EEL 6935 Embedded Systems - Fall 2011
Assignment 1

SimpleScalar

Assigned: 9/24/11
Due date: 10/14/11 @ 8 PM via Sakai

Since this assignment is very hands-on and you cannot learn the tools unless you actually follow the
steps, all work must be done individually. No group work allowed.

In this assignment you will:
1.Install SimpleScalar [4] and the SimpleScalar gcc cross-compiler
2.Compile and test the MiBench [2] embedded systems benchmarks
3.Run SimpleScalar to gather statistics and analyze benchmarks
4.Modify SimpleScalar to gather additional statistics

1. Installing SimpleScalar and the gcc cross-compiler

The installation instructions are based on [1] and have been tested on the grid.ecel.ufl.edu Redhat
x86_64 machines. You are welcome to install these tools on your own Linux OS machine or on Cygwin,
however, the TA will not give you installation help for problems associated with these installations. You
will have to debug your installation using web resources.

Preparation

Create a “simplescalar” folder in your home directory and store the following files in your simplescalar
directory.

simpletools-2v0.tgz http://www.simplescalar.com/tools.html

simplesim-3v0d.tar.gz http://www.igoy.in/wp-content/uploads/2009/09/simplesim-3v0d.tgz
simpleutils-990811.tar.gz http://www.igoy.in/wp-content/uploads/2009/09/simpleutils-
990811.tar.gz

gcc-2.7.2.3.ss.tar.gz http://american.cs.ucdavis.edu/RAD/gcc-2.7.2.3.ss.tar.gz

Set up environment variables for installation:
$ export IDIR=/home/username/simplescalar
$ export HOST=i686-linux-gnu
$ export TARGET=sslittle-na-sstrix

Note: If you do not use grid.ecel.ufl.edu you may be required to install/update build-essential, bison, and
flex using “sudo apt-get install <package name>".



Install SimpleTools
$ cd SIDIR
$ tar xvfz simpletools-2v0.tgz
$ rm -rf gcc-2.6.3

Install SimpleUtils
$ cd SIDIR
$ tar xvfz simpleutils-990811.tar.gz
$ cd simpleutils-990811

Update the simpleutils-990811/Id/Idlex.l file before compiling:
Replace all instances of yy_current_buffer with YY_CURRENT_BUFFER

$ ./configure --host=SHOST --target=STARGET --with-gnu-as --with-gnu-ld --prefix=SIDIR
$ make CFLAGS=-0
$ make install

Install Simulators sim-*
$ cd SIDIR
$ tar xvfz simplesim-3v0d.tgz
$ cd simplesim-3.0
$ make config-pisa
$ make

To test the installation you may use:
$ ./sim-safe tests/bin.little/test-math

Install the gcc cross-compiler
$ cd SIDIR
$ tar xvfz gcc-2.7.2.3.ss.tar.gz
$ cd gce-2.7.2.3
$ ./configure —host=SHOST —-target=STARGET —-with-gnu-as —with-gnu-ld —-prefix=SIDIR
$ chmod -R +w .

Modify the following files:
= Append —I/usr/include to the Makefile at line 130
= Replace #include <varargs.h> with #include <stdarg.h> in protoize.c at line 60
= Change *((void **)__o->next_free)++=((void *)datum);\ to *((void **) _o->next free++)=((void
*)datum);\ in obstack.h at line 341

Copy the following files:
S cp ./patched/sys/cdefs.h ../sslittle-nasstrix/include/sys/cdefs.h
S cp ../sslittle-na-sstrix/lib/libc.a ../lib/
S cp ../sslittle-na-sstrix/lib/crt0.0 ../lib/

Build the compiler using:
$ make LANGUAGES=c CFLAGS=-O CC="gcc -m32”



To fix the compilation errors:
= Append ‘\’ to insn-output.c at lines 675, 750, and 823
= Execute make LANGUAGES=c CFLAGS=-0 CC="gcc -m32” again
= Fix any other errors you find and run make LANGUAGES=c CFLAGS=-0O CC="gcc -m32” again
= Finally, remove lines 2978-2979 in cxxmain.c

To finish installing the cross-compiler:
$ make LANGUAGES=c CFLAGS=-0 CC="gcc -m32”
$ make enquire
$ ../simplesim-3.0/sim-safe ./enquire -f > float.h-cross
$ make LANGUAGES=c CFLAGS=-0 CC="gcc -m32” install

The cross-compiler and tools are found in your SIDIR/bin folder. To test your cross-compiler create a test
program such as hello.c

#include<stdio.h>

main()

{

printf("Hello World!\n");

}

Compile for SimpleScalar
$ SIDIR/bin/sslittle-na-sstrix-gcc —o hello hello.c

Run on sim-safe
$ SIDIR/simplesim-3.0/sim-safe hello

Questions

1. What is the purpose of appending —I/usr/include to the Makefile?

2. Why do we need the -m32 gcc compiler option? If you did not use grid.ecel.ufl.edu or a similar
machine, explain any gcc options you used.

3. Explain why #include <varargs.h> should be replaced with #include <stdarg.h>.

2. Compiling and testing MiBench

Download and extract the source code for the Network and Telecomm MiBench benchmarks from the
website http://www.eecs.umich.edu/mibench/. This website also contains the compilation instructions
for MiBench and sample outputs.

There should be six benchmarks in all: Network has two benchmarks (dijkstra and patricia) and
Telecomm has four benchmarks (adpcm, CRC32, FFT, and gsm).

Choose five of the six benchmarks and cross-compile them for SimpleScalar. Execute each benchmark on
sim-safe with the small data set and verify that the benchmarks execute correctly by comparing your
output with the sample outputs from the MiBench website.

Most outputs are in .txt or .dat formats so you can compare the contents of your test output to the
sample output. If the output isin a format which cannot be opened, such as a .pcm file, you should at
least verify that the test output file is the same size as the sample output file.



Create a file called verify_mibench.txt to record the following information for each benchmark:
The benchmark name
The command executed: sim-safe <benchmark name, options, etc.>
The number of instructions executed
The changes made to makefile
Did you verify that the benchmark executed correctly (yes or no)?

3. Analyzing benchmarks
Your goal is to optimize the cycles per instruction (CPI) for your five benchmarks.

Simulations and results
Execute each benchmark on sim-outorder varying the following parameters:
dL1 cache size: 2K, 4K, 8K
iL1 cache size: 2K, 4K, 8K
processing: in order, out of order
branch prediction: not taken, taken, perfect
All other parameters must be kept constant.

Report the configuration chosen for your unified L2 cache, and the line size and associativity chosen for
your L1 caches.

For each benchmark create a file benchmarkname_analysis.txt. In that file report the optimal, lowest
CPI, configuration for the benchmark, as well as the CPl, number of instructions, dL1 cache miss rate,
and iL1 cache miss rate for the 54 configurations.

| suggest writing a script to automate your benchmark execution and to create your

benchmarkname_analysis.txt files. Perl scripts are fairly easy to create (you can find a link to a

comprehensive Perl user guide in [3]), however, you are free to use any scripting language. A sample

Perl script run_sim_safe.pl for executing the hello executable on sim-safe is shown below:
#!/usr/bin/perl

Sbmark = "/home/username/hello";
system ( "/home/username/simplescalar/simplesim-3.0/sim-safe Sbmark" );

Analysis

Write a brief report (no more than one page) analyzing the benchmarks and CPI optimization. Your
report should answer questions such as: Does varying branch prediction have a large effect on CPI? Why
or why not? What about the dL1 cache size? Which parameter has the largest impact on CPI? Why? etc.

4. Modifying SimpleScalar

In the final part of this assignment you will add a command line option, statistic, and formula to the sim-
cache simulator.

You system will have:
dL1 cache — an 8KB, 4-way associative, 64 byte line size
iL1 cache — 4-way associative, 64 byte line size. You will vary the cache size — 2KB, 4KB, 8KB



L2 cache — none

Modify sim-cache to calculate the “instruction cache cycles per instruction (icache_CPI)” where
icache_CPl is defined as icache_cycles /| number of instructions executed.

You will add a counter called icache_cycles which must be incremented for each instruction:
For a 2KB cache — increment icache_cycles by 1 for an icache hit, and by 10 for an icache miss
For a 4KB cache — increment icache_cycles by 2 for an icache hit, and by 15 for an icache miss
For an 8KB cache — increment icache_cycles by 4 for an icache hit, and by 20 for an icache miss

Modify sim-cache to include icache_cycles in the statistics printed at the end of the simulation.

Since icache_cycles is based on the instruction cache size, you must add a command line option with

arguments to specify the instruction cache size (in bytes) at run time. For example
-icache_size:bytes 2048

for the 2KB instruction cache.

Finally, modify sim-cache to include icache_CPI in the statistics printed at the end of the simulation.
Hint: do this by registering a formula called icache_CPI which uses icache_cycles and sim_num_insn.

Execute your five benchmarks on the modified sim-cache for a 2KB, 4KB, and 8KB instruction cache.

5. What to turn in

You must submit the following via Sakai in a zipped file named Lastname_Firstname_SS:
= Answers to the questions in section 1.
= The verify_mibench.txt benchmark report from section 2.
= Your benchmarkname_analysis.txt files and analysis for section 3.
= The following for section 4:
o Your modified sim-cache.c file (commented) along with any other files you decide to modify
o A summary of changes. Sample format: sim-cache.c line 130 — added icache_cycles counter
o For each benchmark create a file benchmarkname_modified.txt. The file should contain:
= the command executed: sim-cache <benchmark name, options, etc.>
= the number of instructions, il1 cache hits, il1 cache misses, icache_cycles, and
icache_CPl as it is printed by sim-cache

References

[1] Brorson, Mats. Simplescalar instruction guide. http://www.kth.se/polopoly fs/1.36445!/Simplescalar-
installation-instructions.pdf

[2] MiBench a free, commercially representative embedded benchmark suite
http://www.eecs.umich.edu/mibench/

[3] Marshall, A. D. Practical Perl Programming. http://www.cs.cf.ac.uk/Dave/PERL/

[4] SimpleScalar Tools and Documentation http://www.simplescalar.com/



