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Bitmask-Based Code Compression
for Embedded Systems

Seok-Won Seong and Prabhat Mishra, Member, IEEE

Abstract—Embedded systems are constrained by the available
memory. Code-compression techniques address this issue by re-
ducing the code size of application programs. It is a major chal-
lenge to develop an efficient code-compression technique that can
generate substantial reduction in code size without affecting the
overall system performance. We present a novel code-compression
technique using bitmasks, which significantly improves the
compression efficiency without introducing any decompression
penalty. This paper makes three important contributions. 1) It
develops an efficient bitmask-selection technique that can cre-
ate a large set of matching patterns. 2) It develops an efficient
dictionary-selection technique based on bitmasks. 3) It proposes a
dictionary-based code-compression algorithm using the bitmask-
and dictionary-selection techniques that can significantly reduce
the memory requirement. To demonstrate the usefulness of our
approach, we have performed code compression using applications
from various domains and compiled for a wide variety of archi-
tectures. Our approach outperforms the existing dictionary-based
techniques by an average of 20%, giving a compression ratio of
55%–65%.

Index Terms—Bitmasks, code compression, decompression,
embedded systems, memory.

I. INTRODUCTION

M EMORY is one of the key driving factors in embedded-
system design because a larger memory indicates an

increased chip area, more power dissipation, and higher cost.
As a result, memory imposes constraints on the size of the
application programs. Code-compression techniques address
the problem by reducing the program size. Fig. 1 shows the
traditional code-compression and decompression flow where
the compression is done offline (prior to execution) and the
compressed program is loaded into the memory. The decom-
pression is done during the program execution (online).

Compression ratio (CR), widely accepted as a primary metric
for measuring the efficiency of code compression, is defined as

CR =
Compressed program size

Original program size
. (1)

Dictionary-based code-compression techniques are popular
because they provide both good CR and fast decompression
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Fig. 1. Traditional code-compression methodology.

mechanism. The basic idea is to take advantage of commonly
occurring instruction sequences by using a dictionary. Recently
proposed techniques [3], [4] improve the dictionary-based com-
pression by considering mismatches. The basic idea is to create
instruction matches by remembering a few bit positions. The
efficiencies of these techniques are limited by the number of
bit changes used during compression. It is obvious that if more
bit changes are allowed, more matching sequences will be
generated. However, the cost of storing the information for
more bit positions offsets the advantage of generating more
repeating instruction sequences. Studies [4] have shown that
it is not profitable to consider more than three bit changes
when 32-b vectors are used for compression. There are vari-
ous complex compression algorithms that can generate major
reduction in code size. However, such compression scheme
requires a complex decompression mechanism and thereby
reduces overall system performance. It is a major challenge to
develop an efficient code-compression technique that can gen-
erate substantial code-size reduction without introducing any
decompression penalty (and thereby reducing performance).

We propose an efficient code-compression technique to fur-
ther improve the CR by aggressively creating more matching
sequences using bitmask patterns. This paper addresses var-
ious challenges in bitmask-based compression by developing
efficient techniques for application-specific bitmask selection
and bitmask-aware dictionary selection to further improve
the CR. We have used applications from various domains
(TI, Mediabench, and MiBench) and compiled them for a wide
variety of architectures including TI C6x, MIPS, and SPARC.
Our experimental results demonstrate that our approach outper-
forms the existing dictionary-based compression techniques by
an average of 20% without introducing any additional decom-
pression overhead.

The rest of the paper is organized as follows. Section II
presents related work addressing code compression for em-
bedded systems. Section III describes existing dictionary-based

0278-0070/$25.00 © 2008 IEEE
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Fig. 2. Dictionary-based code compression: an example.

code-compression techniques. Sections IV and V present our
code-compression algorithm and decompression mechanism,
which are followed by a case study in Section VI. Finally,
Section VII concludes this paper.

II. RELATED WORK

The first code-compression technique for embedded proces-
sors was proposed by Wolfe and Chanin [5]. Their technique
uses Huffman coding, and the compressed program is stored in
the main memory. The decompression unit is placed between
the main memory and the instruction cache. They used a
Line Address Table (LAT) to map original code addresses to
compressed block addresses. Lekatsas and Wolf [6] proposed a
statistical method for code compression using arithmetic coding
and Markov model. Lekatsas et al. [7] proposed a dictionary-
based decompression prototype that is capable of decoding one
instruction per cycle. The idea of using dictionary to store the
frequently occurring instruction sequences has been explored
by various researchers [9], [10]. Fig. 2 shows an example of the
standard dictionary-based code compression.

The techniques discussed so far target reduced instruction
set computer (RISC) processors. There has been a significant
amount of research in the area of code compression for very
long instruction word (VLIW) and explicitly parallel instruc-
tion computing (EPIC) processors. The technique proposed
by Ishiura and Yamaguchi [11] splits a VLIW instruction
into multiple fields, and each field is compressed by using a
dictionary-based scheme. Nam et al. [12] also use dictionary-
based scheme to compress fixed-format VLIW instructions.
Various researchers have developed code-compression tech-
niques for VLIW architectures with flexible instruction formats
[13], [14]. Larin and Conte [13] applied Huffman coding for
code compression. Xie et al. [14] used Tunstall coding to
perform variable-to-fixed compression. Lin et al. [15] proposed
a Lempel–Ziv–Welch (LZW)-based code compression for
VLIW processors using a variable-sized-block method. Ros and
Sutton [16] have used a postcompilation register reassignment
technique to generate compression-friendly code. Das et al.
[17] applied code compression on variable-length instruction-
set processors.

Several techniques [3], [4] have been proposed to improve
the standard dictionary-based code compression by consider-
ing mismatches. Fig. 4 shows an example of the improved
dictionary-based code compression. The basic idea is to create

repeating patterns from mismatches by storing the differences
during code compression. These techniques are closest to
our approach. We perform a detailed analysis of these tech-
niques in Section III to demonstrate that our approach outper-
forms (improves the CR) the existing techniques by generating
more repeating patterns without introducing any decompression
penalty.

III. DICTIONARY-BASED CODE COMPRESSION

This section describes the existing dictionary-based ap-
proaches and analyzes their limitations. First, we describe
the standard dictionary-based approach. Next, we describe the
existing techniques that improve the standard approach by con-
sidering mismatches (hamming distance). Finally, we perform a
detailed cost–benefit analysis of the recent approaches in terms
of how many repeating patterns they can generate from the
mismatches. This analysis forms the basis of our technique to
maximize the repeating patterns using bitmasks.

A. Dictionary-Based Approach

Dictionary-based code-compression techniques provide
compression efficiency as well as fast decompression mecha-
nism. The basic idea is to take advantage of commonly
occurring instruction sequences by using a dictionary. The
repeating occurrences are replaced with a code word that points
to the index of the dictionary that contains the pattern. The
compressed program consists of both code words and uncom-
pressed instructions. Fig. 2 shows an example of dictionary-
based code compression using a simple program binary. The
binary consists of ten 8-b patterns, i.e., a total of 80 b. The
dictionary has two 8-b entries. The compressed program
requires 62 b, and the dictionary requires 16 b. In this case, the
CR is 97.5% [using (1)]. This example shows a variable-length
encoding. As a result, there are several factors that may need
to be included in the computation of the CR, such as byte
alignments for branch targets and the address-mapping table.

B. Improved Dictionary-Based Approach

Recently proposed techniques [3], [4] improve the standard
dictionary-based compression technique by considering mis-
matches. The basic idea is to find the instruction sequences
that are different in a few bit positions (Hamming distance)
and store that information in the compressed program and
update dictionary (if necessary). CRs will depend on how
many bit changes are considered during compression. Fig. 3
shows the encoding format used by these techniques for a 32-b
program code.

It is obvious that if more bit changes are allowed, more
matching sequences will be generated. However, the size of the
compressed program will increase depending on the number
of bit positions. Section III-C describes this topic in detail.
Prakash et al. [3] considered only 1-b change for 16-b patterns
(vectors). Ros and Sutton [4] considered a general scheme of
up to 7-b changes for 32-b patterns and concluded that a 3-b
change provides the best CR.
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Fig. 3. Encoding scheme for incorporating mismatches.

Fig. 4. Improved dictionary-based code compression.

Fig. 4 shows the improved dictionary-based scheme using
the same example (shown in Fig. 2). This example considers
only 1-b change. An extra field is necessary to indicate whether
mismatches are considered or not. In case a mismatch is consid-
ered, another field is necessary to indicate the bit position that is
different from an entry in the dictionary. For example, the third
pattern (from top) in the original program is different from the
first dictionary entry (index 0) on sixth bit position (from left).
The CR for this example is 95%.

C. Cost–Benefit Analysis for Considering Mismatches

It is obvious that we can create more repeating patterns if
we consider changes in more bit positions. For example, if we
consider 2-b changes in Fig. 4, all mismatched patterns can be
compressed. However, increasing more repeating patterns by
considering multiple mismatches does not always improve the
CR. This is due to the fact that the compressed program has to
store multiple bit positions. If we consider 2-b changes for the
example in Fig. 4, the CR will be worse (102.5%).

We have done a detailed study on how to match more bit posi-
tions without adding significant information in the compressed
code. We have considered 32-b code vectors for compression.
Clearly, the Hamming distance between any two 32-b vectors is
between 0 and 32. The compression adds extra 5 b to remember
each bit position in a 32-b pattern. Moreover, extra bits are
necessary to decide how many bit changes are there in the
compressed code. For example, if the code allows up to 32-b
changes, it requires extra 5 b to indicate the number of changes.
As a result, this process requires extra 165 b (32 × 5 + 5) when
all 32 b are different. Clearly, it is not profitable to compress a

TABLE I
COST OF VARIOUS MATCHING SCHEMES

32-b vector using extra 165 b along with a code word (index
information) and other details.

We have explored the use of bitmasks for creating repeating
patterns. For example, a 32-b mask pattern is sufficient to match
any two 32-b vectors. Of course, it is not profitable to store
extra 32 b to compress a 32-b vector but definitely better than
extra 165 b. We considered mask patterns of different sizes
(1–32 b). When a mask pattern is smaller than 32 b, we need
to store information related to starting bit position where the
mask needs to be applied. For example, if we use an 8-b mask
pattern and want to consider all 32-b mismatches, it requires
four 8-b masks and extra 2 b (to identify one of the four bytes)
for each mask pattern to indicate where it will be applied. In
this particular case, we require extra 42 b.

In general, a dictionary contains 256 or more entries. As a
result, a code pattern will have fewer than 32-b changes. If a
code pattern is different from a dictionary entry in 8-b positions,
it requires only one 8-b mask, and its position requires extra
13 (8 + 5) b. This can be improved further if we consider
bit changes only in byte boundaries. This leads to a trade-
off that requires fewer bits (8 + 2) but may miss few mis-
matches that spread across two bytes. This paper uses the latter
approach that uses fewer bits to store a mask position.

Table I shows the summary of this analysis. Each row repre-
sents the number of changes allowed. Each column represents
the size of the mask pattern. A 1-b mask is essentially the same
as remembering the bit position. Each entry in the table (r, c)
indicates how many extra bits are necessary to compress a 32-b
vector when r number of bit changes are allowed and c is the
size of the mask pattern. For example, we require extra 15 b to
allow 8-b (row with value 8) changes using 4-b (column with
value 4) mask patterns.

Section IV presents our code-compression technique using
bitmasks, which significantly improves the CR. Consider the
same example shown in Fig. 4. A 2-b mask (only on quarter-
byte boundaries) is sufficient to create 100% matching patterns
and thereby improves the CR (87.5%), as shown in Fig. 5.
Experiments using real applications demonstrate that the CR
using our approach varies between 50%–65%.

IV. CODE COMPRESSION USING BITMASKS

The motivation of this paper is based on the analysis pre-
sented in Section III-C. Our approach tries to incorporate
maximum bit changes using mask patterns without adding
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Fig. 5. Code compression using our approach.

significant cost (extra bits) such that the CR is improved. Our
compression technique also ensures that the decompression
efficiency remains the same compared to that of the existing
techniques. Our scheme considers a 32-b program code (vector)
and uses mask patterns.

Fig. 6 shows the generic encoding scheme used by our com-
pression technique. This scheme is similar to the 32-b format
shown in Fig. 3 where individual bit changes are recorded.
However, as described in Section III-C, storing individual bit
changes limits the number of matches. As shown in Fig. 6,
a compressed code can store information regarding multiple
mask patterns. For each pattern, the generic encoding stores the
mask type (requires 2 b to distinguish between 1, 2, 4, and 8 b),
the location where the mask needs to be applied, and the mask
pattern.

The number of bits needed to indicate a location will depend
on the mask type. A mask of size s can be applied on (32 ÷ s)
number of places. For example, an 8-b mask can be applied
only on four places (byte boundaries). Similarly, a 4-b mask
can be applied on eight places (byte and half-byte boundaries).
Consider a scenario where a 32-b word is compressed by using
one 4-b mask at the second half-byte boundary and one 8-b
mask at the fourth byte boundary; the compressed code will
appear as shown in Fig. 7.

The generic encoding scheme (shown in Fig. 6) can be
further optimized. For code compression, we have found that
using up to two bitmasks is sufficient to achieve a good CR. We
explored various customized versions of our encoding format to
figure out which encoding format works better across the target
architectures. Clearly, a 32-b mask pattern is not profitable. The
16-b mask is also not useful unless there are too many mis-
matches which a 4- or 8-b (or combined 12-b) mask cannot cap-
ture. Fig. 8 shows three examples of customized encoding for-
mats using 4- and 8-b masks. The first encoding (Encoding 1)
uses an 8-b mask, the second encoding (Encoding 2) uses up
to two 4-b masks, and the third encoding (Encoding 3) uses up
to two masks where the first mask can be 4 or 8 b, whereas
the second mask is always 4 b. Section IV-C describes mask
selection and its challenges in detail.

We first explain our code-compression algorithm. Next, we
present our decompression mechanism. In Section VI, we re-
port the performance of these customized encoding formats.

A. Compression Algorithm

Algorithm 1 shows the four basic steps of our algorithm.

Algorithm 1: Code Compression using Mask Patterns
Input: Original code (binary) divided into 32-b vectors
Outputs: Compressed code and dictionary
Begin

Step 1: Create the frequency distribution of the vectors.
Step 2: Create the dictionary based on Step 1.
Step 3: Compress each 32-b vector using cost constraints.
Step 4: Handle and adjust branch targets.
return Compressed code and dictionary

End

The algorithm accepts the original code consisting of 32-b
vectors. The first step creates the frequency distribution of
the vectors. We consider two types of information to com-
pute the frequency: repeating sequences and possible matching
sequences by bitmasks. First, it finds the repeating 32-b se-
quences, and the number of repetition determines the frequency.
This frequency computation is similar to any dictionary-based
code-compression scheme and provides an initial idea of the
dictionary size. Next, all the high-frequency vectors are up-
graded (or downgraded) based on how many new repeating
sequences they can create from mismatches using bitmasks
with cost constraints. Table I provides the cost for the choices.
For example, it is costly to use two 4-b masks (cost: 15 b) if an
8-b mask (cost: 10 b) can create the match.

The second step chooses the smallest possible dictionary size
without significantly affecting the CR. It is useful to consider
larger dictionary sizes when the current dictionary size cannot
accommodate all the vectors with frequency value above certain
threshold. However, there are certain disadvantages of increas-
ing the dictionary size. The cost of using a larger dictionary is
more because the dictionary index becomes bigger. The cost
increase is balanced only if most of the dictionary is full with
high-frequency vectors. Most importantly, a bigger dictionary
increases the access time and thereby reduces decompression
efficiency.

The third step converts each 32-b vector into compressed
code (when possible) using the format shown in Fig. 6. The
compressed code, along with any uncompressed ones, is com-
posed serially to generate the final compressed program code.
The final step of the algorithm resolves the branch-instruction
problem by adjusting branch targets. Wolfe and Chanin [5]
proposed the LAT; however, it requires an extra space and
degrades overall performance. Lefurgy et al. [9] proposed a
technique which patches the original branch-target addresses
to the new offsets in the compressed program. This approach
does not require an additional space for the LAT nor affect the
performance of the program, but it may not work on indirect
branches.

Our proposed compression algorithm handles branch targets
in the following manner. First, it patches all the possible branch
targets into new offsets in the compressed program, and pad
extra bits at the end of the code preceding branch targets to
align on a byte boundary. Next, it creates a minimal mapping
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Fig. 6. Encoding format for our compression technique.

Fig. 7. Example of compressed word.

Fig. 8. Three customized encoding formats.

table to store the new addresses for ones that could not be
patched. This approach significantly reduces the size of the
mapping table required, allowing very fast retrieval of a new
target address. Our technique is very useful because more
than 75% control-flow instructions are conditional branches
(compare and branch) [18], and they are patchable. It leaves
only 25% for a small mapping table. Our experiments show that
more than 95% of the branches taken during execution do not
require the mapping table. Therefore, the effect of branching is
minimal in executing our compressed code.

B. Decompression Mechanism

Embedded systems with caches can employ the decom-
pression scheme in different ways, as shown in Fig. 9. For
example, the decompression hardware can be used between
the main memory and the instruction cache (pre-cache). As a
result, the main memory will contain the compressed program,
whereas the instruction cache will have the original program.
Alternatively, the decompression engine (DCE) can be used
between the instruction cache and the processor (post-cache).

The post-cache design has an advantage because the cache
retains data still in a compressed form, which increases cache
hits and reducing bus bandwidth, therefore achieving potential

Fig. 9. Placement of decompression unit. (a) Precache placement. (b) Post-
cache placement.

performance gain. Lekatsas et al. [7] reported a performance
increase of 25% on average by using a dictionary-based code
compression and a post-cache DCE. Decompression (decoding)
time is critical for the post-cache approach. The decompression
unit must be able to provide an instruction at the rate of the
processor to avoid any stalling. We present a design of the
dictionary-based decompression unit that handles bitmasks and
uses post-cache placement of the decompression hardware. Our
design facilitates simple and fast decompression and requires
no modification to the existing processor core.

Our design of the decompression hardware is based on the
one-cycle DCE proposed by Lekatsas et al. [7]. We have
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Fig. 10. DCE for bitmask encoding.

implemented the decompression hardware using VHSIC Hard-
ware Description Language and synthesized it using Synopsys
Design Compiler [20]. Our implementation is based on vari-
ous generic parameters including dictionary size (index size),
number and types of bitmasks, etc. Therefore, the same imple-
mentation can be used for different applications/architectures
by instantiating it with appropriate set of parameters.

Fig. 10 shows the design of our bitmask-based decom-
pression unit. To expedite the decoding process, the DCE is
customized for efficiency, depending on the choice of bitmasks
used. Using two 4-b masks (Encoding 2 in Section IV), the
compression algorithm generates four different types of en-
coding: 1) uncompressed instruction; 2) compressed without
bitmasks; 3) compressed with one 4-b mask; and 4) compressed
with two 4-b masks. In the same manner, using one bitmask
creates only three different types of encoding. Decoding of
uncompressed or compressed code without bitmasks remains
virtually identical to the previous approach. The design has
prev_comp and prev_decomp registers. The prev_comp holds
remaining compressed data from the previous cycle because not
all of 32 b belong to the currently decoded instructions. The
prev_decomp holds uncompressed data from the previous cy-
cle. This is needed, for instance, when the DCE decompresses
more than 32 b in a cycle (two or more original instructions
were compressed in a 32-b code). The stored uncompressed
data are sent to the CPU in the next cycle.

Our decompression unit provides two additional operations:
generating an instruction-length (32-b) mask and XORing the
mask and the dictionary entry. The creation of an instruction-
length mask is straightforward as done by applying the bitmask
on the specified position in the encoding. For example, a
4-b mask can be applied only on half-byte boundaries (eight
locations). If two bitmasks were used, the two intermediate
instruction-length masks need to be ORed to generate one
single mask. The advantage of our design is that generating an
instruction-length mask can be done in parallel with accessing

the dictionary; therefore, generating a 32-b mask does not add
any additional penalty to the existing DCE.

The only additional time incurred in our design, compared
with the previous one-cycle design, is in the last stage where the
dictionary entry and the generated 32-b mask are XORed. We
have surveyed the commercially manufactured XOR logic gates
and found that many of the manufacturers produce XOR gates
with propagation delays ranging from 0.09 to 0.5 ns, numerous
of which are under 0.25 ns. The critical path of decompres-
sion data stream in [7] was 5.99 ns (with the clock cycle of
8.5 ns). Addition of 0.25 ns to the critical path of 5.99 ns
satisfies the 8.5-ns clock-cycle constraint.

In addition, our DCE can decode more than one instruction in
one cycle (even up to three instructions with hardware support).
In dictionary-based code compression, approximately 50% of
instructions match with each other (without using bitmasks
or Hamming distance) [4]. Our technique captures additional
15%–25% using one bitmask and up to 15%–25% more using
two bitmasks. Therefore, only about 5%–10% of the original
program remains uncompressed.

If the code word (with the dictionary index) is 10 b, the
encoding of instructions that are compressed only by using the
dictionary will be 12 b or less. Instructions that are compressed
with one 4-b mask have the cost of additional 7 b (a total
of 18–19 b). Therefore, a 32-b stream with any combination
with a 12-b code contains more than one instruction and can
be decoded simultaneously. The best scenario is when a 32-b
stream contains two 12-b encodings and when prev_comp holds
remaining 4 b. In this scenario, the DCE engine has three
instructions in hand that can be decoded concurrently.

The decompression unit, as well as the dictionary (SRAM),
consumes memory space. However, the computation of the
CR includes the space required for the dictionary. Therefore,
when 40% code compression (60% CR) is reported, it already
accounted for the area occupied by the dictionary. However,
the decompression unit area is not accounted in the calculation.
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Although the size of the decompression unit (excluding dictio-
nary size) can vary based on the number of bitmasks, etc., but it
ranges from 5120 to 10 240 gates. However, the savings due to
code compression is significantly higher than the area overhead
of the decompression hardware. For example, an MPEGII
encoder has initial size of 110 kB which can be reduced to
60 kB. Therefore, a 64-kB memory is sufficient instead of
a 128-kB memory. In terms of power requirement, our im-
plementation requires 2 mW on average. A typical system-
on-chip (SOC) requires several-hundred-milliwatt power. As
shown by Lekatsas et al. [8], 50% code compression can lead to
22%–80% energy reduction due to performance improvement
and memory-size reduction. Therefore, the power overhead of
the decompression hardware is negligible.

C. Challenges in Bitmask-Based Code Compression

One of the major challenges in bitmask-based code-
compression (BCC) technique is how to determine (a set of) op-
timal mask patterns that will maximize the matching sequences
while minimizing the cost of bitmasks. A 2-b mask can handle
up to four types of mismatches, whereas a 4-b mask can handle
up to 16 types of mismatches. Clearly, applying a larger bitmask
will generate more matching patterns; however, doing so may
not result in better compression. The reason is simple. A longer
bitmask pattern is associated with a higher cost. Similarly,
applying more bitmasks is not always beneficial. For example,
applying a 4-b mask requires 3 b to indicate its position (eight
possible locations in a 32-b vector) and 4 b to indicate the
pattern (a total of 7 b), whereas an 8-b mask requires 2 b for
the position and 8 b for the pattern (a total of 10 b). Therefore,
it would be more costly to use two 4-b masks if one 8-b mask
can capture the mismatches.

Another major challenge in bitmask-based compression
is how to perform dictionary selection where existing and
bitmask-matched repetitions need to be considered. In the tradi-
tional dictionary-based compression approach, the dictionary-
entry selection process is simplified because it is evident that
the frequency-based selection will give the best CR. However,
when compressing by using bitmasks, the problem is complex,
and the frequency-based selection will not always yield the best
CR. Figs. 11 and 12 demonstrate this fact.

When only one dictionary entry is allowed, the pure
frequency-based selection will choose 0000000, yielding a CR
of 97.5% (Fig. 11). However, if 01000010 was chosen, we can
achieve a CR of 87.5% (Fig. 12) for the same input program.
Clearly, there is a need for efficient mask- and dictionary-
selection techniques to improve the efficiency of BCC.

V. APPLICATION-AWARE CODE COMPRESSION

This section addresses the challenges described in
Section IV-C to develop an improved bitmask-based
code-compression framework. We have developed application-
specific bitmask-selection and bitmask-aware dictionary-
selection techniques. First, we describe our mask-selection
approach. Next, we present our bitmask-aware dictionary-

Fig. 11. Compression using frequency-based dictionary selection.

Fig. 12. Compression using a different dictionary selection.

selection technique. Finally, we present our code-compression
framework integrating the mask- and the dictionary-selection
techniques.

A. Mask Selection

As discussed in Section IV-C, mask selection is a major
challenge. Our goal in this section is to develop a procedure
to find a set of bitmask patterns that will deliver the best CR
for a given application. This leads to answering the following
two questions: 1) How many bitmask patterns do we need,
and 2) which bitmask patterns are profitable? We will answer
these questions after defining few terms related to bitmask
patterns.

Table II shows the mask patterns that can generate matching
patterns at an acceptable cost. A “fixed” bitmask pattern implies
that the pattern can be applied only on fixed locations (starting
positions). For example, an 8-b fixed mask (referred to as 8f ) is
applicable on four fixed locations (byte boundaries) on a 32-b
vector. A “sliding” mask pattern can be applied anywhere. For
example, an 8-b sliding mask (referred to as 8s) can be applied
in any location on a 32-b vector. There is no difference between
fixed and sliding ones for a 1-b mask. We will use a 1-b sliding
mask (referred to as 1s) for uniformity.
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TABLE II
VARIOUS BITMASK PATTERNS

The number of bits needed to indicate a location will depend
on the mask size and the type of the mask. A fixed mask of size
x can be applied on (32 ÷ x) number of places. An 8-b fixed
mask can be applied only on four places (byte boundaries),
therefore requiring 2 b. Similarly, a 4-b fixed mask can be
applied on eight places (byte and half-byte boundaries) and
requires 3 b for its position. A sliding pattern will require
5 b to locate the position regardless of its size. For instance, a
4-b sliding mask requires 5 b for location and 4 b for the mask
itself.

If we choose two distinct bitmask patterns, 2-b fixed (2f)
and 4-b sliding (4s), we can generate six combinations: (2f),
(4f), (2f, 2f), (2f, 4f), (4f, 2f), and (4f, 4f). Similarly, three
distinct mask patterns can create up to 39 combinations. Now,
we can try to answer the two questions posed at the beginning
of this section. It is easy to answer the first question: Up to two
mask patterns are profitable. The reason is obvious based on the
cost consideration. The smallest cost to store the three pieces of
bitmask information (position and pattern) is 15 b (if three 1-b
sliding patterns are used). In addition, we need 1–5 b to indicate
the mask combination and 8–14 b for a code word (dictionary
index). Therefore, we require approximately 29 b (on average)
to encode a 32-b vector. In other words, we save only 3 b to
match 3-b differences (on a 32-b vector). Clearly, it is not very
profitable to use three or more bitmask patterns.

Next, we try to answer the second question, i.e., which bit-
masks are profitable? As discussed in Section IV-C, applying a
larger bitmask can generate more matching patterns. However,
it may not improve the CR. Similarly, using a sliding mask
where a fixed one is sufficient is wasteful because a fixed
mask requires fewer number of bits (compared with its sliding
counterpart) to store the position information. For example, if
a 4-b sliding mask (cost of 9 b) is used where a 4-b fixed one
(cost of 7 b) is sufficient, two additional bits are wasted.

We carefully studied the combinations of up to two bitmasks
using several applications compiled on a wide variety of archi-
tectures. We observed that the mask patterns that are factors of
32 (e.g., masks 1, 2, 4, and 8 from Table II) produce a better
CR compared with nonfactors (e.g., masks 3, 5, 6, and 7).
This is due to the fact that we accept the program of 32-b
vectors; therefore, nonfactor-sized bitmasks were only usable
as a sliding pattern. While sliding patterns are more flexible,
they are more costly than fixed patterns. These observations
allowed us to reduce the 11 mask patterns in Table II to seven
profitable mask patterns shown in Table III. A subset of these
experiments is reported in Section VI. We analyzed the result

TABLE III
PROFITABLE BITMASK PATTERNS

TABLE IV
FINAL BITMASK PATTERNS

of CRs using various mask combinations and made several
useful observations that helped us to further reduce the bitmask-
pattern table. We found that 8f and 8s are not helpful and
that 4s does not perform better than 4f . We also observed that
using two bitmasks provides a better CR than using one bitmask
alone. The final set of profitable bitmask patterns is shown in
Table IV. Our integrated compression technique (Algorithm 3
in Section V-C) uses the bitmask patterns from Table IV.

B. Bitmask-Aware Dictionary Selection

Dictionary selection is another major challenge in code com-
pression. The optimal dictionary selection is a nondeterministic
polynomial-time-hard problem [19]. Therefore, the dictionary-
selection techniques in literature try to develop various heuris-
tics based on application characteristics. Dictionary can be
generated either dynamically during compression or statically
prior to compression. While a dynamic approach such as LZW
[15] accelerates the compression time, it seldom matches the
CR of static approaches. Moreover, it may introduce extra
penalty during decompression and thereby reduces the overall
performance. In the static approach, the dictionary can be
selected based on the distribution of the vectors’ frequency or
spanning [4].

We have observed that neither frequency- nor spanning-
based methods can efficiently exploit the advantages of
bitmask-based compression. Moreover, due to lack of a com-
prehensive cost metric, it is not always possible to obtain the
optimal dictionary by combining frequency- and spanning-
based methods in an ad hoc manner.

We have developed a novel dictionary-selection technique
that considers bit savings as a metric to select a dictionary entry.
Algorithm 2 shows our bit-saving-based dictionary-selection
technique. The algorithm takes application(s) consisting of 32-b
vectors as input and produces the dictionary as output that will
deliver a good CR. It first creates a graph where the nodes are
the unique 32-b vectors. An edge is created between two nodes
if they can be matched using a bitmask pattern. It is possible
to have multiple edges between two nodes because they can
be matched by various mask patterns. However, we consider
only one edge between two nodes corresponding to the most
profitable mask (maximum savings).
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Algorithm 2: Bit-Saving-Based Dictionary Selection
Inputs: 1. Application(s) consisting of 32-b instruction

vectors
2. Mask patterns
3. A threshold value to screen deletion of nodes

Output: Optimized dictionary
Begin

Step 1: Create a graph representation, G = (V,E).
Each node (V ) is a unique 32-b vector.
An edge (E) indicates that a bitmask can match
the nodes.

Step 2: Allocate bit savings to the nodes and edges.
Frequency determines the bit savings of the
node.
Mask used determines the bit savings by that
edge.

Step 3: Calculate the bit-saving distribution of all nodes.
Step 3: Select the most profitable node N .
Step 4: Remove N from G and insert into dictionary.
Step 5: For each node Ni in G that is connected to N

If the node profit of Ni is less than certain
threshold
Remove Ni from G.

Step 6: Repeat Steps 3–5 until dictionary is full or G
is empty.

return Dictionary
End

Once the bit savings are assigned to all nodes and edges,
the algorithm computes the overall savings for each node. The
overall savings is obtained by adding the savings in each edge
(bitmask savings) connected to that node along with the node
savings (based on the frequency value). Next, the algorithm se-
lects the node with the maximum overall savings as an entry for
the dictionary. The selected node, as well as the nodes that are
connected to the selected node, is deleted from the graph. How-
ever, we have observed that it is not always profitable to delete
all the connected nodes. Instead, we set a particular threshold to
screen the deletion of nodes. Typically, a node with a frequency
value that is less than ten is a good candidate for deletion when
the dictionary is not too small. This varies from application to
application, but based on our experiments, a threshold value
between 5 and 15 was most useful. The algorithm terminates
when either the dictionary is full or the graph is empty.

Fig. 13 illustrates this technique. The vertex “A” has the total
savings of 10 (5 + 5), “B” and “C” have 22, “D” has 5, “E”
has 15, “F” has 27, and “G” has 24. Therefore, “F” is chosen as
the best candidate and gets inserted into the dictionary. Once
“F” is inserted into the dictionary, it gets removed from the
graph. The nodes “C” and “E” are also removed because they
can be matched with “F” in the dictionary and bitmask(s). Note
that if the frequency value of the node “C” was larger than the
threshold value, it would not be removed in this iteration.

The algorithm repeats by recalculating the savings of the
vertex in the new graph and terminates when the dictionary
becomes full or the graph is empty. Our experimental results
show that the bit-saving-based dictionary-selection method out-
performs both frequency- and spanning-based approaches.

Fig.13. Bit-saving dictionary-selection method.

C. Code-Compression Algorithm

In this section, we present our code-compression algorithm
that integrates our mask- and dictionary-selection methods.
The goal is to maximize the compression efficiency by using
the BCC technique. Algorithm 3 outlines the basic steps. The
algorithm accepts the original code consisting of 32-b vectors
as input and produces the compressed code and an optimized
dictionary.

The algorithm begins by initializing three variables: mask1,
mask2, and CompressionRatio. The profitable mask patterns
are stored in mask1 and mask2, and CompressionRatio stores
the best CR at each iteration. The first step is to pick a pair
of mask patterns from the reduced set of (1s, 2s, 2f, 4f) from
Table IV. The second step selects the optimized dictionary
using Algorithm 2. The third step converts each 32-b vector
into compressed code (when possible). If the new CR is better
than the current one, the fourth step updates the variables.
The final step of the algorithm resolves the branch-instruction
problem by adjusting branch targets. The algorithm returns
the compressed code, optimized dictionary, and two profitable
mask patterns.

It is important to note that this algorithm can be used as a
one- or two-pass code-compression technique. In a two-pass
code-compression approach, the first pass can use synthetic
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benchmarks (equivalent to the real applications in terms of
various characteristics but much smaller) to determine the two
most profitable mask patterns. During the second pass, the
first step (two for loops) can be ignored, and the actual code
compression can be performed by using real applications.

Algorithm 3: Code Compression using Bitmasks
Input: Original code (32-b vectors)
Outputs: Compressed code, dictionary, 〈mask1,mask2〉
Begin

mask1 = 1s; mask2 = 1s; CompressionRatio = 100%
Step 1: Select the mask patterns.
for each mask pattern mi in (1s, 2s, 2f, 4f)

for each mask pattern mj in (1s, 2s, 2f, 4f)
Step 2: Select the optimized dictionary.
Step 3: Compress 32-b vectors using cost constraints.
Step 4: Update the variables if necessary.
NewCR = (CompCode with mi&mj)÷(OrigCode)
if (NewCR < CompressionRatio)

CompressionRatio = NewCR
mask1 = mi; mask2 = mj

endif
endfor

endfor
Step 5: Adjust and handle the branch targets.
return Compressed code, dictionary, 〈mask1,mask2〉

End

VI. EXPERIMENTS

We performed extensive code-compression experiments by
varying both application domains and target architectures.
In this section, we present our experimental results. The
benchmarks are collected from TI, Mediabench, and MiBench
benchmark suites: adpcm_en, adpcm_de, cjpeg, djpeg, gsm_to,
gsm_un, hello, modem, mpeg2enc, mpeg2dec, pegwit, and
vertibi. We compiled the benchmarks for three target archi-
tectures: TI TMS320C6x, MIPS, and SPARC. We used TI
Code Composer Studio to generate binary for TI TMS320C6x.
We used gcc to generate binary for MIPS and SPARC. We
computed the CR using (1). Our computation of compressed
program size includes the size of the compressed code as well
as the dictionary and the small mapping table.

A. Results

In Section IV, we presented our generic encoding format
as well as three customized formats. Encoding 1 uses one
8-b mask, Encoding 2 uses up to two 4-b masks, and Encoding
3 uses 4- and 8-b masks. Fig. 14 shows the performance of
each of these encoding formats using adpcm_en benchmark for
three target architectures. We used dictionary with 2048 entries
for these experiments. Clearly, the second encoding format
performs the best—generating a CR of 55%–65%.

Fig. 15 shows the efficiency of our compression technique for
all benchmarks compiled for SPARC using dictionary sizes of
4096 and 8192 entries. We used the Encoding 2 to compress the
benchmarks. As expected, we can observe three scenarios. The

Fig. 14. CR for adpcm_en benchmark.

small benchmarks such as adpcm_en and adpcm_de performs
better with small dictionary because a majority of the repeating
patterns fit in the 4096-entry dictionary. On the other hand, the
large benchmarks such as cjpeg, djpeg, and mpeg2enc benefit
most from the larger dictionary. The medium-sized benchmarks
such as mpeg2dec and pegwit do not benefit much from the
bigger dictionary size.

We experimented by varying both mask combinations and
dictionary-selection methods. Fig. 16 shows the CRs of three
TI benchmarks (block_mse, modem, and vertibi) compressed
using all 56 different mask-set combinations1 (both one- and
two-mask combinations from {1s, 2f, 2s, 4f, 4s, 8f, 8s}). As
discussed in Section V-A, 8-b mask patterns (fixed or sliding)
do not provide good CR. In general, compressing with two
masks achieves a better CR than using just one. Note that
the CRs for three benchmarks follow a regular pattern. A
similar pattern exists even with other benchmarks. It confirms
our analysis in Section V-A that a small set of mask patterns
is sufficient to achieve good compression. Overall, we found
that the combination of 4-b fixed and 1-bit sliding or two 2-b
patterns provides the best compression.

Fig. 17 compares the CRs achieved by the various dictionary-
selection methods described in Section V-B. As shown in the
figure, spanning-based approach is the worst compared to other
dictionary-selection methods. Our bit-saving-based approach
outperforms all the existing dictionary-selection methods on all
benchmarks.

Fig. 18 compares the CRs between the BCC technique and
the application-specific code-compression (ACC) framework.
In BCC technique [1], we have experimented with customized
encodings of 4- and 8-b mask combinations. In ACC framework
[2], we have computed the most profitable mask pairs and
applied the bit-saving-based dictionary-selection technique to
further improve the CR. For example, we obtained 57% CR for
adpcm_en benchmark using 4-b fixed and 1-b sliding patterns,
which outperforms the BCC approach by 6%. As expected, the
application-specific approach outperforms the bitmask-based
technique by 5%–10%.

1In order of (1s), (1s, 2f), (1s, 2s), (1s, 4f), (1s, 4s), (1s, 8f), (1s, 8s), (2s), . . ..
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Fig. 15. CR for different benchmarks.

Fig. 16. Performance analysis of mask combinations.

Fig. 17. Comparison of dictionary-selection methods.

Table V compares our approach with the existing code-
compression techniques. Our technique improves the code-
compression efficiency by 20% compared to the existing
dictionary-based techniques [3], [4]. It is important to note
that all the works mentioned in Table V did not use exactly

the same setup. In fact, in some of them, the detailed setup
information is not available except the information regarding
the architecture and the average CR. However, majority of them
(including all the recent researches in this area) used popular
embedded-system benchmark applications from Mediabench,
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Fig. 18. CR comparison.

TABLE V
COMPARISON WITH VARIOUS COMPRESSION SCHEMES

MiBench, and TI benchmark suites, which were compiled for
various architectures. We have obtained the same application
binary used by Lekatsas and Wolf [6]. In other words, we have
tried our best to perform a fair comparison.

The compression efficiency of our technique is comparable
to the state-of-the-art compression techniques (IBM CodePack
[21] and SAMC [6]). However, due to the encoding complexity,
the decompression bandwidths of those techniques are only
6–8 b. As a result, they cannot support one instruction per
cycle decompression, and it is not possible to place the DCE
between the cache and the processor to take advantage of the
post-cache design (Fig. 9). Moreover, those techniques do not
support parallel decompression, which are, therefore, not suit-
able for VLIW architectures. Our decompression mechanism
supports one instruction per cycle delivery as well as parallel
decompression.

This code-size reduction can contribute not only to cost,
area, and energy savings but also to performance of the em-
bedded system. The ACC framework [2], due to the nature of
the mask- and dictionary-selection procedures, incurs higher
encoding/compression overhead than the BCC approach [1].
However, in embedded-system design using code compression,
encoding is performed once, and millions of copies are manu-

factured. Any reduction of cost, area, or energy requirements is
extremely important. Moreover, our approaches (BCC or ACC)
do not introduce any decompression penalty.

VII. CONCLUSION

Embedded systems are constrained by the memory size.
Code-compression techniques address this problem by reducing
the code size of the application programs. Dictionary-based
code-compression techniques are popular because they gener-
ate a good CR by exploiting the code repetitions. Recent tech-
niques use bit-toggle information to create matching patterns
and thereby improve the CR. However, due to the lack of an
efficient matching scheme, the existing techniques can match
up to 3-b differences.

We developed an efficient matching scheme using bitmasks
that can significantly improve the code-compression efficiency.
This paper studied various code-compression challenges in
embedded systems. To address these challenges, we devel-
oped application-specific bitmask-selection and bitmask-aware
dictionary-selection algorithms. We also developed an efficient
code-compression technique using these algorithms to improve
the code CR without introducing any decompression over-
head. We applied our technique using applications from vari-
ous domains and compiled them for different architectures to
demonstrate the usefulness of our approach. Our experimental
results show that our approach reduces the original program
size by up to 45%. Our technique outperforms all the existing
dictionary-based techniques by an average of 20%, giving CRs
of 55%–65%. We also proposed the design of a simple and fast
decompression unit that is capable of decoding an instruction
per cycle as well as performing parallel decompression.

There are two alternative ways to employ bitmask-based
code compression: 1) compressing with the simple frequency-
based dictionary selection and pre-customized (selected)
encodings, or 2) compressing with the application-specific
bitmask and dictionary selections. Clearly, the first approach
is faster than the second one, but it may not generate the
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best possible compression. The first option is useful for early
exploration and prototyping purposes. The second option is
time consuming but is useful for the final system design because
encoding (compression) is performed only once and millions
of copies are manufactured. Therefore, any reduction in cost,
area, or energy requirements is extremely important during
embedded-system design.

Currently, our technique generates up to 95% matching se-
quences. We plan to investigate further in terms of possibilities
in creating more matches with fewer bits (cost). One possible
direction is to introduce the compiler optimizations that use
Hamming distance as a cost measure for generating code. We
plan to investigate the effects of our compression approach on
overall energy savings and performance improvement.

This paper used bitmask-based compression for reducing the
code size in embedded systems. This technique can also be
applied in other domains where dictionary-based compression
is used. For example, dictionary-based test data compression
[19] is used in manufacturing test domain for reducing the test-
data volume in SOC designs. This method is based on the use of
a small number of channels to deliver compressed test patterns
from the tester to the chip and to drive a large number of internal
scan chains in the circuit under test. Therefore, it is particularly
suitable for a reduced pin-count and low-cost test environment,
where a narrow interface between the tester and the SOC
is desirable. The dictionary-based approach not only reduces
test-data volume but also eliminates the need for additional
synchronization and handshaking between the SOC and the
automatic test equipment. The required pin count and overall
cost can be further reduced by employing the bitmask-based
compression technique. Our future work includes application
of bitmask-based technique for test-data compression.
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