
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 3, MARCH 2011 411

Decoding-Aware Compression of FPGA Bitstreams
Xiaoke Qin, Member, IEEE, Chetan Muthry, and Prabhat Mishra, Senior Member, IEEE

Abstract—Bitstream compression is important in reconfigurable
system design since it reduces the bitstream size and the memory
requirement. It also improves the communication bandwidth and
thereby decreases the reconfiguration time. Existing research
in this field has explored two directions: efficient compression
with slow decompression or fast decompression at the cost of
compression efficiency. This paper proposes a novel decode-aware
compression technique to improve both compression and de-
compression efficiencies. The three major contributions of this
paper are: 1) smart placement of compressed bitstreams that can
significantly decrease the overhead of decompression engine; 2)
selection of profitable parameters for bitstream compression; and
3) efficient combination of bitmask-based compression and run
length encoding of repetitive patterns. Our proposed technique
outperforms the existing compression approaches by 15%, while
our decompression hardware for variable-length coding is capable
of operating at the speed closest to the best known field-pro-
grammable gate array-based decoder for fixed-length coding.

Index Terms—Bitmask-based compression, bitstream compres-
sion, decompression hardware, field-programmable gate array
(FPGA).

I. INTRODUCTION

F IELD-PROGRAMMABLE GATE ARRAYS (FPGAs)
are widely used in reconfigurable systems. Since the

configuration information for FPGA has to be stored in internal
or external memory as bitstreams, the limited memory size,
and access bandwidth become the key factors in determining
the different functionalities that a system can be configured
and how quickly the configuration can be performed. While
it is quite costly to employ memory with more capacity and
access bandwidth, bitstream compression technique alleviates
the memory constraint by reducing the size of the bitstreams.
With compressed bitstreams, more configuration information
can be stored using the same memory. The access delay is also
reduced, because less bits need to be transferred through the
memory interface. To measure the efficiency of bitstream com-
pression, compression ratio (CR) is widely used as a metric. It
is defined as the ratio between the compressed bitstream size
(CS) and the original bitstream size (OS) i.e., .
Therefore, a smaller compression ratio implies a better com-
pression technique. There are two major challenges in bitstream
compression: 1) how to compress the bitstream as much as

Manuscript received June 16, 2009; revised August 30, 2009. First published
December 08, 2009; current version published February 24, 2011. This work
was supported in part by NSF Grant CNS-0915376.

The authors are with the Department of Computer and Information Science
and Engineering, the University of Florida, Gainesville, FL 32611-6120 USA
(e-mail: xqin@cise.ufl.edu; cmurthy@cise.ufl.edu; prabhat@cise.ufl.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2009.2035704

possible and 2) how to efficiently decompress the bitstream
without affecting the reconfiguration time.

We can classify the existing bitstream compression tech-
niques into two categories. The techniques in the first category
have good compression ratio due to complex and vari-
able-length coding (VLC) [1]–[3]. However, they also need
expensive decompression hardware, which may not be ac-
ceptable for practical implementation. The other category
of compression approaches accelerate decompression using
simple or fixed-length coding (FLC) [4] and therefore have
very efficient decompression hardware. The only concern is
that their compression ratios are usually compromised.

Among various compression techniques that has been pro-
posed in recent years, application of bitmask-based compression
[5] seems to be attractive for bitstream compression, because of
its good compression ratio and relatively simple decompression
scheme. However, the original algorithm is proposed for instruc-
tion compression and not suitable for FPGA bitstream compres-
sion. Moreover, the use of variable-length coding is challenging
for the design of decompression hardware because it requires
expensive buffering circuitry as described in Section III. Hence,
it is a major challenge to develop an efficient compression tech-
nique that can significantly reduce the bitstream size without
sacrificing the decompression performance.

Our approach combines the advantages of previous compres-
sion techniques with good compression ratio and those with fast
decompression. This paper makes three important contributions.
First, it performs smart placement of compressed bitstreams to
enable fast decompression of variable-length coding. Next, it
selects bitmask-based compression parameters suitable for bit-
stream compression. Finally, it efficiently combines run length
encoding and bitmask-based compression to obtain better com-
pression and faster decompression.

The rest of this paper is organized as follows. Section II
surveys the existing bitstream compression techniques used
in FPGA configuration bitstreams. Section III discusses chal-
lenges of applying bitmask-based coding for FPGA bitstreams.
Section IV describes our bitmask-based bitstream compression
technique and associated placement of compressed bitstreams.
Section V presents the experimental results. Finally, Section VI
concludes this paper.

II. RELATED WORK

The existing bitstream compression techniques can be clas-
sified into two categories based on whether they need special
hardware support during decompression. Some approaches
require special hardware features to access the configuration
memory, like wildcard register, partial reconfiguration, or frame
readback, which are provided only by certain FPGAs. For ex-
ample, the wildcard compression scheme [6] is developed
for the Xilinx XC6200 series FPGA, which support wildcard
registers. Using these registers, the same logic configuration

1063-8210/$26.00 © 2009 IEEE

412 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 3, MARCH 2011

can be written to multiple cells by a single operation. Pan et al.
[1] used frame reordering and active frame readback to achieve
better redundancy. The difference between consecutive frames
(difference vector) is encoded using either Huffman-based run
length encoding or LZSS-based compression. Such sophisti-
cated encoding schemes can produce excellent compression.
However, they did not address the decompression overhead in
[1], which is a major bottleneck in reconfigurable systems.

In contrast, many bitstream compression techniques only ac-
cess the configuration memory linearly during decompression,
and therefore can be applied to virtually all FPGAs. The basic
idea behind most of these techniques is to divide the entire
bitstream into many small words, then compress them with
common algorithms such as Huffman coding [7], arithmetic
coding [8], or dictionary-based compression. Among them,
LZSS-based algorithms have received special interest because
the compressed stream can be decoded efficiently without com-
plex hardware. For instance, Xilinx [9] introduced a bitstream
compression algorithm based on LZ77 which is integrated in
the System ACE controller. Huebner et al. [10] proposed an
LZSS-based technique for Xilinx Virtex XCV2000E FPGA.
The decompression engine is designed carefully to achieve
fast decompression. Stefan et al. [11] observed that simpler
algorithms like LZSS successfully maintains decompression
overhead in an acceptable range but compromises on compres-
sion efficiency. On the other hand, compression techniques
using complex algorithms can achieve significant compression
but incurs considerable hardware overhead during decompres-
sion. Unfortunately, the authors did not model the buffering
circuitry of the decompression engine in their work. Hence the
hardware overhead presented for some variable-length coding
techniques may be inaccurate.

To increase the decompression throughput of complex
compression algorithms, parallel decompression can be used.
Nikara et al. [12] improved the throughput employing specu-
lative parallel decoders. Qin et al. [13] introduced a placement
technique of compressed bitstreams to enable parallel decom-
pression. However, since the structure of each decoder and
buffering circuitry are not changed, the area overhead is also
multiplied. Most importantly, this approach does not reduce the
speed overhead introduced by the buffering circuitry for VLC
bitstream. In contrast, our proposed approach will significantly
improve the maximum operating frequency by effectively
addressing the buffering circuitry problem.

III. BACKGROUND AND MOTIVATION

In this section, we briefly analyze the decompression hard-
ware complexity of common variable-length compression
techniques. This analysis forms the basis of our approach.
In the following discussion, we use the term symbol to refer
to a sequence of uncompressed bits and code to refer to the
compression result (of a symbol) produced by the compression
algorithm. While compression efficiency is straightforward and
widely used criteria to evaluate compression techniques, the
complexity of decompression hardware determines whether
an algorithm with promising compression ratio can be applied
to commercial FPGAs. Interestingly, our study shows that the
complexity of the decompression algorithm is not the only
determining factor of the hardware complexity. When vari-
able-length coding is employed, the hardware complexity is

Fig. 1. Decompression engine structure.

also determined by the complex buffering circuitry, which is
overlooked by previous bitstream compression approaches.

The structure of a general decompression engine is shown
in Fig. 1. An input buffer is required to store compressed bits
fetched from the memory. In each cycle, several bits from the
front of the input buffer is consumed by the decode logic to
produce next output symbol. At the same time, new data from
memory is shifted to fill the input buffer. The input buffer also
has to be shifted so that bits in the next code is aligned to the
beginning of the input buffer. From the hardware perspective,
the area of the design is determined by the decode logic and
the buffering circuitry, including the shift logic. The maximum
operating speed is governed by the length of the critical path,
which comprises of the identification of the code length and the
shift operation.

While different coding schemes has quite different decoding
hardware, their buffering circuitries also vary significantly. For
fixed-length coding [4], [14], [15], the append and shift opera-
tions can be easily performed with reasonable hardware
cost for an -bit buffer, because all codes has the same length
and only one shift distance is necessary. On the other hand,
buffering circuitries for variable-length coding are much more
complex.

Since each code has different length, we have to use barrel
shifter to align the input buffer in each cycle. Theoretically, a
barrel shifter operating on a -bit buffer needs mul-
tiplexers (MUXes) organized into layers. When imple-
mented in modern FPGAs (Xilinx Virtex II or Virtex 4), the
barrel shifter for an input buffer with typical size of 32–64 bits
consumes 200–400 four-input lookup tables (LUTs), which is
similar to the total area of a typical bitmask or Huffman decoder.
Moreover, barrel shifter will increase the latency remarkably by
introducing several layers of combinational logic in the critical
path. Therefore, the buffering circuitry is a major bottleneck in a
decompression engine for variable-length coding both in terms
of area and performance. Its importance is overlooked by pre-
vious works on VLC based bitstream compression, like [1] and
[11].

Our work in this direction is motivated by this remarkable dif-
ference of the buffering circuitry complexity between the fixed-
length coding and the variable-length coding. The basic idea
of our approach is to split a single VLC bitstream into mul-
tiple FLC streams after compression, then reconstruct the orig-
inal VLC bitstream from FLC bitstreams during decompression.
Since FLC streams are buffered separately, it might be possible
to simplify the complex buffering circuitry for VLC bitstream
in terms of area and critical path length.

QIN et al.: DECODING-AWARE COMPRESSION OF FPGA BITSTREAMS 413

Fig. 2. Decode-aware bitstream compression framework.

IV. DECODE-AWARE BITSTREAM COMPRESSION

Fig. 2 shows our decode-aware bitstream compression
framework. On the compression side, FPGA configuration
bitstream is analyzed for selection of profitable dictionary
entries and bitmask patterns. The compressed bitstream is then
generated using bitmask-based compression and run length
encoding (RLE). Next, our decode-aware placement algorithm
is employed to place the compressed bitstream in the memory
for efficient decompression. During run-time, the compressed
bitstream is transmitted from the memory to the decompression
engine, and the original configuration bitstream is produced by
decompression.

Algorithm 1 outlines four important steps in our de-
code-aware compression framework (shown in Fig. 2):
1) bitmask selection; 2) dictionary selection; 3) integrated
RLE compression; and 4) decode-aware placement. The input
bitstream is first divided into a sequence of symbols with
length of . Then bitmask patterns and dictionary entries used
for bitmask-based compression are selected as described in
Section IV-A and Section IV-B. Next, the symbol sequence is
compressed using bitmask and RLE. We use the same algorithm
in [5] to perform the bitmask-based compression. The RLE
compression in our algorithm is discussed in Section IV-C.
Finally, we place the compressed bitstream into a decode
friendly layout within the memory using placement algorithm
in Section IV-C.

Algorithm 1: Decode-Aware Bitstream Compression

Input: Input bitstream

Output: Compressed bitstream placed in memory

Step 1: Divide input bitstream into symbol sequence .

Step 2: Perform bitmask pattern selection.

Step 3: Perform dictionary selection.

Step 4: Compress symbol into code sequence using
bitmask and RLE.

Step 5: Perform decode aware placement of .

Since memory and communication bus are designed in mul-
tiple of bytes (8 bits), storing dictionaries or transmitting data
other than multiple of byte size is not efficient. Thus, we re-
strict the symbol length to be multiples of eight in our current
implementation. Since the dictionary for bitstream compression
is smaller compared to the size of the bitstream itself, we use

Fig. 3. Encoding formats in bitmask-based compression. (a) Uncompressed
symbol. (b) Symbol compressed with dictionary index. (c) Symbol compressed
with bitmask.

to fully utilize the bits for dictionary indexing, where
is the number of indexing bits.

A. Bitmask Selection

Our bitmask-based compression is similar to [5], where three
types of encoding formats are used. Fig. 3 shows the formats in
these cases: no compression, compression using dictionary, and
compression using bitmask. The selection of bitmask plays an
important role in bitmask-based compression. Generally, there
are two types of bitmask patterns. One is “fixed” bitmask, which
can only be applied on fixed positions in a symbol. The other
one is “sliding” bitmask, which can be applied at any position.
For example, a 2-bit fixed bitmask (“2f” bitmask) is restricted
to be used on even locations, but a 2-bit sliding bitmask (“2s”
bitmask) can be used anywhere. Clearly, fixed bitmasks require
less bits to encode its location, but they can only match bit
changes at fixed positions. On the other hand, sliding bitmasks
are more flexible, but consume more bits to encode. In other
words, only a few number of bitmask patterns or their combina-
tions are profitable for compression. Similar to [5], in our study
of bitstream compression, we only use profitable bitmask pat-
terns .

B. Dictionary Selection

Our dictionary selection algorithm is motivated by the
bit-savings based dictionary selection technique proposed by
Seong et al. [5]. The symbol space is represented as a graph

, where node represents a symbol and
edge indicates that symbols corresponding to
and can represent each other by some bitmask. The goal of
dictionary selection is to find the subset , such that the
bit-saving due to compression is maximized when is used as
dictionary.

Algorithm 2 shows our dictionary selection algorithm. Com-
pared to the dictionary selection approach proposed in [5] for
instruction compression, we made an important optimization
at Step 5). In the original algorithm [5], any node adjacent to
the most profitable node is removed, if its profit is less than
certain threshold. This mechanism is designed to reduce the
dictionary size. However, if the threshold is not chosen prop-
erly, some high frequency symbols may be incorrectly removed.
Since the dictionary size in bitstream compression is usually
negligible compared with the size of the bitstream, it is not bene-
ficial to reduce the dictionary size by scarifying the compression

414 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 3, MARCH 2011

ratio. Therefore, our algorithm used new heuristics in Step 5),
which carefully removes edges instead of nodes. Experimental
results in Section V-A show that our approach is more suitable
for bitstream compression, because we ensure better dictionary
coverage.

Algorithm 2: Decode-Aware Dictionary Selection

Input: Input symbol sequence , Parameters

Output: Dictionary

Step 1: Construct graph from .

Step 2: Calculate bit savings of all .

Step 3: Select the most profitable node .

Step 4: Remove from and insert into .

Step 5: For each node , if the edge between the
adjacent nodes and is duplicated then remove that edge.

Step 6: Repeat Steps 2 to 5 until is full or is empty.

return

C. Run Length Encoding of Compressed Words

The configuration bitstream usually contains consecutive re-
peating bit sequences. Although the bitmask-based compres-
sion [5] encodes such patterns using same repeated compressed
words, it is suggested in [2] and [4] that run length encoding

of these sequences may yield a better compression re-
sult. Interestingly, to represent such encoding no extra bits are
needed. Note that bitmask value 0 is never used, because this
value means that it is an exact match and would have encoded
using zero bitmasks. Using this as a special marker, these rep-
etitions can be encoded without changing the code format of
bitmask-based compression.

Fig. 4 illustrates the bitmask-based RLE. The input contains
word “00000000” repeating five times. In normal bitmask-based
compression these words will be compressed with repeated
compressed words, whereas our approach replaces such rep-
etitions using a bitmask of “00”. In this example, the first
occurrence will be encoded as usual, whereas the remaining
4 repetitions will be encoded using RLE. The number of
repetition is encoded as bitmask offset and dictionary bits
combined together. In this example, the bitmask offset is “10”
and dictionary index is “0”. Therefore, the number of repetition
will be “100” (i.e., 4).

The compressed words are run length encoded only if the
RLE yields a shorter code length than the original bitmask en-
coding. In other words, if there are repetitions of code with
length and the number of bits required to encode them using
RLE is bits, RLE is used only if bits. Since RLE
is performed independently, the bit savings calculation during
dictionary selection (see Section IV-B) should be modified ac-
cordingly to model the effect of RLE.

D. Decode-Aware Placement of Compressed Bitstreams

The placement algorithm places all bitmask codes in the
memory so that they can be decompressed using the efficient

Fig. 4. RLE-based compression.

decompression hardware in Section IV-E. The basic idea is
to split the original single VLC bitstream into multiple FLC
bitstreams for storage. During decompression, these FLC
bitstreams are buffered separately, then used to reconstruct the
original bitstream by bitmask decoding. Since the buffering
circuitry for FLC bitstreams is much simpler than that of VLC
bitstreams, the overall decompression performance will be
improved even when multiple FLC buffers are used. In the rest
of this section, we first define “power-two n-bit stream,” which
we will use in the following discussion. Then we describe
how we split the original compressed bitstream into multiple
FLC bitstreams and how to place these FLC bitstreams into
the memory in such a way that the original bitstream can be
reconstructed during decompression.

Definition 1: Power-Two n-bit Stream (“PT-n stream” for
short) is FLC stream of n-bit codes, where n is a power of two
such as , , , and so on. Since each code in a PT-n stream
has the same length of n, the shift distance is fixed when a PT-n
stream is buffered.

Algorithm 3 describes the process to split the original single
VLC bitstream into multiple power-two streams. It is developed
based on the binary representation of the code length. Once
power-two streams are constructed from the original bitstream,
we use Algorithm 4 to place all power-two streams within the
memory in such a way that we can reconstruct the original bit-
stream on decompression side. The basic idea is to exactly sim-
ulate the decompression process and always assign the memory
line to the power-two stream which is required to decode the
next code by the decompression engine.

Algorithm 3: Construction of power-two streams

Input: Compressed Code Sequence , Memory Bandwidth

Output: Power-two Stream List

Initialize empty PT-1 streams and ;

Initialize empty PT-n streams ;

foreach Code in do

Append “isCompressed” flag of to ;

Append “isBitmasked” flag of (if any) to ;

if is NOT compressed then 1;

1� is the code length for unmatched symbols.

QIN et al.: DECODING-AWARE COMPRESSION OF FPGA BITSTREAMS 415

Fig. 5. Decoding aware placement of bitmask codes. (a) Bitmask codes. (b) Constructed power-two streams. (c) Power-two streams placement result. “�” implies
unused space.

else if is bitmasked then 2;

else 3;

for to s.t. do

Append to stream ;

;

end

if then Append to stream ;

end

return

We use Fig. 5 to illustrate the application of Algorithm 3 and
4. Fig. 5(a) shows a sample output of the bitmask-based com-
pression algorithm. In this example, the symbol length is 16. The
dictionary has 16 entry, thus 4 bits are required for dictionary
index. Hence, the code length is for unmatched
symbols, for fully matched symbols. For symbols
matched using 2-bit bitmask, we need 2 bits for the bitmask pat-
tern and 4 bits to encode the 15 different positions. Therefore,
the code length is .

First, we take Fig. 5(a) as input to produce the power-two
streams [see Fig. 5(b)] using Algorithm 3. Initially, there are five
nonempty power-two streams: CS, BS, PT-2, PT-4, and PT-8,
where CS and BS are the streams for “isCompressed” and “is-
Bitmasked” flags. PT-1 is empty because all codes in this ex-
ample have even length without flag bits. In the first iteration
of Algorithm 3, since the memory bandwidth is 8, all bits in E1
is assigned to stream PT-8, because its length is 16 without the
flag bit. In the second iteration, since the length of E2 without
flags is 4, it is appended to stream PT-4. Similarly, E3[9:8] is
assigned to PT-2, while the remaining bits of E3 are assigned to
PT-8, because its length without flags is 10. This process repeats
until all the codes are correctly split into the power-two streams.

2� is the code length for symbols matched with bitmasks.
3� is the code length for fully matched symbols.

Next, Algorithm 4 takes power-two streams in Fig. 5(b) as
input and produces the memory placement in Fig. 5(c). The first
line of the memory is assigned to stream CS because the
which simulates the counter within the decompression engine
is zero. Then the second and third memory lines are assigned to
PT-8 as E1 is not compressed. The fourth line is assigned to ,
because E2 is compressed and . When it comes to
the fifth line, since E2 is contained in PT-4, we assign this line
to PT-4. Note that this memory line also contains E5, which is
the next code in PT-4. Similarly, next two memory lines will
be assigned to PT-2 and PT-8, because E3 is contained in both
streams. This process repeats until all power-two streams are
placed.

The maximum number of power-two streams is determined
by the memory bandwidth. Since the length of any code can be
written as , where and are in-
tegers, and is memory bandwidth, it is easy to see that any
bitmask code stream can be split into power-two
streams: and .
Since the total length of some power-two streams may not be a
multiple of the memory bandwidth , the above placement tech-
nique may waste some space in memory. For example, all bits
marked “ ” in Fig. 5(c) are not used to place any compressed
information and therefore wasted. More precisely, the following
theorem shows the upper bound of wasted space.

Theorem 1: The total number of unused bits is less than
, where is the memory bandwidth.

Proof: The stream will not waste any space because
its total length must be a multiple of . Therefore, in the worst
case, we have power-two streams whose length are
not multiple of . In Algorithm 4, the space in a memory line
is wasted, only if this line is used to place the last several bits
of a power-two stream. As a result, we have at most
memory lines that are not fully filled. Notice that none of these
lines is completely empty, the total number of unused bits

.
Considering the fact that common size of FPGA configura-

tion bitstreams are hundreds of kilobytes to several megabytes,
bits overhead (40 bits with 8-bit memory) virtu-

ally has no impact on the overall compression ratio.

416 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 3, MARCH 2011

E. Decompression Engine

The decompression engine is a hardware component used to
decode the compressed configuration bitstream and feed the un-
compressed bitstream to the configuration unit in FPGAs. As
discussed in Section III, a decompression engine usually has two
parts: the buffering circuitry is used to buffer and align codes
fetched from the memory, while decoders perform decompres-
sion operation to generate original symbols. Since the decoders
are well studied in previous literatures, we implement our bit-
mask and RLE decoder based on designs proposed by Seong et
al. [5] and Koch et al. [4] respectively. In the rest of this sec-
tion, we will mainly focus on our novel buffering circuitry for
the decompression engine and our decompression algorithm.

The structure of our decompression engine for 8-bit memory
is shown in Fig. 6. An “Assemble Buffer with a Left Shifter
Array” (ABLSA) is employed to replace the original “Buffer
with a Barrel Shifter” (BBS) buffering circuitry in Fig. 1. The
basic working principle of ABLSA is to use an array of left shift
registers to buffer the power-two bitstreams separately. Since
the code length in bitmask-based compression is uniquely de-
termined by the first two bits of a code (isCompressed and is-
Bitmasked flags), we can easily obtain the length of a code by
checking of front bits of stream CS and BS. Then, the shift reg-
ister (or PT streams) that hold bits of the code is identified based
on the binary representation of the code length. Finally, the orig-
inal code is assembled in the assemble buffer and fed to the
bitmask or RLE decoders. When some shifter becomes empty,

Fig. 6. Decompression engine.

it is guaranteed to be loaded correctly by our decompression
algorithm.

Before delving into our algorithm, we first describe the gen-
eral structure of ABLSA. Let the maximum code length and the
memory bandwidth be and . Since stream is sent to the
assemble buffer directly, there are at most power-two
streams to be buffered. Therefore, ABLSA contains
shift registers, including two 1-bit shift registers CR, BR used
to buffer CS and BS, respectively, and other shift regis-
ters used to buffer streams PT-1,
PT-2, PT-4, , and respectively. Each of them has
the capacity of bits, same as the memory bandwidth. The size
of the assemble buffer AB is , because AB only holds one code
at a time. Fig. 6 shows a specific case of our decompression en-
gine for . There are two 1-bit shift registers, a 2-bit shift
register, and a 4-bit shift register. They are used to buffer stream
CS, BS, PT-2 and PT-4, respectively. Each of these shifter has
the same capacity of 8 bits. Note that we omit shift register SR-1,
because PT-1 is empty in this case. Also we do not have SR-8
since 8-bits from stream PT-8 will be directly transferred to the
assemble buffer.

Our decompression mechanism can be viewed as the reverse
of the placement procedure in Algorithm 4. We determine the
code type by checking CR and BR, then assemble the code using
bits buffered in different shift registers. If any shift register is
empty, they are reloaded using incoming memory lines. Since
the decompression algorithm and the placement algorithm use
the exact same control flow to map power-two streams with
memory lines, it is guaranteed that the original bitstream can
be reconstructed in the same order.

We use the example in Fig. 5 to illustrate the bitstream split
logic, which consumes Fig. 5(c) and produces Fig. 5(b). When
the placed data in Fig. 5(c) is fed to the decompression engine in
Fig. 6, at the beginning, so the first line “0110111x”
is loaded into CR. Next, since , the code to be as-
sembled is not compressed, and its length is .
Thus, we assemble it using the next two memory lines, which
contains E1[15:8] and E1[7:0], then shift CR for 1 bit. For the
second code, since current and , we first
load BR with the fourth memory line “01011xxx”. After that,
we have , which indicates that the next code to be
assembled is compressed with fully matching, and its length is

. Therefore, we load SR-4 with the next line, which
contains E2[3:0] and E5[3:0]. E2[3:0] is then sent to the

QIN et al.: DECODING-AWARE COMPRESSION OF FPGA BITSTREAMS 417

Fig. 7. Comparison of compression ratio with bitmask-based compression.

assemble buffer for decoding. This process repeats until all data
placed in memory are decompressed.

Now we show that ABLSA actually requires less area and
shorter critical path length than BBS when implemented in
FPGA. Recall that the BBS buffering circuitry has to shift
the input buffer in each cycle so that bits in the next code is
aligned to the beginning of the input buffer. The maximum
shift distance is equal to the maximum code length , because
the front part of the buffer was occupied by the previous code.
Since the input buffer should be able to hold at least one code
plus a memory line, its minimum size is . Therefore, it
consumes MUXes for the barrel shifter and

flip-flops (FFs) for the buffer registers.
For ABLSA, we have left shift registers and a -bit

assemble buffer. As a result, the ABLSA consumes
MUXes and FFs. Clearly, ABLSA has less combina-

tional logic than BBS (roughly 50% less MUXes for and
). Since commercial FPGAs usually has same number

of MUXes and FFs in a slice [16], [17], this guarantees that the
total area of ABLSA is smaller than BBS even if the FF count for
ABLSA is higher. In case of critical path length, ABLSA per-
forms fixed distance shift on each buffer. Since these shift opera-
tions are accomplished in parallel, it adds only one layer of logic
on the critical path. In contrast, the barrel shifter in BBS has

layers of cascaded combinational logic. Therefore,
BBS has a slower maximum operating speed. These conclusions
are also supported by our experimental results in Section V-B.

V. EXPERIMENTS

We used two sets of hard to compress IP core bitstreams
chosen from image processing and encryption domain (derived
from Koch et al. [4] and Pan et al. [1]) to compare compression
and decompression efficiencies. We used Xilinx Virtex-II family
IP core benchmarks to analyze the results in this article. The
same results are found applicable to other families and vendors
too. We compared our approach with existing best known dis-
tance vector (DV)-based bitstream compression technique pro-
posed by Pan et al. [1] and best known parameterized LZSS
based decompression accelerator proposed by Koch et al. [4].
In our experiments, Pan et al. [1] benchmarks are compressed
with 32 bit symbols, 512 entry dictionary entries and two sliding
2- and 3-bit bitmasks for storing bitmask differences. Koch et al.
[4] benchmarks are compressed using 16 bit symbols, with 16
entry dictionary and a 2-bit sliding bitmask.

Fig. 8. Comparison of compression ratio with LZSS and BMC.

A. Compression Efficiency

We first compare our improved bitmask-based compression
technique with the original approach proposed in [5]. To avoid
the bias caused by parameter selection, we use the same bitmask
parameters for both of them. Three different compression tech-
niques are compared for compression efficiency: 1) bitmask-
based compression (BMC) [5]; 2) BMC with our dictionary se-
lection technique (pBMC); and 3) BMC with our dictionary se-
lection technique and run length encoding (pBMC+RLE). Fig. 7
shows the compression results on Pan et al. [1] and Koch et al.
[4] benchmarks.

It can be seen that our dictionary selection algorithm outper-
forms the original technique [5] on Pan et al. [1] benchmarks.
The dictionary generated by our algorithm improves the com-
pression ratio by 4% to 5%. The reason is that Pan et al. [1]
benchmark requires large dictionaries for better compression
ratio (size up to 1 K entries). Since in our approach we do not
have to find the threshold value manually for each bitstream,
our algorithm adaptively finds the most suitable dictionary en-
tries for each bitstream. On the other hand, our method has the
same performance as [5] on Koch et al. [4] benchmarks, which
only require a small dictionary.

The experimental results also illustrate the improvement of
compression ratio due to the run length encoding used in our
technique. The column pBMC+RLE in Fig. 7 shows improve-
ment on all the benchmarks. On an average we found 5% to
7% reduction over pure bitmask-based compression for Pan
et al. [1] benchmarks and 15% improvement on Koch et al. [4]
benchmarks. This is due to the fact that FPGA configuration
bitstreams usually have many repetitive patterns. Our RLE en-
coding technique adaptively compresses these patterns without
compromising the effectiveness of bitmask-based compression
technique.

However, RLE alone cannot compress all bitstreams effec-
tively. To show the advantages of bitmask-based compression,
we compared BMC [5] and our approach with LZSS [4], which
also employs RLE. The results are given in Fig. 8. It can be ob-
served that pure LZSS is quite effective (10% better than BMC)
on Koch et al. [4] benchmarks, because these benchmarks have
large amount of repetitive patterns, which are suitable for run
length encoding. Nevertheless, LZSS is not able to reduce the
bitstream size significantly on Pan et al. [1] benchmarks, which

418 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 3, MARCH 2011

Fig. 9. Comparison with difference vector compression.

have much more random bits that cannot be effectively repre-
sented by RLE. BMC, on the other hand, behaves in an opposite
way on the two benchmarks. It is designed to encode random
bit changes but not suitable for long repetitive patterns. Our ap-
proach takes the advantage of both RLE and BMC by adaptively
switching between them. As a result, our approach has better
compression ratio over all the benchmarks as shown in Fig. 8.
We achieve 15% improvement in compression ratio over LZSS
and 14% over BMC on an average.

Next, we compare our technique with difference vector ap-
proach [1]. The difference vector is encoded using Huffman
based RLE with frame readback (DV RLE RB), and LZSS with
frame readback (DV LZSS RB). Fig. 9 shows the results. As
expected, the Huffman based method achieves the best com-
pression (10% to 15% better than our approach) using shorter
variable length encodings. Based on our experiments and the
study conducted in [4], such encoding requires complex and
large hardware to handle variable-length Huffman codes and
has slower operating speed. Thus Huffman-based decoder de-
spite of its good compression ratio is not suitable for real-time
decompression. Compared with DV LZSS RB approach, which
is suitable for practical implementation, our method has better
(10% to 15%) compression performance.

We also compare our approach with general compression
algorithm PPMZ,4 bz2,5 and X-Match PRO [18]. Fig. 10
shows the results. Our approach outperforms X-Match PRO.
Since software compressors like PPMZ and bz2 have complex
compression algorithm and almost unlimited resources, it is
excepted to generate near optimal results. Interestingly, our
approach can achieve comparable results (within 10%–15%).

B. Decompression Efficiency

We measured the decompression efficiency using the time
required to reconfigure a compressed bitstream, the resource
usage and maximum operating frequency of the decompression
engine. The reconfiguration time is calculated using the product
of number of cycles required to decode the compressed bit-
stream and operating clock speed. We have synthesized decom-
pression units for variable-length bitmask-based compression,
difference vector-based compression (DV RLE RB), LZSS (8
bit symbols6), and our proposed approach on Xilinx Virtex II
family XC2v40 device FG356 package using ISE 9.2.04i to

4[Online]. Available: http://www.cbloom.com/src/ppmz.html
5[Online]. Available: http://www.bzip.org/
6The decompressors usually emit an 8-bit symbol per clock cycle, but decom-

pression hardware may work with different datapath widths or even multicycle
paths.

Fig. 10. Comparison with other compression techniques.

TABLE I
OPERATING SPEED AND LOOKUP TABLE USAGE OF DECODERS

measure the decompression efficiency. The results are given in
Table I.

We observed that our approach can operate at a much higher
frequency and occupies only 60% area compared to original bit-
mask-based decompression engine. Since our approach has the
identical bitmask decoding circuit of the original one, the im-
provement is due to our ABLSA as we expected. Compared with
LZSS, our approach achieves almost the same operating speed
as that of LZSS-based accelerator. Although our implementa-
tion require more area than LZSS, we have achieved 15%–20%
better compression which means we can decompress more con-
figuration information during the same amount of time.

VI. CONCLUSION

The existing compression algorithms either provide good
compression with slow decompression or fast decompression
at the cost of compression efficiency. In this paper, we pro-
posed a decoding-aware compression technique that tries to
obtain both best possible compression and fast decompression
performance. The proposed compression technique analyzes
the effect of parameters on compression ratio and chooses
the optimal ones automatically. We also exploit run length
encoding of consecutive repetitive patterns efficiently com-
bined with bitmask-based compression to further improve both
compression ratio and decompression efficiency. To reduce
the hardware overhead during decompression, we proposed
a smart placement algorithm which enables the compressed
variable-length coding bitstream to be stored and buffered in
the form of multiple fixed-length coding bitstreams. Since
the buffering circuitry for fixed-length coding streams can
be implemented efficiently, the area and configuration delay
of our decompression engine are reduced significantly. Our
experimental results demonstrated that our technique improves
the compression ratio by 10% to 15% while the decompression
engine is capable of operating at 200 MHz in Virtex II FPGAs.
The configuration time is reduced by 15% to 20% compared to
the best known decompression accelerator [4].

QIN et al.: DECODING-AWARE COMPRESSION OF FPGA BITSTREAMS 419

Currently, our placement technique is designed for bitmask-
based compression. In the future, we plan to investigate more
placement algorithms that are compatible with other compres-
sion techniques such as Huffman coding and Arithmetic coding.
We also plan to use our technique in other bitstream related ap-
plications like manufacturing test data compression.

REFERENCES

[1] J. H. Pan, T. Mitra, and W. F. Wong, “Configuration bitstream com-
pression for dynamically reconfigurable FPGAs,” in Proc. Int. Conf.
Comput.-Aided Des., 2004, pp. 766–773.

[2] S. Hauck and W. D. Wilson, “Runlength compression techniques for
FPGA configurations,” in Proc. IEEE Symp. Field-Program. Custom
Comput. Mach., 1999, pp. 286–287.

[3] A. Dandalis and V. K. Prasanna, “Configuration compression for
FPGA-based embedded systems,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 13, no. 12, pp. 1394–1398, Dec. 2005.

[4] D. Koch, C. Beckhoff, and J. Teich, “Bitstream decompression for high
speed FPGA configuration from slow memories,” in Proc. Int. Conf.
Field-Program. Technol., 2007, pp. 161–168.

[5] S. Seong and P. Mishra, “Bitmask-based code compression for em-
bedded systems,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 27, no. 4, pp. 673–685, Apr. 2008.

[6] S. Hauck, Z. Li, and E. Schwabe, “Configuration compression for the
Xilinx XC6200 FPGA,” IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst., vol. 18, no. 8, pp. 1107–1113, Aug. 1999.

[7] D. A. Huffman, “A method for the construction of minimum-redun-
dancy codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[8] A. Moffat, R. Neal, and I. H. Witten, “Arithmetic coding revisited,” in
Proc. Data Compression Conf., 1995, pp. 202–211.

[9] A. Khu, “Xilinx FPGA configuration data compression and decompres-
sion,” WP152 ed. Xilinx, San Jose, CA, 2001.

[10] M. Huebner, M. Ullmann, F. Weissel, and J. Becker, “Real-time config-
uration code decompression for dynamic FPGA self-reconfiguration,”
in Proc. Int. Parallel Distrib. Process. Symp., 2004, pp. 138–143.

[11] R. Stefan and S. Cotofana, “Bitstream compression techniques for
Virtex 4 FPGAs,” in Proc. Int. Conf. Field Program. Logic Appl.,
2008, pp. 323–328.

[12] J. Nikara, S. Vassiliadis, J. Takala, and P. Liuha, “Multiple-symbol par-
allel decoding for variable length codes,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 12, no. 7, pp. 676–685, Jul. 2004.

[13] X. Qin and P. Mishra, “A universal placement technique of com-
pressed instructions for efficient parallel decompression,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 28, no. 8, pp.
1224–1236, Aug. 2009.

[14] Y. Xie, W. Wolf, and H. Lekatsas, “Code compression for VLIW pro-
cessors using variable-to-fixed coding,” in Proc. Int. Symp. Syst. Synth.,
2002, vol. 2, no. 04, pp. 138–143.

[15] L. Li, K. Chakrabarty, and N. A. Touba, “Test data compression using
dictionaries with selective entries and fixed-length indices,” ACM
Trans. Des. Autom. Electron. Syst., vol. 8, no. 4, pp. 470–490, 2003.

[16] “Virtex-II Pro User Guide,” Xilinx Inc., San Jose, CA, Nov. 2007.
[17] “Virtex-4 FPGA User Guide,” Xilinx Inc., San Jose, CA, Dec. 2008.
[18] J. L. Nunez, C. Feregrino, S. Jones, and S. Bateman, “X-MatchPRO:

A ProASIC-based 200 Mbytes/s full-duplex lossless data compressor,”
in Proc. Int. Conf. Field-Program. Logic Appl., 2001, pp. 613–617.

Xiaoke Qin (S’08) received the B.S. and M.S.
degrees from the Department of Automation, Ts-
inghua University, Beijing, China, in 2004 and
2007, respectively. He is currently pursuing the
Ph.D. degree in the Department of Computer and
Information Science and Engineering, University of
Florida, Gainesville.

His research interests include the areas of
code compression, model checking, and system
verification.

Chetan Murthy received the B.E. degree with the
Department of Information Science and Engineering,
People’s Education Society Institute of Technology,
Visvesraiah Technological University, India, in 2004,
and the M.S. degree from the Department of Com-
puter and Information Science and Engineering, Uni-
versity of Florida, Gainesville, in 2008.

He then joined Huawei Technologies India Private
Ltd., Bangalore, India. Since Spring 2009, he has
been working as a Packet Forwarding Engineer with
Juniper Networks, Inc., Sunnyvale, CA.

Prabhat Mishra (S’00–M’04–SM’08) received
the B.E. degree from Jadavpur University, Kolkata,
India, the M.Tech. degree from the Indian Institute
of Technology, Kharagpur, India, and the Ph.D.
degree from the University of California, Irvine, all
in computer science.

He is currently an Assistant Professor with the
Department of Computer and Information Science
and Engineering, University of Florida, Gainesville.
His research interests include design automation of
embedded systems, reconfigurable architectures, and

functional verification. Dr. Mishra currently serves as Program Chair of IEEE
HLDVT 2009, Information Director of ACM TODAES, and as a Program/Or-
ganizing Committee Member of several ACM and IEEE conferences.

Dr. Mishra was a recipient of various awards including an NSF Career
Award in 2008, the EDAA Outstanding Dissertation Award in 2005, and the
CODES+ISSS Best Paper Award in 2003.

