EEL 6935 Embedded Systems - Fall 2011
Assignment 2
SESC

Assigned: 11/05/11
Due date: 11/21/11 @ 8 PM via Sakai

Since this assignment is very hands-on and you cannot learn the tools unless you actually follow the
steps, all work must be done individually. No group work allowed.

In this assignment you will:
1.Install SESC [1]
2.Analyze miss rates of SPLASH-2 [2] benchmarks
3.Vary number of processors and analyze IPC for SPLASH-2 benchmarks

1. Installing SESC

The installation instructions are based on instructions in [1] and have been tested on the
grid.ecel.ufl.edu Redhat x86_64 machines. You are welcome to install these tools on your own Linux OS
machine or on Cygwin, however, the TA will not give you installation help for problems associated with
these installations. You will have to debug your installation using web resources.

Download SESC
Follow the instructions on SESC Download page [1] for Anonymous CVS Access. The SESC installation
files are now in SHOME/sesc.

Note: If you do not use grid.ecel.ufl.edu you may be required to install/update m4, bison, flex, zlib1g-
dev, and cvs.

Compile SESC for a SMP System

Create a “build_smp” folder inside SHOME/sesc. To configure SESC for SMP (--enable-smp):
cd SHOME/sesc/build_smp
..Jconfigure --enable-smp

To see the list of configuration options use:
..Jconfigure --help

Compile the simulator:
$ make
$ make sesc

Test the SESC installation
The compiled SESC executable is called sesc.smp. To test the installation run the crafty benchmark with
the smp.conf SESC configuration file and the tt.in input file:

.[sesc.smp -c../confs/smp.conf ../tests/crafty < ../tests/tt.in



The output statistics are an output file called sesc_crafty.xxxxxx in your SHOME/sesc/build_smp
directory.

To see a list of all sesc.smp options type:
.[sesc.smp

Questions

1. How would you configure SESC to a) use MIPS emulation, b) use an in-order pipeline, and c) use
debug features in an SMP system?

2. What are the readMiss, writeMiss, readHit, and writeHit statistics for the IL1 and DL1 caches in P(0)
for the crafty benchmark run with the smp.conf configuration file?

3. Run the crafty benchmark with the sesc.conf SESC configuration file and tt.in input file again. This
time have SESC set the name of the output file to crafty_test.txt, skip the first 1,000,000 instructions,
and simulate for 4,000,000 instructions.

a. What command did you execute? (./sesc.smp <sesc arguments>)
b. What are the readMiss, writeMiss, readHit, and writeHit statistics for the IL1 and DL1 caches in
P(0)?

2. Analyzing Miss-Rates

Download SESC files.zip. SESC_files.zip contains the SESC binaries (water-spatial and lunon), necessary
input files, and instructions on running the benchmarks.

For each benchmark you will analyze the dL1 miss rate as you vary the dL1 cache size, line size, and
associativity in a single processor system.

a) Vary Cache Size

Set the cache line size to 16 bytes and associativity to direct-mapped for the data L1 cache. Set the iL1
cache to 64KB, 128 byte line size, 4-way associativity, and the L2 cache to 512KB, 128 byte line size, 4-
way associativity. Vary the dL1 cache size from 1KB to 256KB (the cache size must be a power of 2)
while keeping all other parameters constant. Plot a graph of the dL1 miss rate vs. dL1 cache size and
discuss the results.

In this step choose an appropriate cache size. The goal is to minimize the dL1 miss rate without choosing
an unnecessarily large cache. For example, if increasing the cache size from 128KB to 256KB results in a
negligible decrease in miss rate, choose the 128KB cache.

b) Vary Line Size

Set the cache size to the size chosen in part a, and the associativity to direct-mapped for the data L1
cache. Vary the dL1 line size from 16 bytes to 128 bytes (the line size must be a power of 2) while
keeping all other parameters constant. Plot a graph of the dL1 miss rate vs. dL1 line size and discuss the
results. In this step choose the line size that gives the smallest miss rate.

c) Vary Associativity

Set the cache size to the size chosen in part a, and the line size to the line size chosen in part b for the
data L1 cache. Vary the dL1 associativity from direct-mapped to 8-way (the associativity must be a
power of 2) while keeping all other parameters constant. Plot a graph of the dL1 miss rate vs. dL1



associativity rate and discuss the results. In this step choose the associativity that gives the smallest miss
rate.

Create a file called section2_benchmark.x to record the following information for each benchmark:
The benchmark name
The dL1 cache size, line size, and associativity chosen
The graphs and other discussion

3. Varying Number of Processors

For this section you will simulate a system with private iL1 and dL1 caches, and a shared L2 cache
therefore you need to modify cmp.conf as necessary. Before varying the number of processors you need
to replace the /sesc/src/libmint/subst.cpp with the subst.cpp file found in the SESC files.zip folder, and
create a new sesc.smp simulator.

Set both the dL1 and iL1 caches to 64KB, 4-way associativity, 64 byte line size, and the shared L2 cache
to 256KB, 4-way associativity, 64 byte line size.

For each benchmark vary the number of processors: 1p, 2p, 4p, 8p, and 16p. Create a file
section3_benchmark.x and analyze the average execution time (ClockTicks in SESC output), average
number of instructions executed, average IPC, average speedup, and L2 misses wrt. increasing the
number of processors. For example does the IPC increase or decrease as the number of processors are
increased? Why? Note: You may use /sesc/scripts/report.pl <sesc_output_file> to find the IPC or do your
own calculations using the SESC output files.

Turn in the .conf file used to simulate a 16p system.

4. What to turn in

You must submit the following via Sakai in a zipped file named Lastname_Firstname_SESC:
= Answers to the questions in section 1.
= The section2_benchmark.x file for each benchmark from section 2.
= The section3_benchmark.x file for each benchmark from section 3.
= The 16p .conf file from section 3.

References

[1] SESC: cycle accurate architectural simulator http://sesc.sourceforge.net/index.html

[2] Woo, S. C., Ohara, M., et al. 1995. The splash-2 programs: Characterization and methodological
considerations. In Proceedings of the International Symposium on Computer Architecture, pp. 24-36,
June 1995.




