different packets, to expressions describing various
combinations of bandwidth, packet loss, and effects of loss on
the reconstructed signal that can be measured by the client.

The complete set of theASM rulesis stored in the compressed
media file as theASM rule book. At the initial phase of the com-

munication, the ASM rule book is transferred to the client. In
turn, the client collects the information about the channel, parses
the AMS rule book, and sends the server a request tosubscribe
to a rule or combination of rules that match current statistics in
the channel.

When the server receives the request to subscribe to a rule, it
passes it to the file format plugin, which in turn begins to mix
data according to its knowledge of their structure.

It should be noted that ASM is a general and format-indepen-
dent technique. The actual syntax of ASM rules can be defined
differently for various datatypes, and the actual logic of using
them can be fully defined in their respective file format and ren-
dering plug-ins.

B. The Structure of the RealVideo 8 Algorithm

The overall structure of the RealVideo 8 encoding process
is presented in Fig. 7. Digitized and captured video frames (or
fields) along with their timestamps are passed to a set ofinput
filters. These filters are mainly needed to remove the noise and
some specific artifacts that could have been introduced by edits
and conversions of the video signal.

278 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001

Fig. 9. RD comparison charts for clip “Foreman,” QCIF, 7.5 fps.

The output of the filtering engine is connected to aspa-
tial resampler. The purpose of this block is todownscale
input frames to a set of spatial resolutions that are suitable
for encoding at various output bit rates. The optimal selec-
tion of such resolutions depends not only on the set of target
bit rates (which is typically known), but also on the type of
the content and type of distortions (e.g., smoothness versus
clarity of individual frames) that the expected audience will
be more willing to tolerate. For this reason, RealProducer
8 allows content creators to select one of the four modes:
“smooth motion,” “normal motion,” “sharpest image,” and
“slide show” when encoding a clip. Later, this selection is
used to deduct the desired tradeoff between spatial and tem-
poral resolutions for each target bit rate.

After passing theresampler, video frames of various resolu-
tions are forwarded to a set of actual videocodecs, which are
configured to produce encodedstreamsfor a given set of target
bit rates. Potentially, after receiving the data, each codec can
work independently from the others. However, since some of
the operations (such asscene-cut detection, motion compensa-
tion, etc.) that are performed for each stream may have the same
or very similar results, these codecs are designed to share their
intermediate data, and use them to reduce the complexity of the
overall encoding process.

The last element on Fig. 7 is theCPU scalability control
module, which tracks the actual processing times in various
points of the RealVideo 8 engine, and sends signals to the ap-
propriate algorithms if they should switch to lower complexity
modes. This type of control is essential to maintain the best
possible quality level for encoding live presentations, especially
when the encoding machine is being used for other needs.

Fig. 10. RD comparison charts for clip “News,” QCIF, 15 fps.

Below, we describe some of the components of the RealVideo
8 encoding algorithm in greater details.

1) Pre-Filtering: The primary purpose of input video filters
in RealVideo 8 is to remove noise and other artifacts that lower
the perceptual quality of the original signal. In doing so, these
filters can actually remove special types ofirrelevant (and, in
some cases, alsoredundant) information, thus helping the main
video compression algorithm to achieve its goals.

As presented in Fig. 8, the actual sequence of filters used de-
pends on the type of the video information that is being pro-
cessed. If a signal is captured from a digital source, such as a
USB camera, it is already presented inprogressiveform, and we
may only want to pass it through a filter that removes low-en-
ergy spatial noise. On the other hand, if the signal is being from
an analog NTSC (or PAL/SECAM) source, such as a TV tuner,
camcoder, or VCR, we are dealing with aninterlacedand po-
tentially editedvideo signal, and thus, additional filters can be
applied.

Several of our filters are designed to remove artifacts of the
capture process that become obvious when the captured frames
are displayed in a progressive mode (such as on a computer
monitor). TheDe-interlace filter is designed to intelligently
combine information from odd and evenfields of NTSC (or
PAL/SECAM) video signal, such that the shapes of moving
objects are preserved as continuous. In effect, this filter out-
puts complete, progressive video frames without introducing
“jaggy”-shaped artifacts, common for most of the simple NTSC
converters. TheInverse Telecinefilter is designed to remove
the effects of the telecine process. Film is a progressive media
that is composed of 24 frames per second (fps). NTSC video is
an interlaced media at a rate of 29.97 frames (or 59.94 fields)

CONKLIN et al.: VIDEO CODING FOR STREAMING MEDIA DELIVERY ON THE INTERNET 279

Fig. 11. Client-side video processing in RealSystem 8.

per second. The telecine process injects the additional 5.97
frames (or 11.94 fields) per second. These frames are clearly
redundant and should be removed before the encoding process.
Also, due to possible edits of the NTSC-converted film, the
regular pattern of the inserted frames (fields) can be changed.
For this reason, ourInverse Telecinefilter detects all changes
in order of fields and passes this information to the de-interlace
filter to make sure that it combines them in proper order.

2) Core Algorithm: The core, single-rate video compression
algorithm in RealVideo 8 is essentially a motion-compensated
hybrid scheme, similar to ones we have described in Section V.

It is somewhat more sophisticated in various respects (such
as motion prediction [55], adaptive transform sizes, and
advanced statistical models) and demonstrates better coding
gain compared to well-known standard codecs. We illustrate
this in Figs. 9 and 10, where we compare the RealVideo 8
with MPEG-4 and H.263+ algorithms. Here we can observe
improvements on the order of 0.5–2.0 dB relative to H.263+,
and around 0.5–1.0 dB compared to MPEG-4 codec.

In the above tests, the MPEG-4 bit streams were cre-
ated using the latest MoMuSys reference software (Version
FPDAM1-1.0-000 608) with all implemented and relevant
tools of the Advanced Coding Efficiency profile: quarter-pel
motion compensation, ac/dc prediction, 4-MV, unrestricted
motion vectors. To produce H.263+ bit streams, we used the
TMN10 model with enabled Annexes I, J, and T. All codecs
used fixed frame rate and fixed quantization (no rate control)
mode, and motion search was restricted to pixels range.
Both MPEG-4 and H.263+ codecs used exhaustive search.

3) Scene Detection and Rate Control:Rate control de-
termines which frames are coded and the number of bits or
quality level of the encoded frames. At lower bit rates, one of
the greatest impacts on the perceived quality of coded video
is the relationship between framerate and frame quality. At
higher bit rates it is essential to maintain full framerates, and
the difficulty is to to maintain the appearance of uniform (high)
quality as well.

Rate control for RealVideo has two major modalities:
single-pass and two-pass rate control. In the single-pass mode
(which is always used for live encoding), rate control can be
described as trying to pick the number of frames to skip until
the next frame is encoded and the “correct” quality and type (for
example, intra- or inter-coded) for that frame. Knowledge of
both the current and previous unencoded frames and previous
encoded frames is used. For two-pass encoding, knowledge of

future frames and the efficiency with which they can be coded
are also used in the rate-control process.

Several—sometimes conflicting—requirements drive our
rate-control choices. Some of these requirements come from
the streaming aspect of real video. One primary streaming
requirement is that users have the ability to easily join live
streams, and also be able to seek within on-demand content.
Another is that the coding should be resilient to loss. The
solutions to these requirements partially come from rate control
and intelligent choices of frames and macro-blocks to be
intra-coded. However, these requirements must balance against
nonstreaming requirements such as maximizing the quality of
the content, which usually means minimizing the short-term
variability of the frame-rate and quality level. For example,
encoding three frames in quick succession followed by a long
temporal gap and three more frames is much less desirable than
encoding four or five or six frames at a more regular pace.

In the most recent versions of our encoding tools, we have
started to allow content creators to adjust some of the funda-
mental parameters of rate control. The most significant of these
is the temporal depth of the preroll buffer. As mentioned earlier,
this buffer limits the amount of bit averaging that is allowed
in encoding process. A larger buffer allows a coder to muscle
through short difficult to encode sections, such as a pan or fade,
with no degradation in video quality. The downside of a larger
buffer is increased startup latency of a streamed presentation.
By allowing our content creators to make this choice, we give
them the flexibility to tailor encoding to their audiences.

As an overall design feature, it has been our experience that
having a core rate-control algorithm that can make all of these
trade-off decisions (in terms of explicitly specifying a cost func-
tion and then attempting to minimize it) while taking into ac-
count the content creators’ desires (such as the ability to sup-
port a larger preroll buffer) yields a significant improvement in
video coding quality.

4) Client-Side Video Postprocessing:In addition to the basic
video compression/decompression services, RealVideo 8 also
offers several postprocessing filters aimed at improving the sub-
jective quality of the video playback. The structure of these fil-
ters is presented in Fig. 11.

After the decompression, video frames and their motion-vec-
tors are sent to theframe rate upsampler, which is a special tem-
poral filter that attempts to interpolate intermediate frames. We
found this technique especially useful for low-bit rate encoded
content, where original frames are regularly skipped.

280 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 3, MARCH 2001

The next block is a deringing filter used to reduce ringing
artifacts common for most of the transform-based codecs.

Finally, RealPlayer offers a variety of additional effects, such
as sharpening filter, color controls, etc.

VII. CONCLUSION

In this paper, we provided an overview of the architecture of
today’s Internet streaming media delivery networks and various
problems they pose for video coding.

We also explained some of the existing mechanisms in
RealSystem 8 that support adaptive transmission of pre-en-
coded information, and described the overall architecture of its
RealVideo 8 codec.

We showed that RealSystem 8 provides an open and ex-
tensible platform, capable of accommodating various future
needs of streaming media infrastructure on the Internet, and in
particular, new demands for improved video-coding techniques.

REFERENCES

[1] RealNetworks website, RealNetworks Facts. (2001), Seattle, WA. [On-
line]. Available: http://www.realnetworks.com/gcompany/index.html

[2] D. J. LeGall, “MPEG: A video compression standard for multimedia
applications,”Commun. ACM, vol. 34, pp. 46–58, 1991.

[3] Vivo Software web site, VivoActive software and documentation.
(1997). [Online]. Available: http://www.vivo.com/help/index.html

[4] J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.
Berners-Lee, “Hypertext Transfer Protocol—HTTP/1.1,” RFC: 2616,
June 1999.

[5] TCP: Transmission Control Protocol, DARPA Internet Program, Pro-
tocol Spec., RFC: 793, Sept. 1981.

[6] Video Coding for Low Bitrate Communications, ITU-T Recommenda-
tion H.263, Nov. 1995.

[7] Dual Rate Speech Coder for Multimedia Communications Transmitting
at 5.3 and 6.3 kbit/s, ITU-T Recommendation G.723.1, Mar. 1996.

[8] Progressive Networks. (1995, Apr.) Progressive Networks Launches
the First Commercial Audio-on-Demand System Over the Internet
(press release). [Online]. Available: http://www.realnetworks.com/com-
pany/pressroom/pr/pr1995

[9] R. Glaser, M. O’Brien, T. Boutell, and R. G. Goldberg, “Audio-on-De-
mand Communication System,” U.S. Patent 5 793 980, Aug. 1998.

[10] Video Codec for Audiovisual Services at $p \times 64$ kBit/s, CCITT
Recommendation H.261, 1990.

[11] Progressive Networks. (1997) Progressive Networks Announces Real
Video, The First Feature-Complete, Cross-Platform Video Broadcast
Solution for the Web (press release). [Online]. Available: http://www.re-
alnetworks.com/company/pressroom/pr/pr1997

[12] G. Motta, J. Storer, and B. Carpentieri, “Improving scene cut quality
for real-time video decoding,”Proc. IEEE Data Compression Conf.
DCC’00, pp. 470–479, Mar. 26–30, 2000.

[13] S. Sen, J. L. Rexford, J. K. Dey, J. F. Kurose, and D. F. Towsley, “On-
line smoothing of variable-bit-rate streaming video,”IEEE Trans. Mul-
timedia, vol. 2, no. 1, pp. 37–48, Mar. 2000.

[14] A. E. Mohr, E. A. Riskin, and R. E. Ladner, Unequal loss protection:
Graceful degradation over packet erasure channels through forward error
correction, IEEE J. Select. Areas Commun., to be published.

[15] RealNetworks. (1998). RealNetworks announces RealSystem G2,
the next generation streaming media delivery system (press release).
[Online]. Available: http://www.realnetworks.com/company/press-
room/pr/pr1998

[16] A. Lippman, “Video coding for multiple target audiences,” inProc. IS
and T/SPIE Conf. Visual Communications and Image Processing, San
Jose, CA, Jan. 1999, pp. 780–784.

[17] H. Schulzrinne, A. Rao, and R. Lanphier, “Real-time streaming protocol
(RTSP),” IETF, RFC 2326, Apr. 1998.

[18] H. Schulzrinne, S. Casper, R. Frederick, and V. Jacobson, “RTP: A trans-
port protocol for real-time applications,” IETF, Request for Comments
1889, Jan. 1996.

[19] P. Hoschka, “The Application/SMIL media type,” (draft-hoschka-smil-
media-type-04.txt), Dec. 1999.

[20] M. R. Macedonia and D. P. Brutzman, “MBone provides audio and video
across the Internet,”IEEE Comput., pp. 30–36, Apr. 1994.

[21] L. R. Ford and D. R. Fulkerson,Flows in Networks. Princeton, NJ:
Princeton Univ. Press, 1962.

[22] B. Bolobas, Graph Theory, An Introductory Course. New York:
Springer-Verlag, 1979.

[23] D. Bertsekas and R. Gallager,Data Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1987.

[24] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[25] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. Inform. Theory, vol. 46, pp. 1204–1216, 2000.

[26] T. Berger,The Information Theory Approach to Communications, G.
Lingo, Ed. New York: Springer-Verlag, 1977. Multiterminal source
coding.

[27] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,”IEEE Trans. Inform. Theory, vol. IT-19, pp. 471–480, 1973.

[28] A. Wyner and J. Ziv, “The rate distortion function for the source coding
with side information at the receiver,”IEEE Trans. Inform. Theory, vol.
IT-22, pp. 1–11, 1976.

[29] H. S. Witsenhausen, “On source networks with minimal breakdown
degradation,”Bell Syst. Tech. J., vol. 59, no. 6, pp. 1083–1087,
July–Aug. 1980.

[30] J. K. Wolf, A. D. Wyner, and J. Ziv, “Source coding for multiple descrip-
tions,” Bell Syst. Tech. J., vol. 59, no. 8, pp. 1417–1426, Oct. 1980.

[31] L. Ozarow, “On a source coding problem with two channels and three
receivers,”Bell Syst. Tech. J., vol. 59, no. 10, pp. 1909–1921, Dec. 1980.

[32] S. McCanne, V. Jacobsen, and M. Vetterli, “Receiver-driven layered
multicast,” in Proc. ACM SIGCOMM, Stanford, CA, Aug. 1996.

[33] D. Sisalem and H. Schulzrinne, “The loss-delay adaptation algorithm:
A TCP-friendly adaptation scheme,” inProc. Network and Operating
System Support for Digital Audio and Video (NOSSDAV), Cambridge,
U.K., July 1998.

[34] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based con-
gestion control for unicast applications,” in Proc. ACM SIGCOMM,
Stockholm, Sweden, Aug. 2000.

[35] P. A. Chou, A. E. Mohr, S. Mehrotra, and A. Wang, “FEC and
pseudo-ARQ for receiver-driven layered multicast of audio and video,”
Proc. IEEE Data Compression Conf. (DCC), Mar. 27–30, 2000.

[36] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar
nature of ethernet traffic,”IEEE Trans. Networking, vol. 2, pp. 1–15,
1994.

[37] B. Girod, N. Farber, and U. Horn, “Scalable codec architectures for In-
ternet video on demand,” inProc. 1997 Asilomar Conf. Signals and Sys-
tems, Pacific Grove, CA, Nov. 1997.

[38] M. Flierl, T. Wiegand, and B. Girod, “A locally optimal design algorithm
for block-based multi-hypothesis motion-compensated prediction,” in
Proc. Data Compression Conf. DCC’98, Snowbird, UT, Apr. 1998, pp.
239–248.

[39] K. R. Rao and P. Yip,Discrete Cosine Transform: Algorithms, Advan-
tages, Applications. New York: Academic, Aug. 1990.

[40] V. Koshelev, “Estimation of mean error for a discrete succesive approxi-
mation scheme,”Probl. Inform. Transm., vol. 17, pp. 20–33, July–Sept.
1981.

[41] W. H. R. Equitz and T. M. Crover, “Succesive refinement of informa-
tion,” IEEE Trans. Inform. Theory, vol. 37, pp. 269–274, Mar. 1991.

[42] B. Rimoldi, “Succesive refinement of information: Characterization of
the achievable rates,”IEEE Trans. Inform. Theory, vol. 40, pp. 253–259,
Jan. 1994.

[43] M. K. Uz, M. Vetterli, and D. J. LeGall, “Interpolative multiresolu-
tion coding of advanced television with compatible subchannels,”IEEE
Trans. Circuits Syst. Video Technol., vol. 1, pp. 86–99, 1991.

[44] U. Horn and B. Girod, “Scalable video transmission for the Internet,”
Computer Networks and ISDN Syst., vol. 29, pp. 1833–1842, 1997.

[45] Video Coding for Low Bit Rate Communication, ITU-T Recommenda-
tion H.263, Version 2, Feb. 1998.

[46] F. C. M. Martins and T. Gardos, “Efficient receiver-driven layered mul-
ticast using H.263+ SNR scalability,”Proc. IEEE Int. Conf. Image Pro-
cessing (ICIP), pp. 32–35, Oct. 4–7, 1998.

[47] Y. Wang, M. T. Orchard, and A. R. Reibman, “Multiple description
image coding for noisy channels by pairing transform coefficients,” in
Proc. Workshop on Multimedia Signal Processing, Princeton, NJ, June
1997, pp. 419–424.

[48] V. K. Goyal, J. Kovacevic, and M. Vetterli, “Multiple description trans-
form coding: Robustness to erasures using tight frame expansions,” in
Proc. Int. Symp. Information Theory, Cambridge, MA, Aug. 1998, p.
408.

CONKLIN et al.: VIDEO CODING FOR STREAMING MEDIA DELIVERY ON THE INTERNET 281

[49] Video Coding for Low Bit Rate Communication, ITU-T SG16/Q.15
H.26L Project, Feb. 2000.

[50] G. S. Greenbaum, “Remarks on the H.26L Project: Streaming Video Re-
quirements for Next Generation Video Compression Standards,” ITU-T
SG16 (Q15), Doc. Q15-G-11, Monterey, CA, Feb. 16–19, 1999.

[51] Call for Evidence Justifying the Testing of Video Coding Technology,
ISO/IEC JTC1/SC29/WG11 N3318, Mar. 2000.

[52] A Response for Evidence Justifying the Testing of Video Coding
Technology, ISO/IEC JTC1/SC29/WG11 M6171 (S. Greenbaum, K.
0. Lillevold: RealNetworks, Inc.; J. McVeigh, R. R. Rao: Intel, Corp.),
July 2000.

[53] Call for Proposals for New Tools to Further Improve Video Coding Ef-
ficiency, ISO/IEC JTC1/SC29/WG11 N3671, Oct. 2000.

[54] RealNetworks.. RealSystem G2 SDK and documentation, Seattle,
WA. [Online]. Available: http://www.realnetworks.com/dev-
zone/downlds/index.html

[55] K. O. Lillevold, “Improved Direct Mode for B Pictures in TML,”, Port-
land, Oregon, Aug. 22–25, 2000. ITU-T SG16 (Q15), Doc. Q15-K-44.

Gregory J. Conklin (M’98) received the B.S. degree
(Hons.) and the M.S. degree from Cornell University,
Ithaca, NY, in 1995 and 1999, respectively, both in
electrical engineering.

In 1998, he joined RealNetworks, Inc., Seattle,
WA, where he is currently a Principal Engineer. His
current research interests include low-bit rate video
coding, scalable video coding and transmission,
video coding for packet-based networks, and image
and video postprocessing.

Mr. Conklin is a member of Eta Kappa Nu and Tau
Beta Pi.

Gary S. Greenbaum (M’98) received the B.S
degrees in mathematics and physics from Pennsyl-
vania State University, State College, PA, in 1988,
and the M.S. and Ph.D degrees in high-energy
particle physics from the University of California,
San Diego, CA, in 1989 and 1995, respectively,
while participating as a visiting scholar at Stanford
University, Stanford, CA.

In 1996, he joined RealNetworks, Inc, Seattle,
WA, as the first Video Codec Engineer, and currently
heads the Audio and Video Technologies Group.

Karl O. Lillevold received the M.S. degree from
the Norwegian Institute of Technology, Trondheim,
Norway, in 1992, in electrical engineering.

In 1993, he joined Telenor Research, Norway,
where he developed the public domain H.263
software simulation test model, TMN. In 1996,
he joined Intel Corporation, Portland, OR, where
he continued work on video-coding research and
development. In 1999, he joined RealNetworks, Inc.,
Seattle, WA, where he is currently a Principal Codec
Engineer. His current research interests include

low-bit rate video coding, video coding and transmission for packet-based
networks, and video pre- and postprocessing.

Alan F. Lippman (M’98) received the Ph.D. degree
in applied mathematics from Brown University, Prov-
idence, RI, in 1986.

Between 1986 and 1995, he held a number of aca-
demic and industry positions, and in 1995, joined Re-
alNetworks, Inc., Seattle, WA, as Chief Engineer. He
is the author of more than 20 academic papers, in-
cluding works on speech recognition and image pro-
cessing. which

Dr. Lippman was a recipient of the IEEE Signal
Processing Society’s Best Paper Award in 1995 for

his co-authored paper “Non-Parametric Multivariate Density Estimation: A
Comparative Study.” He is currently a member of the IEEE Signal Processing
Society Technical Committee on Multimedia Signal Processing.

Yuriy A. Reznik (M’97) received the engineer de-
gree (Hons.) in electronics engineering in 1992, and
the candidate degree in computer science in 1995,
both from Kiev Polytechnic Institute, Kiev, Ukraine.

From 1989 to 1993, he was with faculty of Radio
Engineering at Kiev Polytechnic Institute, first as a
Research Assistant and, since 1991, as an Engineer.
In 1993, he become a member of the Research
Staff at the Institute of Mathematical Machines
and Systems, National Academy of Sciences of
Ukraine. Since 1995, he also has been serving as a

Consultant to various U.S. and international companies, and in 1998, he joined
RealNetworks, Inc., Seattle, WA, where he is currently a member of technical
staff. His research interests include theory of computing, combinatorics,
analysis of algorithms, information theory, digital signal processing, and their
applications.

