
An Efficient Code Compression Technique using Application-Aware
Bitmask and Dictionary Selection Methods

Seok-Won Seong Prabhat Mishra
sseong@cise.ufl.edu prabhat@cise.ufl.edu

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL 32611, USA.

Abstract
Memory plays a crucial role in designing embedded systems.

A larger memory can accommodate more and large applica-
tions but increases cost, area, as well as energy requirements.
Code compression techniques address this problem by reducing
the size of the applications. While early work on bitmask-based
compression has proposed several promising ideas, many chal-
lenges remain in applying them to embedded system design.
This paper makes two important contributions to address these
challenges by developing application-specific bitmask selection
and bitmask-aware dictionary selection techniques. We applied
these techniques for code compression of TI and MediaBench
applications to demonstrate the usefulness of our approach.

1 Introduction
Demands for sophisticated and complex embedded applica-

tions have soared drastically in recent years. The current trend
requires a larger and faster memory and imposes major chal-
lenges in embedded system design since memory has signifi-
cant impacts on the size, power and cost of the entire system.
Code compression techniques address this issue by reducing
the size of the applications before they are loaded into the on-
chip memory. During execution (runtime) compressed instruc-
tions pass through the decompression hardware and executed
by the processor. Therefore, decompression time is a critical
aspect in code compression for embedded systems.

Dictionary-based code compression techniques are popular
because they provide both good compression ratio and fast de-
compression mechanism. The basic idea is to take advantage of
commonly occurring instruction sequences by using a dictio-
nary. Various techniques [12, 13] improve the dictionary-based
compression technique by considering mismatches. The basic
idea is to create instruction matches by remembering a few bit
positions where they differ. However, the efficiency of these
techniques is limited by the number of bit changes used during
compression. The cost of storing the information for more bit
positions offsets the advantage of generating more repeating
instruction sequences. Our previous work on bitmask-based
code compression [14] addressed this issue by creating more
matching patterns using bitmasks to improve the compression
ratio. Compression ratio is a widely used metric to measure

the efficiency of code compression. It is defined as the ratio
(CR) between the compressed program size (CS) and the origi-
nal program size (OS) i.e., CR = CS / OS. Therefore, a smaller
compression ratio implies a better compression technique.

The bitmask-based code compression is very promising but
it poses various practical challenges. For instance, it is very
difficult to determine the optimal mask set prior to compres-
sion. Furthermore, the conventional dictionary selection (such
as frequency- or spanning-based) approaches do not provide
the best possible compression using bitmasks. This paper ad-
dresses these challenges by developing efficient techniques for
application-specific bitmask selection and bitmask-aware dic-
tionary selection to improve the compression ratio further with-
out introducing any decompression penalty. The rest of the pa-
per is organized as follows. Section 2 presents related work ad-
dressing code compression for embedded systems. Section 3
describes the bitmask-based code compression and its chal-
lenges. Section 4 presents our code compression technique that
addresses these challenges followed by a case study in Sec-
tion 5. Finally, Section 6 concludes the paper.

2 Related Work
Wolfe and Chanin first proposed the Huffman-coding based

code compression scheme for the MIPS architecture [15]. They
used a Line Address Table (LAT) to map compressed block
addresses to the original code addresses. Based on a similar
concept, IBM introduced CodePack for PowerPC [2] architec-
ture. Liao [9] and Lefurgy [5] explored dictionary-based com-
pression techniques. Lekatsas and Wolf [7] proposed a statisti-
cal method for code compression using arithmetic coding and
Markov model. Ishiura and Yamaguchi [3] proposed a tech-
nique that splits a VLIW instruction into multiple fields and
compresses each field using a dictionary-based scheme. Nam
et al. [11] presented a dictionary-based method for an isomor-
phic VLIW instruction word scheme. Lie et al. [10] proposed
a LZW-based code compression for VLIW instructions using
variable-sized blocks. Lekatsas et el. [6] proposed a dictionary-
based decompression prototype that is capable of decoding one
instruction per cycle.

Recently, various techniques have been proposed to improve
the standard dictionary-based compression. The basic idea is
to create more repeating patterns by storing the mismatch in-

978-3-9810801-2-4/DATE07 © 2007 EDAA

formation during encoding. Prakash et al. [12] considered
one-bit change for 16-bit vectors. Ros et al. [13] considered
a generic scheme for 32-bit vectors and reported that up to 3-
bit changes are profitable. Previously, we developed a bitmask-
based code compression technique that significantly improves
the compression ratio compared to the exisiting techniques.
Section 3 briefly describes our previous work on bitmask-based
code compression [14] and outlines various challenges in ap-
plying this technique to embedded system design.

3 Bitmask-Based Code Compression
This section describes bitmask-based code compression [14]

using a simple example and compares with existing dictionary-
based compression techniques. Figure 1 shows an example of
the standard dictionary-based code compression. The sample
program is made up of ten 8-bit binaries (total 80 bits). The
dictionary has two 8-bit entries. Each repeating pattern is re-
placed with a dictionary index. The final compressed program
is reduced to 62 bits and the dictionary requires 16 bits. In this
case, the compression ratio is 97.5%.

00000010

01001110
01010010

01000010

10000010

01000010
00001100

11000000
00000000

0

0

0

0

00000000

1

1

1

1
0
10000010
00000010
1
01001110
01010010
00001100
1
11000000
0

Compressed Program Dictionary

1

1

1 − uncompressed
0 − compressed

Content
00000000
01000010

0
1

Index

Original Program
Figure 1. Dictionary-based Code Compression

We use the same example in Figure 3 to illustrate how
bitmask-based code compression improves the compression ra-
tio by using bitmasks. First, we outline the bitmask-based
compression algorithm in Section 3.1 and the decompression
scheme in Section 3.2. Next, Section 3.3 describes various
challenges in applying bitmask-based compression technique.

3.1 Compression (Encoding) Framework

Figure 2 shows the generic encoding scheme of the bitmask-
based compression technique. A compressed code stores infor-
mation regarding the mask type, the location where the mask
is applied, and the mask pattern itself. The mask can be ap-
plied on different places on a vector (binary) and the number
of bits required for indicating the position varies depending on
the mask type. For instance, an 8-bit mask applied on only byte
boundaries requires 2 bits, since it can be applied on four loca-
tions (on a 32-bit vector). If we do not restrict the placement of
the mask, it will require 5 bits to indicate any starting position
on a 32-bit vector.

Location Mask
patterntype

Mask Location Mask
patterntype

MaskDecision
(1−bit) Dictionary Index

Number of
mask patterns

Figure 2. Generic Encoding Format

Figure 3 illustrates the bitmask-based code compression
technique using the same binary shown in Figure 1. A 2-bit
mask (only on quarter byte boundaries) is sufficient to cre-
ate 100% matching patterns. The bitmask-based approach im-
proves the compression ratio to 87.5% for this example.

00000010

01001110
01010010

01000010

10000010

01000010
00001100

11000000
00000000

0 − compressed
1 − uncompressed

0
0
0
0
1
0
0
0
0
0

0
1

0

1
0

0
1

00
100000000

0 − resolve mismatch (use bitmask)
1 − no action

0 11 1
0

0
1
1
1
0
1
0
0

10

01
11

11

11

01
10

00

bitmask value

0 10 11

bitmask position
Original Program Compressed Program Dictionary

Index Content
00000000
01000010

0
1

Figure 3. Bitmask-based Code Compression

3.2 Decompression (Decoding) Mechanism
The design of the bitmask-based decompression engine

(BDE) is based on the one-cycle dictionary-based decompres-
sion hardware by Lekatsas et el. [6]. Figure 4 shows the design
of the decompression engine. The bitmask-based decompres-
sion unit provides two additional operations (compared to the
existing decompression engine) to support compressed encod-
ings using bitmasks: i) it generates an instruction-length mask
from the encoding, and ii) it XORs the generated mask and the
entry in the dictionary to restore the original instruction. Creat-
ing an instruction-length mask is done in parallel with access-
ing the dictionary, therefore it does not introduce any additional
time. Moreover, such design can support parallel decompres-
sion to enable decoding of multiple instructions per cycle.

3.3 Challenges in Bitmask-Based Code Compression
One of the major challenges in bitmask-based code compres-

sion is how to determine (a set of) optimal mask patterns that
will maximize the matching sequences while minimizing the
cost of bitmasks. A 2-bit mask can handle up to 4 types of mis-
matches while a 4-bit mask can handle up to 16 types of mis-
matches. Clearly, applying a larger bitmask will generate more
matching patterns, however, doing so may not result in better
compression. The reason is simple. A longer bit-mask pattern
is associated with a higher cost. Similarly, applying more bit-
masks is not always beneficial. For example, applying a 4-bit
mask requires 3 bits to indicate its position (8 possible loca-
tions in a 32-bit vector) and 4 bits to indicate the pattern (total
7 bits) while an 8-bit mask requires 2 bits for the position and 8

bits for the pattern (total 10 bits). Therefore, it would be more
costly to use two 4-bit masks if one 8-bit mask can capture the
mismatches.

Uncompressed Code

Index

Parallel with Dictionary Access

Compressed
w/o Bitmasks

Fr
om

 C
ac

he
Co

m
pr

es
se

d
Co

de

U
nc

om
pr

es
se

d
Co

de
To

 P
ro

ce
ss

or

prev_decompprev_comp

Decompression
Logic

Mask XOR Output Buffer

Dictionary

SRAM

M
U

X

Figure 4. One-Cycle Decompression Engine

Another major challenge in bitmask-based compression is
how to perform dictionary selection where existing as well as
bitmask-matched repetitions need to be considered. In the tra-
ditional dictionary-based compression approach, the dictionary
entry selection process is simplified since it is evident that the
frequency-based selection will give the best compression ra-
tio. However, when compressing using bitmasks, the prob-
lem is complex and the frequency-based selection will not al-
ways yield the best compression ratio. Figure 5 demonstrates
this fact. When only one dictionary entry is allowed, the pure
frequency-based selection will choose “0000000”, yielding the
compression ratio of 97.5% (Compressed Program 1). How-
ever, if “01000010” was chosen, we can achieve the compres-
sion ratio of 87.5% (Compressed Program 2). Clearly, there is a
need for efficient mask selection and dictionary selection tech-
niques to improve the efficiency of bitmask-based code com-
pression.

01100010
01010010

0 − compressed
1 − uncompressed

0

0

0
11000010

01010010

01000011
0

01000001

0 − resolve mismatch (use bitmask)
1 − no action

01000010
10

01

11

00

bitmask value

01100010

bitmask position

00000000

00000010
11000010

01000000
01000011
01000001
00000000

0 1

1

1

1
1
1

1
1
0

Original Program

01000010

Program2

Dictionary

Dictionary

Program1
Compressed Compressed

Index Content
0 01000010

Index Content
0 00000000

0
0
1
0
0
0
0
1

0
0

0

0
0

0
00000000

1
01

10

11

00

01
11

11

0 01 10

1 00000000
0

11 01

00 10

01

Figure 5. Different Dictionary Selection Methods

4 Application-Aware Code Compression
Our work is motivated by the challenges described in Sec-

tion 3.3. We have developed two techniques to address
these challenges: i) application-specific mask selection, and
ii) bitmask-aware dictionary selection. First, we describe our
mask selection approach. Next, we present our bitmask-aware
dictionary selection technique. Finally, we present our code

compression framework integrating the mask selection and the
dictionary selection techniques.

4.1 Mask Selection
As discussed in Section 3.3, mask selection is a major chal-

lenge. Our goal in this section is to develop a procedure to find
a set of bitmask patterns that will deliver the best compression
ratio for a given application(s). This leads to answering two
questions: i) how many bitmask patterns do we need? and ii)
which bitmask patterns are profitable? We will answer these
questions after defining few terms related to bitmask patterns.

Table 1 shows the mask patterns that can generate match-
ing patterns at an acceptable cost. A “fixed” bitmask pattern
implies that the pattern can be applied only on fixed locations
(starting positions). For example, an 8-bit fixed mask (referred
as 8f) is applicable on 4 fixed locations (byte boundaries) on
a 32-bit vector. A “sliding” mask pattern can be applied any-
where. For example, an 8-bit sliding mask (referred as 8s) can
be applied in any location on a 32-bit vector. There is no dif-
ference between fixed and sliding for a 1-bit mask. We will use
a 1-bit sliding mask (referred as 1s) for uniformity.

The number of bits needed to indicate a location will depend
on the mask size and the type of the mask. A fixed mask of
size x can be applied on (32÷ x) number of places. An 8-bit
fixed mask can be applied only on four places (byte bound-
aries), therefore requires 2 bits. Similarly, a 4-bit fixed mask
can be applied on eight places (byte and half-byte boundaries)
and requires 3 bits for its position. A sliding pattern will require
5 bits to locate the position regardless of its size. For instance,
a 4-bit sliding mask requires 5 bits for location and 4 bits for
the mask itself.

Table 1. Various Bit-Mask Patterns
Bit-Mask Fixed Sliding

1 bit X
2 bits X X
3 bits X
4 bits X X
5 bits X
6 bit X
7 bit X
8 bit X X

If we choose two distinct bit-mask patterns, 2-bit fixed (2f)
and 4-bit sliding (4s), we can generate six combinations: (2f),
(4f), (2f, 2f), (2f, 4f), (4f, 2f), (4f, 4f). Similarly, three distinct
mask patterns can create up to 39 combinations. Now we can
try to answer the two questions posed at the beginning of this
section. It is easy to answer the first question: up to two mask
patterns are profitable. The reason is obvious based on the cost
consideration. The smallest cost to store the three bit-mask in-
formation (position and pattern) is 15 bits (if three 1-bit sliding
patterns are used). In addition, we need 1-5 bits to indicate the
mask combination and 8-14 bits for a codeword (dictionary in-
dex). Therefore, we require approximately 29 bits (on average)
to encode a 32-bit vector. In other words, we save only 3 bits
to match 3 bit differences (on a 32-bit vector). Clearly, it is not
very profitable to use three or more bitmask patterns.

Next we try to answer the second question i.e., which bit-
masks are profitable? As discussed in Section 3.3, applying a
larger bitmask can generate more matching patterns. However,
it may not improve the compression ratio. Similarly, using a
sliding mask where a fixed one is sufficient is wasteful since a
fixed mask require fewer number of bits (compared to its slid-
ing counterpart) to store the position information. For example,
if a 4-bit sliding mask (cost of 9 bits) is used where a 4-bit fixed
(cost of 7 bits) is sufficient, two additional bits are wasted.

We carefully studied the combinations of up to two bit-masks
using several applications compiled on a wide variety of archi-
tectures. We observed that the mask patterns that are factors
of 32 (e.g., masks 1, 2, 4 and 8 from Table 1) produce a better
compression ratio compared to non-factors (e.g., masks 3, 5, 6,
and 7). This is due to the fact that we accept the program of
32-bit vectors, therefore non-factor sized bit-masks were only
usable as a sliding pattern. While sliding patterns are more
flexible, they are more costly than fixed patterns. The above
observations allowed us to reduce the 11 mask patterns in Ta-
ble 1 down to 7 profitable mask patterns: 1s, 2f, 2s, 4f, 4s, 8f,
8s. A subset of these experiments is reported in Section 5. We
analyzed the result of compression ratios using various mask
combinations and made several useful observations that helped
us to further reduce the bit-mask pattern table. We found that
8f and 8s are not helpful and 4s does not perform better than
4f. We also observed that using two bitmasks provide a bet-
ter compression ratio than using one bitmask alone. The final
set of profitable bitmask patterns are shown in Table 2. Our
integrated compression technique (Algorithm 2 in Section 4.3)
uses the bitmask patterns from Table 2.

Table 2. Final Bitmask Patterns
Bit-Mask Fixed Sliding

1 bit X
2 bits X X
4 bits X

4.2 Bitmask-Aware Dictionary Selection

Dictionary selection is another major challenge in code com-
pression. The optimal dictionary selection is an NP hard prob-
lem [8]. Therefore, the dictionary selection techniques in lit-
erature try to develop various heuristics based on application
characteristics. Dictionary can be generated either dynamically
during compression or statically prior to compression. While a
dynamic approach such as LZW [10] accelerates the compres-
sion time, seldom it matches the compression ratio of static ap-
proaches. Moreover, it may introduce extra penalty during de-
compression and thereby reduces the overall performance. In
the static approach, the dictionary can be selected based on the
distribution of the vectors’ frequency or spanning [13].

We have observed that neither frequency-based nor
spanning-based methods can efficiently exploit the advantages
of bitmask-based compression. Moreover, due to lack of a
comprehensive cost metric, it is not always possible to obtain
the optimal dictionary by combining frequency and spanning-
based methods in an ad-hoc manner.

We have developed a novel dictionary selection technique
that considers bit savings as a metric to select a dictionary en-
try. Algorithm 1 shows our bit-saving based dictionary selec-
tion technique. The algorithm takes application(s) consisting
of 32-bit vectors as input and produces the dictionary as out-
put that will deliver a good compression ratio. It first creates a
graph where the nodes are the unique 32-bit vectors. An edge is
created between two nodes if they can be matched using a bit-
mask pattern(s). It is possible to have multiple edges between
two nodes since they can be matched by various mask patterns.
However, we consider only one edge between two nodes corre-
sponding to the most profitable mask (maximum savings).

Algorithm 1: Bit-Saving based Dictionary Selection
Inputs: 1. Application(s) consisting of 32-bit instruction vectors

2. Mask patterns
3. A threshold value to screen deletion of nodes.

Output: Optimized dictionary
Begin

Step 1: Create a graph representation, G=(V,E).
Each node (V) is a unique 32-bit vector.
An edge (E) indicates a bit-mask can match the nodes.

Step 2: Allocate bit-savings to the nodes and edges.
Frequency determines the bit-savings of the node.
Mask used determines the bit-savings by that edge.

Step 3: Calculate the bit-savings distribution of all nodes.
Step 3: Select the most profitable node N.
Step 4: Remove N from G and insert into dictionary
Step 5: For each node Ni in G that is connected to N

If the node profit of Ni is less than certain threshold
Remove Ni from G.

Step 6: Repeat Steps 3 - 5 until dictionary is full or G is empty.
return Dictionary

End

Once the bit-savings are assigned to all nodes and edges,
the algorithm computes the overall savings for each node. The
overall savings is obtained by adding the savings in each edge
(bitmask savings) connected to that node along with the node
savings (based on the frequency value). Next, the algorithm
selects the node with the maximum overall savings as an en-
try for the dictionary. The selected node as well as the nodes
that are connected to the selected node are deleted from the
graph. However, we have observed that it is not always prof-
itable to delete all the connected nodes. Instead, we set a par-
ticular threshold to screen the deletion of nodes. Typically a
node with a frequency value less than 10 is a good candidate
for deletion when the dictionary is not too small. This varies
from application to application but based on our experiments a
threshold value between 5 and 15 was most useful. The algo-
rithm terminates when either the dictionary is full or the graph
is empty.

Figure 6 illustrates this technique. The vertex “A” has the
total saving of 15 (10+5), “B” and “C” have 22, “D” has 5, “E”
has 10, “F” has 27, and “G” has 24. Therefore, “F” is chosen as
the best candidate and gets inserted into the dictionary. Once
“F” is inserted into the dictionary, it gets removed from the
graph. “C” and “E” are also removed since they can be matched
with “F” in the dictionary and bit-mask(s). Note that if the
frequency value of the node “C” was larger than the threshold
value, it would not be removed in this iteration.

(10)

G
(14)

(7)
BA

(0)
(5)

(5)
(10)

(5)

(5)

(5)

(10)

(10)

(7)
F E

(0)

D
(0)

(7)
C

G
(14)

(0)
A

(7)
B

D
(0)

Figure 6. Bit-Saving Dictionary Selection Method

The algorithm repeats by recalculating the savings of the
vertex in the new graph and terminates when the dictionary
becomes full or the graph is empty. Our experimental results
show that the bit-saving based dictionary selection method out-
performs both frequency and spanning based approaches.

4.3 Code Compression Algorithm
In this section, we present our code compression algorithm

that integrates our mask selection and dictionary selection
methods. The goal is to maximize the compression efficiency
using the bitmask-based code compression. Algorithm 2 out-
lines the basic steps. The algorithm accepts the original code
consisting of 32-bit vectors as input and produces the com-
pressed code and an optimized dictionary.

Algorithm 2: Code Compression using Bitmasks
Input: Original code (32-bit vectors)
Outputs: Compressed code, dictionary, < mask1, mask2 >

Begin
mask1 = 1s; mask2 = 1s; CompressionRatio = 100%
Step 1: Select the mask patterns.
for each mask pattern mi in (1s, 2s, 2f, 4f)

for each mask pattern m j in (1s, 2s, 2f, 4f)
Step 2: Select the optimized dictionary.
Step 3: Compress 32-bit vectors using cost constraints.
Step 4: Update the variables if necessary.
NewCR = (CompCode with mi&m j)÷(OrigCode)
if (NewCR < CompressionRatio)

CompressionRatio = NewCR
mask1 = mi; mask2 = m j

endif
endfor

endfor
Step 5: Adjust and handle the branch targets.
return Compressed code, dictionary, < mask1, mask2 >

End

The algorithm begins by initializing three variables: mask1,
mask2, and CompressionRatio. The profitable mask patterns
are stored in mask1 & mask2 and CompressionRatio stores the
best compression ratio at each iteration. The first step is to
pick a pair of mask patterns from the reduced set of (1s, 2s,
2f, 4f) from Table 2. The second step selects the optimized
dictionary using Algorithm 1. The third step converts each 32-
bit vector into compressed code (when possible). If the new
compression ratio is better than the current one, the fourth step
updates the variables. The final step of the algorithm resolves

the branch instruction problem by adjusting branch targets. The
algorithm returns the compressed code, optimized dictionary
and two profitable mask patterns. Note that this algorithm can
be used as a one-pass or two-pass code compression technique.
In a two-pass code compression approach, the first pass can
use synthetic benchmarks (equivalent to the real applications in
terms of various characteristics but much smaller) to determine
the most profitable two mask patterns. During second pass the
first step (two for loops) can be ignored and the actual code
compression can be performed using real applications.

5 Experiments
We performed various code compression experiments by

varying both mask combinations and dictionary selection meth-
ods. We have used benchmarks from various application do-
mains. In this section, we present experimental results using
applications from TI and Mediabench suites. We used TI Code
Composer Studio to generate binaries for TI TMS320C6x ar-
chitecture.

5.1 Results
Figure 7 shows compression ratios of three benchmarks

(block mse, modem, and vertibi) compressed using all 56 dif-
ferent mask set combinations1 (both one-mask and two-mask
combinations from {1s, 2f, 2s, 4f, 4s, 8f, 8s}). As discussed in
Section 4.1, 8-bit mask patterns (fixed or sliding) do not pro-
vide good compression ratio. In general, compressing with two
masks achieves a better compression ratio than using just one.
Note that the compression ratios for three benchmarks follows a
regular pattern. A similar pattern exists even with other bench-
marks. It confirms our analysis in Section 4.1 that a small set
of mask patterns are sufficient to achieve good compression.
Overall, we found that the combination of 4-bit fixed and 1-bit
sliding or two 2-bit patterns provides the best compression.

Figure 7. Performance Analysis of Mask Combinations
Figure 8 compares compression ratios achieved by the vari-

ous dictionary selection methods described in Section 4.2. As
shown in the figure, spanning-based approach is the worst com-
pared to other dictionary selection methods. Our bit-savings

1In order of (1s), (1s,2f), (1s,2s), (1s,4f), (1s,4s), (1s,8f), (1s,8s), (2s) ...

based approach outperforms all the existing dictionary selec-
tion methods on all benchmarks.

Figure 8. Comparison of Dictionary Selection Methods

Figure 9 compares the compression ratios between the ex-
isting bitmask-based code compression (BCC) technique and
our approach. The existing approach (BCC [14]) experimented
with customized encodings of 4-bit and 8-bit mask combina-
tions and reported that using two 4-bit masks provided the best
compression ratio. We have computed the most profitable mask
pairs and applied the bit-saving based dictionary selection to
improve the compression ratio further. For example, we ob-
tained 57% compression ratio for adpcm en benchmark using
4-bit fixed and 1-bit sliding patterns that outperforms the BCC
approach by 6%. On an average, our approach outperforms the
existing bitmask-based technique by 5 - 10%. A detailed com-
parison of bitmask-based compression with other code com-
pression techniques is available in [14].

Figure 9. Compression Ratio Comparison

This code size reduction can contribute not only to cost, area,
energy savings but also to the performance enhancement of
the embedded system. Our approach, due to the nature of the
mask and dictionary selection procedures, incurs higher encod-
ing/compression overhead than [14]. However, in embedded
systems design using code compression, encoding is performed
once and millions of copies are manufactured. Any reduction
of cost, area, or energy requirements is extremely important.
Moreover, our approach does not introduce any decompression
penalty.

6 Conclusions
In recent years, applications for embedded systems have be-

come exponentially complex and it imposes major constraints
in system design. The existing bitmask-based compression
technique proposed a promising approach to address the mem-
ory requirement issue but poses various practical challenges.

This paper studied these challenges in detail and developed
application-specific bitmask selction and bitmask-aware dictio-
nary selection algorithms to address them. We developed an
efficient code compression technique using these algorithms to
improve code compression efficiency without introducing any
decompression overhead. In the future, we plan to investigate
the effects of our compression approach on overal energy sav-
ings and performance improvement. We also plan to apply our
technique in other domains such as data compression for man-
ufacturing testing.

References

[1] H. Lekatsas et al. Design and simulation of a pipelined decom-
pression architecture for embedded systems. ISSS, 2001.

[2] IBM. CodePack PowerPC Code Compression Utility User’s Man-
ual. Version 3.0, 1998.

[3] N. Ishiura and M. Yamaguchi. Instruction code compression for
application specific VLIW processors based of automatic field
partitioning. SASIMI, 105–109, 1997.

[4] C. Lefurgy, P. Bird, I. Chen, and T. Mudge. Improving code den-
sity using compression techniques. MICRO, 194–203, 1997.

[5] C. Lefurgy and T. Mudge. Code compression for DSP. CSE-TR-
380-98. Technical report, University of Michigan, 1998.

[6] H. Lekatsas et al. Design of an one-cycle decompression hardware
for performance increase in embedded systems. DAC 2002.

[7] H. Lekatsas and W. Wolf. SAMC: A code compression algorithm
for embedded processors. IEEE TCAD, 18(12), 1999.

[8] L. Li, K. Chakrabarty, and N. Touba. Test data compression using
dictionaries with selective entries and fixed-length indices. ACM
TODAES, Vol.8:470–490, October 2003.

[9] S. Liao, S. Devadas, and K. Keutzer. Code density optimization
for embedded DSP processors using data compression techniques.
Advanced Research in VLSI, 393–399, 1995.

[10] C. Lin, Y. Xie, and W. Wolf. LZW-based code compression for
VLIW embedded systems. DATE, 76–81, 2004.

[11] S. Nam, I. Park, and C. Kyung. Improving dictionary-based code
compression in VLIW architectures. IEICE Trans. Fundamentals,
A(11):2318–2324, November 1999.

[12] J. Prakash et al. A simple and fast scheme for code compression
for VLIW processors. DCC 2003.

[13] M. Ros and P. Sutton. A hamming distance based VLIW/EPIC
code compression technique. CASES, 132–139, 2004.

[14] S. Seong and P. Mishra. A bitmask-based code compression
technique for embedded systems. ICCAD, 2006.

[15] A. Wolfe and A. Chanin. Executing compressed programs on an
embedded RISC architecture. MICRO, 81–91, 1992.

