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Abstract High reliable reconfigurable applications today re-
quire system platforms that can easily and quickly detect and
correct single event upsets. This capability, however, can be
costly for FPGAs. This paper demonstrates a technique for
detecting and repairing SEUs within the configuration mem-
ory of a Xilinx Virtex-4 FPGA using the ICAP interface. The
Internal Configuration Access Port (ICAP) provides a port in-
ternal to the FPGA for configuring the FPGA device. An ap-
plication note demonstrates how this port can be used for both
error injection and scrubbing [1]. We have extended this work
to create a fault tolerant ICAP scrubber by triplicating the in-
ternal ICAP circuit using TMR and block memory scrubbing.
This paper will describe the costs, benefits, and reliability of
this fault-tolerant ICAP controller.
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1. INTRODUCTION

There is growing interest in using FPGAs within space sys-
tems due to low non-recurring engineering (NRE) costs, re-
configurability, and the large number of logic, arithmetic, and
I/O resources found on modern FPGAs. Further, the abil-
ity to reconfigure the FPGA device after the spacecraft has
launched allows the FPGA to be updated to changing mis-
sion goals or scenarios or even to fix faults within the system.
A variety of projects have demonstrated the benefits of using
FPGAs in a spacecraft [2], [3], [4].

While FPGAs offer a number of unique benefits for space-
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craft electronics, FPGAs are susceptible to single event ef-
fects. FPGA devices contain a large number of internal mem-
ory cells that can be upset by high energy particles. FPGAs
contain memory cells for user flip-flops, internal block mem-
ory, and for configuration memory. Upsets within the con-
figuration memory are especially challenging as these upsets
may change the behavior of the FPGA. Any system that incor-
porates FPGAs must provide a strategy for mitigating against
these single-event upsets.

The most common mitigation approach for SEUs is to com-
bine triple modular redundancy (TMR) [5], [6] with configu-
ration scrubbing [7]. TMR involves the triplication of circuit
resources and the use of majority voters to isolate any sin-
gle upset within the circuit. Scrubbing involves the continu-
ous configuration of the FPGA to "clean" upsets that occur.
Scrubbing prevents the buildup of configuration upsets in or-
der to significantly reduce the probability of getting a multi-
bit upset. Together, these two techniques allow an FPGA to
be used reliably in a variety of space environments.

While configuration scrubbing is an important component
of a reliable FPGA system, it requires additional system re-
sources and adds to the system complexity. To perform scrub-
bing, external "radiation hardened" circuits are required to
manage the configuration process and load in the configura-
tion data. Further, reliable memories are needed to hold the
"golden" FPGA configuration bitstream.

This work demonstrates the use of an alternative form of con-
figuration scrubbing using the internal configuration access
port (ICAP). This form of configuration scrubbing eliminates
the need for an external configuration memory or a rad-hard
configuration controller. The technique used in this work is
based on the ICAP scrubber application note published by
Xilinx [1]. The design was modified to improve the scrubber
reliability by applying TMR to the scrubber and utilizing a
number of well-known techniques for improving the system
reliability. This high-reliable internal scrubbing circuit was
tested at the Crocker Cyclotron at UC Davis to demonstrate
the ability to perform scrubbing internally and to demonstrate
the improvements in reliability by using TMR and other tech-
niques.

1



This paper will begin by reviewing the traditional scrubbing
techniques. Next, the technique of internal scrubbing will
be introduced along with an overview of the internal ICAP
scrubber circuit. The test infrastructure used to test our design
will be presented followed by a discussion of the results at our
radiation test. The paper will conclude by summarizing our
results and suggesting future work.

2. FPGA CONFIGURATION SCRUBBING
As suggested earlier, configuration scrubbing is an essen-
tial component of any high-reliable FPGA based system.
Like traditional memory scrubbing, configuration scrubbing
"cleans" upsets within the configuration memory to insure a
stable configuration memory. Configuration scrubbing pre-
vents the buildup of multiple configuration upsets by iden-
tifying upsets and repairing them as soon as they are found.
Previous studies have demonstrated significant improvements
in overall reliability when scrubbing is used.

Scrubbing is usually performed by continuously writing the
valid configuration memory into the device over the exist-
ing configuration data [7] using partial reconfiguration. If no
upsets have occurred, each pass of the scrubber will simply
write the same configuration data into the FPGA that is al-
ready present. If upsets have occurred, scrubbing will replace
the upset configuration bits with correct values. By contin-
uously writing the correct configuration data into the FPGA,
scrubbing prevents the buildup of configuration upsets and
limits upsets in the configuration bitstream to a short time
based on the scrub rate.

Configuration scrubbing requires more infrastructure than
that needed by traditional FPGA-based systems. As shown in
Figure 1, external memory and a processor or configuration
controller are needed to support the scrubbing process. The
external memory is required to hold the "golden" configura-
tion bitstream and the configuration controller is required to
sequence through the partial reconfiguration steps. If sophis-
ticated scrubbing techniques are used, a full programmable
processor is required. Because these components manage the
configuration of the FPGA, it is essential that they are pro-
tected from SEUs through appropriate mitigation or rad-hard
by design techniques.
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Figure 1. Architecture of traditional scrubbing circuitry

Configuration scrubbing can occur at a fairly fast rate and is
only limited by the speed at which the FPGA can be con-

figured. Modern FPGAs provide wide and high-speed inter-
faces to the configuration port to facilitate high-speed con-
figuration. The Virtex-4 FPGA provides a 32-bit internal
configuration port operating up to 100 MHz to provide a 50
MB/sec configuration interface. With a 7.7 Mbit to 15.3 Mbit
bitstream, the FPGA can be completely scrubbed in 24 to
278ms [1] given a single SEU per scan. The rate of scrub-
bing can be slowed, if necessary, to avoid over scrubbing in
low-upset environments.

There are several variations of scrubbing that have been pro-
posed and demonstrated [8]. The scrubbing technique de-
scribed above has been referred to as "blind scrubbing" since
it configures the FPGA whether or not upsets have occurred
(i.e. blindly). A variation of blind scrubbing is called "read-
back with correction". In this mode, the internal configura-
tion memory is read back and compared with a golden bit-
stream. If a difference between the bitstreams is found, the
configuration frame with the faulty bit is repaired through
configuration.

3. INTERNAL SCRUBBING
Another style of scrubbing that has been proposed relies on
the internal configuration access port or ICAP [1]. This form
of scrubbing is performed by configuring the FPGA from
within the device using the ICAP. This scrubbing strategy
relies on the internal ECC block within the FPGA to iden-
tify faults and using the SECDEC code to correct the errors.
Scrubbing internally, using the ICAP, removes the need for
external circuit components, additional I/O pins, and radia-
tion hardened configuration memories. The purpose of this
work is to investigate the use of ICAP scrubbing and demon-
strate a low-cost, high-reliable internal ICAP scrubbing cir-
cuit.

Figure 2. ICAP Based Internal Scrubber

Figure 2 shows the basic architecture of the ICAP based
scrubber. Central to this scrubbing circuit are the ICAP and
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Frame ECC primitives. These primitives cannot operate in-
dependently, additional logic is needed to manage the ICAP
and scrubbing process. A programmable soft-core PicoBlaze
processor is used to manage the ICAP because of its flexibil-
ity and ability to perform complex readback and scrubbing
functions. A block ram (PicoBlaze BRAM) is required to
store the PicoBlaze scrubbing program. A memory buffer
(DMA BRAM) is also required to buffer the data between the
ICAP and PicoBlaze processor. The ICAP DMA Engine pro-
vides the control logic for interface between the ICAP, DMA
BRAM, and additional logic. Additional control circuitry is
needed to synchronize the ICAP DMA Engine with the Pi-
coBlaze processor. Each of these blocks will be described in
more detail below.

ICAP

The Internal Configuration Access Port (ICAP), shown in
Figure 3, is a primitive found within Virtex-4 FPGAs. This
primitive is used to perform the readback and re-configuration
operations required for scrubbing. The ICAP has direct ac-
cess to configuration memory through the configuration reg-
isters. The interface of the ICAP resembles the interface used
by the traditional SelectMap [9].

ICAP

INPUT OUTPUT

WRITE BUSY

CE

CLK

Figure 3. ICAP Block Diagram

The SelectMap interface is the reconfiguration external inter-
face used by traditional scrubbers. The SelectMap interface
dedicates user I/O pins for a bi-directional data bus and con-
trol signals, and this interface cannot be used with Bitstream
encryption. The ICAP requires no dedicated input or output
pins because it requires no external components. ICAP sep-
arates the data bus into an input bus, and an output bus [10].
The ICAP can perform readback and re-configuration even
if the bitstream is encrypted [9]. The ICAP cannot perform
initial full configuration, whereas the SelectMap can.

The ICAP interface can be used for different operation pur-
poses. The main use of the ICAP in this work is to scrub the
FPGA configuration memory. Research provided by Zeinid-
dini [11] and Galerin et al [12], use the ICAP interface for
means of self-reconfiguration and partial configuration. Ru-
ano [13] and Groza et al [14], indicate the possibilities to use
the ICAP for fault tolerance and fault injection. The appli-
cation of using the ICAP interface for reconfiguration of an
encrypted bitstream was presented by Bossuet et al [15].

We utilized the scrubbing application of the ICAP interface
in order to assist in detecting and correcting SEUs. This im-

plementation requires that the configuration registers used by
the ICAP are set for both readback and writeback operations.
The scrubbing logic uses the ICAP to read the configuration
logic. Scrubbing is performed on the data, and then the logic
presents the scrubbed data to the ICAP. The ICAP will then
write the data back to the configuration logic.

FrameECC

The Frame Error Correcting Code (ECC) interface is a primi-
tive found within Virtex-4 FPGAs. The ECC utilizes a Ham-
ming code algorithm to produce a single error correct, dou-
ble error detection (SECDED) syndrome value. For any sin-
gle error in a frame, this syndrome value will identify the
bit within the frame that is in error. The syndrome value is
represented in 11 bits. Table 1 provides a decomposition of
the syndrome value and its corresponding error status. The
Frame ECC interface works in collaboration with the ICAP
interface in order to detect and correct errors. Using internal
FPGA logic, the output of the ICAP interface connects di-
rectly to the input of the Frame ECC interface. As the ICAP
reads a frame, the Frame ECC reads the data as well. The
scrubbing logic uses the outputs of the Frame ECC interface
to identify when an error occurs, and the location of the af-
fected bit within the frame [9].

Because the Frame ECC is a "hard" primitive, there are cer-
tain limitations to its use. The Hamming Code algorithm can
only detect when a multiple bit upset (MBU) in a single frame
occurs. It cannot identify where those upsets are within the
frame. As the configuration cross sections shrink with im-
provements in technology, the probability of a high-energy
particle causing a MBU increases [16], [17]. Therefore, the
Frame ECC logic will need to be replaced in the future with
an ECC than can provide locations to the MBUs in the frame.
Alternatively, application designers will need to design their
own Frame ECC within the configuration memory.

ICAP DMA Engine

The ICAP DMA Engine is responsible for managing the flow
of information between the ICAP interface and the PicoBlaze
processor. The intermediate memory buffer, DMA BRAM,
is necessary due to the differences in the I/O requirements of
the ICAP interface and PicoBlaze processor. The PicoBlaze
outputs an 8-bit word at a time, whereas the ICAP requires a
burst of 32-bit data values.

Despite the need for the ICAP DMA, this primitive presents a
couple of limitations. The major limitation is observed during
a "fast" scan sequence. The "fast" scan routine is discussed in
more detail in the PicoBlaze Processor portion of this section.
This routine causes the ICAP interface to read all the configu-
ration memory. The Frame ECC indicates that an error is de-
tected; however, the ICAP DMA cannot stop the ICAP until
all frames have been read. This causes the routine to miss the
opportunity to fix the error at the time it was detected. This
results in a fast detection but slower correction algorithm.
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Table 1. Syndrome Value and Corresponding Error Status

| Syndrome bit 11 Syndrome bit 10 to 0 Error Status
0 All Os No Error
1 Not Equal to 0 SEU, S[10:0] Identifies SEU Bit Location
1 All Os SEU, Overall Parity Bit p[ 1 ] is in Error
0 Not Equal to 0 MBU, Not Correctable

PicoBlaze Processor

The PicoBlaze Processor is a simple 8-bit programmable soft-
core processor embedded into the configuration logic [18].
Figure 4 shows the basic architecture of the processor. After
the initialization of the FPGA device, the processor starts to
fetch and execute each instruction in the PicoBlaze BRAM.

PicoBlaze Processor

Interface to logic

Figure 4. Basic PicoBlaze Processor Architecture

Additional control logic allows the PicoBlaze processor to
communicate with all other components. The processor re-
quires an associated BRAM to store the scrubbing program.
The following paragraphs describe the functionality of the Pi-
coBlaze code as seen in the flow chart of Figure 5. The flow
chart emphasizes four basic blocks that make up the scrub-
bing logic: Initialization and Synchronization, "Walk" scan,
"Run" scan, and correction logic. Each block will be dis-
cussed briefly in the following paragraphs.

Initialization andd
S>ynchrUonIzatilon

Inibal Walk

\Detected Perform atC

ized and synchronized to one another. To initialize the ICAP
interface, the program sets vital configuration register values,
and requests the ICAP DMA Engine to send a synchroniza-
tion command sequence to the ICAP. Once the ICAP is syn-
chronized with the PicoBlaze processor, the Frame ECC in-
terface is also synchronized so that all three major compo-
nents are working together to perform the scrubbing opera-
tions.

An initial "walk" of the FPGA configuration logic is required
in order to fix any errors caused during configuration. A
"walk" refers to a slow scan method that performs a scrub on
one configuration frame at a time. This scanning method per-
forms a complete scan of the entire device in 24ms to 278ms
at a 100MHz clock, depending on the device [1]. If an error
is detected during the initial "walk" through the device the
patch function is called.

The patch function is performed by dedicated hardware and
initiated by the PicoBlaze program. This function is designed
to repair errors that occur during the configuration. The patch
routine repairs the error by replacing the parity bits within the
frame. As suggested by the name, this patch function does not
correct the error but rather overlooks the error.

An initial "run" of the FPGA configuration logic is required
to verify that all initial errors are corrected. This type of scan-
ning method is labeled "run" because no scrubbing is per-
formed. The program requests the ICAP interface, through
the ICAP DMA, to read all configuration logic in the device.
The Frame ECC interface is also checking the logic for errors.
This scan can perform a complete scan of the device in 1.2ms
to 14.6ms at a 100MHz clock, depending on the device [1]. It
is important to note that this scan does not correct errors, but
performs a fast detection of the errors.

Initial ''Run'

Perform Runh" Perform
Correction

A

Perform "Walk"

Figure 5. Basic PicoBlaze Program Flow Char

In order to use the ICAP interface, the Frame ECC interface,
or even the PicoBlaze processor, each device must be initial-

After the initial "run" is completed, the main scrubbing loop
starts. This loop starts by performing a fast scan of the device.
If the Frame ECC indicates an error occurred during the scan,
then the walk routine locates the erroneous frame, and the
correction function repairs the erroneous frame. If no error is
detected then the fast scan is repeated.

Additional functions not shown in Figure 5 are used for test-
ing and debugging purposes. These include the capabilities to
read and write configuration registers, the UART communi-
cation protocols between the circuit and a remote computer,
transmition of BRAM data to the remote computer, and an
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error injection interrupt service routine. These functions and
their basic design will be described briefly in the Test Struc-
ture section of this paper.

4. HIGH RELIABILITY SCRUBBER
Like all logic in the FPGA fabric, the internal ICAP scrubber
circuit is susceptible to singel event upsets. A single upset
within the scrubber circuitry could cause the circuit to out-
put incorrect data or cause the circuit to fail. If the scrub-
ber circuit fails, then the entire device configuration could be
in jeopardy because it could rewrite the configuration bits to
the device incorrectly. Because of this, it is essential that the
scrubber circuit is reliable and immune to single event upsets.

The goal of this project was to modify the ICAP scrubber to
make it more reliable. The ICAP scrubber was made more
reliable by modifying the original design and applying miti-
gation techniques. Two modifications were made to the de-
sign to improve reliability. The first was triple modular re-
dundancy (TMR) to mitigate against single-event upsets in
the logic. The second involves BRAM scrubbing because the
ICAP scrubber does not scan the BRAM section for errors.
Each of these techniques will be described in more detail in
the following sections.

TMR

TMR was applied to the ICAP scrubber to make it more reli-
able. The purpose of TMR is to reduce single points of fail-
ure [19]. It accomplishes this by triplicating each component
in the design so that three identical circuits are running at the
same time. TMR reduces single points of failure because it
allows for multiple components within a design to fail and
still allow the system to output correct data.

A special implementation ofTMR that we used in our design
is called Feedback TMR. Feedback TMR uses voters on the
feedback loops within the circuit [20], [5]. Feedback TMR
reduces the risk of a next state calculation error by reducing
the number of single points of failure. Since the ICAP scrub-
ber uses many state machines to control the data between key
components, a feedbackTMR implementation made it a more
reliable circuit.

TMR was applied to this design using the BL-TMR tools.
This project utilized these tools on every component of the
ICAP scrubber except for the ICAP, Frame ECC, and Pi-
coBlaze program BRAM. The ICAP and Frame ECC cannot
be triplicated because there are not enough resources to ap-
ply triplication. A BRAM scrubber was used to protect the
PicoBlaze program BRAM because BRAMs is not scrubbed
by the ICAP scrubber.

Block Memory Scrubbing

Although TMR is used to mitigate any single failure within
the BRAMs, there is no way to repair upsets within the mem-
ory since the internal scrubber does not scrub the BRAM

memories. These memories are not scrubbed since the con-
tents of the memories change with time and the scrubbing
circuit does not have a "golden" copy of the contents. Since
the data is dynamic, there is no way to differentiate between a
user input and an SEU. The ICAP scrubber omits the BRAM
section of the FPGA from its scanning routine and continues
with the rest of the configuration frames.

The ICAP scrubber was designed with three BRAM mem-
ories. The PicoBlaze processor uses BRAMs for a stack,
scratch pad, store, and register memory. This memory will
change with time as the processor executes. The other
BRAMs in the design are theDMA BRAM and the PicoBlaze
program BRAM. The DMA BRAM was described previ-
ously. The PicoBlaze program BRAM stores the instructions
used in the PicoBlaze processor. The instructions are never
changed after initialization so this BRAM can be thought of
as a ROM.

The BRAM scrubber uses TMR and is based on the design
in [21]. The BRAM scrubber uses a dual port BRAM to make

PICOBLAZE
PROCESSOR

--.2I
BRAM SCRUBBER

PICOBLAZE
PROGRAM CODE

- O-o m

.4- 0.

m

n n

Figure 6. Architecture Block Diagram ofBRAM Scrubber

a BRAM scrubber. Port A can be freely used for any data
transfer while port B is used for the BRAM scrubbing. A
counter connected to the B address port, counts sequentially
through every address in the BRAM. The output data from
port B is voted on and if an error was found the correct data
is rewritten to the BRAM. Figure 6 shows the architecture of
the BRAM scrubber.

5. RADIATION TEST ORGANIZATION
The high reliability scrubbing circuit was tested in a radia-
tion environment to determine its effectiveness in repairing
configuration upsets as well as operating in the presence of
upsets within the scrubber itself. The goals of this test were
to (1) demonstrate a working scrubber in the presence of up-
sets, (2) determine the improvements in reliability provided
by TMR and memory scrubbing, and (3) identify ways of im-
proving the reliability and on-line functionality of the circuit.
This section will summarize how this test was organized.
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Test Fixture and Design

The test was constructed to irradiate a single FPGA that con-
tains an operational internal scrubbing circuit. No other cir-
cuits were configured within the FPGA. The test was per-
formed on the Avnet Virtex-4 LX-25 evaluation board and
the device under test was a Virtex-4 LX-25 FPGA. A custom
aluminum shield was created for this board to shield all other
components from the high-energy protons (see Figure 7).

Two communication interfaces are provided between this text
fixture and a host computer (see Figure 7). A JTAG pro-
gramming cable is used to configure the device under test.
A UART cable links the host computer to the PicoBlaze pro-
cessor. The PicoBlaze provides status information during the
scrubbing process to the host computer. The UART operated
at a relatively low baud rate that limited the amount of infor-
mation that could be transmitted during the test (38400 baud).

Two designs were used for testing. The designs operating
on the FPGA both implemented the internal scrubber circuit
described earlier in Section 3. However, the first design did
not implement TMR described in section 4, while the sec-
ond design did implement TMR. Table 2 provides the size of
each design. No other application-specific or non-scrubbing
circuitry was added to the design'. The design simply per-
formed internal scrubbing continuously to detect and repair
errors.

Table 2. ICAP-Based Scrubber Design Utilizations

Resource
Flip Flops

Slices
BRAM

non-TMR
680 (3%)
736 (6%)

2

TMR

1082(5%)
1308(12%)

6

There were several limitations of the TMR implemented de-
sign that reduced its reliability. First, the design used a single
clock for all TMR circuit domains. This introduced a single
point failure on the clock line (i.e. a single failure on the clock
may break all three circuit domains). Second, the I/O pins for
the UART were not triplicated due to board constraints (i.e.
there was only a single pin for the UART RX/TX signals).
This introduced a single point failure on the communication
channel between the scrubber and the host computer.

As mentioned, the main goal is to identify the advantages of
utilizing TMR with the ICAP over traditional methods or us-
ing the ICAP alone. A third design implementing the tradi-
tional SelectMap method was not implemented because of the
lack of resources needed to create the design.

Host Computer

A host computer is connected to the device via a serial con-
nection. The host computer runs an application to control

input and output data to and from the device. This applica-
tion governs the serial data streams, decodes signals transmit-
ted from the device, and monitors the flow of the scrubbing
logic. All data received from the UART is stored by the host
program into text-based files for further analysis. The partic-
ulars on what type of data is transmitted is discussed in the
next section.

Test Program

This section will briefly discuss the portions of the program
that are specific to the testing and data collection required
for the radiation test. A description of all other sections of
the program is referenced in the PicoBlaze Processor sec-
tion of the Internal Scrubbing section. The portions of the
program referenced here include the capabilities to read and
write configuration registers, the UART communication pro-
tocols between the test design and a host computer, transmi-
tion of BRAM data to the host computer. These functions
can be accessed by the user from the host computer, after the
scrubbing function is disabled.

In order to achieve realtime collection of data from the test,
a UART module was implemented within the configuration
logic. The UART module is designed to relay back to a host
computer important information pertaining to the test such as,
watch-dog timer signals, SEU or MBU detection signals with
corresponding frame address register (FAR) and syndrome
values, scan completion signals, and, if requested, BRAM
content. For many testing and debugging purposes, it is of-
ten advantageous to look inside and see the different values
of the configuration registers, or the current BRAM content.
Using the UART the program is able to transmit all this data
to a remote host computer for data analysis. The program
also allows the user to transmit data back through the UART
in order to change the values of the configuration registers or
BRAM content.

As mentioned previously, the baud rate of the UART limits
the amount of data that can be passed from the device to the
computer. In order to meet this limit the program transmits
coded ASCII signals that are interpreted by the higher-level
program on the host computer. The only real data transmitted
are the FAR and syndrome values. All other data represent
either watchdog timer signals, or test procedure signals. Dur-
ing the testing of the reliability of the ICAP-based scrubber,
the circuit was set to constantly perform the scrubbing pro-
gram. This requirement closed off all debugging and testing
options previously mentioned. Therefore, in order to assist in
determining when something fails, and what that thing is, we
implemented watchdog timers throughout the different layers
of the program. These timers indicate when a scan fails to
complete, and if specific signals failed to be asserted or de-
asserted. The test procedure signals indicate when a scan has
completed, if scrubbing is disabled, if an error occurred, and
the type of error that occurred.

'There were plenty of free resources available on the FPGA but additional
circuitry was avoided to reduce the complexity of the test. The FAR and syndrome values are transmitted to the host
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computer after the transmition of the error signal. These val-
ues and their associated error type are recorded for further
data analysis. For further analysis, it is important to record
the number of errors that occur within a scan, the high-level
program on the host computer uses the signal indicating a
completion of a scan in order to know how many errors oc-
curred between the previous scan and the latest one. When
the program on the host computer receives the ASCII value
that represents a disabling of the scrubbing program, it then
reports the total number of errors that were recorded. It is
important to note that since the scrubbing mechanism can-
not fix MBUs, the logging program should not record repeat
MBUs when they are reported again. All signals transmitted
from the UART to the host computer are recorded for further
analysis.

Test Organization

In order to test the reliability of the ICAP circuitry, we pro-
vided some measure of protection from radiation for the other
devices on the development board. A I"-thick aluminum
shield was designed to shield the other components and for
mounting of the board. A hole was drilled in the shielding to
expose the FPGA to the high energy particles. Pictures of the
board and shield are shown in Figure 7.

Figure 7. Picture on the left shows the back and side view of
the development board used in the test with shield, the picture
on the right shows the front view.

Because of budget constraints, this test was performed simul-
taneously behind another experiment. The shielded board
was placed behind another board and we did not have con-
trol over the beam flux. The proton beam was set to 63
MeV but the energy reaching this test was reduced due to
presence of another board. We were unable to measure the
beam energy but estimate the energy to be roughly 10%
lower than the beam setting. The beam flux was set by an-
other experiment and varied from 1.79e7 protons/cm2/s to
8.89e8 protons/cm2/s with and an average flux of 2.47e8
protonslcm2/s for all tests.

6. TEST RESULTS

The design was tested at the Crocker Cyclotron at the Davis
Campus of the University of California on the dates of August
28th and 29th 2007. The first day's tests lasted for 5 hours,
and the second days tests ran for 7.5 hours. As mentioned
previously, two different designs were tested during that time.
The following sections are results, and main issues associated
with the test.

MBUs

Multiple bit upsets (MBU) within a single frame is the biggest
limitation of this scrubbing circuit. A multiple bit upset in ad-
jacent cells can be caused by a single charged particle. Mul-
tiple bit upsets can also occur when two independent parti-
cles upset two cells within the same frame. Due to test setup
limitations, we are unable to determine whether MBUs were
caused by a single particle or multiple particles.

As mentioned previously, the scrubbing logic performs two
types of scans, a "run" scan, and a "walk" scan. The op-
timal solution is to perform many fast scans and very few
slow scans. The "walk" scan will only occur when an error
is detected during the "run" scan. However, with MBUs the
fast scan will detect an error every scan cycle, which slows
down the speed of the scrubbing program. This is because
the SECDED code of the FRAME ECC interface cannot pro-
vide locations of the multiple erroneous bits within the frame
for repair.

Our test results showed that an average of 24.75 MBUs per
failure occurred for the mitigated TRM design. The design
without TMR tolerated only 10.68 MBUs per failure. Data
from the test indicates that 1.7% of all upsets were MBUs.
Other data retrieved from the test shows that the average num-
ber of SEUs detected and corrected per scan increase as the
number of MBUs detected increase.

Failure Mechanisms

During the testing of the two designs at times the system
would fail. These faults manifested themselves in different
manners. The following list mentions the types of failures
noticed. Following the list is a hypothesis of what may have
caused the failures. The conclusion section discusses some of
the future fixes that may help in avoiding these faults.

1. Program crash
2. Invalid response from UART
3. Repeat FAR & syndrome values
4. Repeat FAR but different syndrome values
5. Repeat sets of FAR & syndrome values
6. FAR increments till end of FPGA row
7. Errors detected after test finished
8. Failed during reconfiguration

Many of the errors above are difficult to identify their cause
due to the limitations in our testing methodology. Our hy-
pothesis is that the errors that affect the FAR values are single
event fault interrupt (SEFI) failures in the configuration logic.
The rest of the items on the list are caused by the accumula-
tion of uncorrectable errors or single point failures. All faults
can be fixed by a reconfiguration of the device. Due to limi-
tations on test variables, we are unable to prove this property
at the test.

A program crash indicates that the UART has stopped trans-
mitting data; this can be caused by no more data is presented
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Table 3. Fault types and quantities detected per design. Fault numbers correspond to itemized list.

Design Failure Types Failure Total # %
Type 1 2 3 4 5 6 7 8 Total Tests Failed

w/ TMR 7 3 11 2 4 1 2 5 35 77 45.45%
w/out TMR 10 4 3 0 1 2 0 3 23 31 74.19%

to it or that it has failed. The invalid response from the UART
indicates that the UART is transmitting either invalid data, or
data that was not expected. There are no interrupts imple-
mented by the design and the host computers program is de-
signed to know the sequence of events provided by the scrub-
bing logic.

All the FAR related failures cause a repetition to show up.
The first two prevent a scan from completing, the other two
do not necessarily prevent a scan from completing, however
once the repetition occurs the subsequent scans are irrelevant.
Table 3 shows the dispersal of the types of faults per design
type. As was discussed, due to limitations on control over the
test variables these values do not show an accurate represen-
tation of the level of improvement between designs.

Reliability Improvement

The host computer retrieved data from both test designs for
all tests performed on each design. Due to the limitations
of test parameters, the designs were not tested with the same
number of tests and the same amount of time. The mitigated
design was tested 3.85 times longer than the design that did
not implement the TMR.

The use of TMR and scrubbing demonstrated significant im-
provements in reliability. The mitigated scrubber showed a
fluence to failure that was 3.6 times greater than the unmiti-
gated design. Further, the mitigated design was able to toler-
ate far more MBUs than the unmitigated design. Figure 8 and
Figure 9 show the number of MBUs and SEUs that occurred
before a failure for each type of design. These figures clearly
indicate that the mitigated ICAP-based scrubber could detect
and correct a far greater number of SEUs.

iICAP Scrubber w/ TMR * ICAP Scrubber w/out TMR
16

14

12

Q 10

,r 8-

6-

4-

14

12

]ICAP Scrubber w/ TMR * ICAP Scrubber w/out TMR

SEUs between failures

Figure 9. SEU to Failure Histogram

ber was successfully demonstrated in a high-energy proton
test. The scrubber circuit was able to detect real-time failures
in the bitstream and repair the bitstream when a single upset
occurred within a frame. The scrubber operated continuously
repairing upsets until a SEFI occurred or a functional failure
in the design.

Both a standard non-triplicated scrubber and high reliable
triplicated version of the scrubber were tested. Both scrub-
bers operated correctly and, as anticipated, the high reliabil-
ity scrubber operated demonstrated significant improvements
in fluence to failure. However, the triplicated circuit did not
improve the reliability as much as anticipated because of lim-
itations of the test fixture and limited visibility into the de-
sign. Future work will improve the visibility into the design
and remove several single-point failures within the triplicated
design.

The major limitation of this work was the inability of the
scrubber to repair multiple bit upsets (MBU). While the
SECDEC code used by the FrameECC was able to detect sin-
gle and multiple bit upsets, it was unable to correct more than
one upset within any given frame. Because of this, the scrub-
ber would skip over these MBUs and allow them to accumu-
late. While the design was able to operate correctly with a
surprisingly large number of MBUs, the system would even-
tually fail and required full reconfiguration. Future work will
investigate the possibility of correcting multiple upsets within
a frame.6-10 11-1

MBUs between failures

Figure 8. MBU to Failure Histogram

7. CONCLUSIONS
This paper describes a fault tolerant internal scrubber circuit
using the ICAP configuration controller. The internal scrub-

The ICAP scrubber offers an alternative low-cost method of
identifying and repairing upsets within an FPGA. Used in
conjunction with other techniques, the ICAP scrubber can
provide additional reliability for FPGA circuits at lower cost.
The ICAP scrubber will be used in a variety of other future
projects including internal fault injection and fault recovery.
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