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Abstract— This paper1 considers the problem of
power/energy minimization for periodic real-time tasks
that are scheduled over multiprocessor platforms that have
dynamic power management (DPM) and dynamic voltage
& frequency scaling (DVFS) capabilities. Early research
reports that while both DPM and DVFS policies perform
well individually for a specific set of conditions, they often
outperform each other under different workload and/or
architecture configuration. Thus, no single policy fits perfectly
all operating conditions. Instead of designing new policies
for specific operating conditions, this paper proposes a
generic power management scheme, called the Hybrid Power
Management (HyPowMan) scheme. This scheme takes a set of
well-known existing (DPM and DVFS) policies, each of which
performs well for a given set of conditions, and adapts at
runtime to the best-performing policy for any given workload.
We performed experiments with state-of the-art DPM and
DVFS techniques and results show that HyPowMan scheme
adapts well to the changing workload and always achieves
overall energy savings comparable to the best-performing
policy at any point in time.

Keywords-Real Time Systems, Dynamic Voltage & Frequency
Scaling, Machine Learning, Energy-efficient Scheduling.

I. INTRODUCTION

The high power/energy consumption of modern proces-

sors becomes a major concern because it leads to decreased

lifetime for battery-operated systems, increased heat dis-

sipation which requires expensive packaging and cooling

technology, and decreased reliability, especially for sys-

tems with many processors. To address this issue, many

software techniques, especially energy-efficient scheduling

techniques, have been proposed [1], [2], [3], [4], [5], [6],

[7], [8], [9], [10] over the years. Dynamic Power Man-

agement (DPM) is one of such techniques that is well

studied and practiced in embedded real time systems. These

techniques put system components into low power states

whenever they are idle due to unavailability of workload.

Once applied, DPM policies eliminate both dynamic as well

as static power dissipation. However, the inconvenience is

that once in a power-efficient state, bringing a component

back to the active/running state requires additional energy

and/or latency to service an incoming task. In recent years,

processors that have multiple voltage levels and frequencies

1This work is partially supported by European project COMCAS
[CA501], the Higher Education Commission of Pakistan, and
French cluster of Secured Communicating Solutions (SCS).

(thus multiple power levels) have become available [11],

allowing the design of highly flexible systems. Real time

dynamic voltage and frequency scaling (DVFS) technique

is also a promising technique that exploits this offered

architectural flexibility. Real time applications exhibit large

variations in their actual execution time and thus, often finish

much earlier than their estimated worst-case execution time

[12], [8]. DVFS techniques exploit these variations in actual

workload for dynamically adjusting voltage and frequency

to reduce dynamic power consumption of processors. The

inconveniences with evolved processor technology are the

significantly increased static power consumption, which be-

comes particularly dominant at lower operating frequencies,

and the limited number of voltage and frequency levels. Both

DPM and DVFS techniques perform well for a given set of

conditions. However, they often outperform each other under

different workloads and architecture configuration [13]. The

primary motivation for our work comes from the fact that no

single policy fits perfectly all operating conditions. Instead

of designing new power management policies (whether

DPM or DVFS policies) for specific operating conditions,

we propose a generic power management scheme, called

the Hybrid Power Management (HyPowMan) scheme. Our

proposed scheme takes a set of well-known existing policies,

each of which performs well for a given set of conditions,

and adapts at runtime to the best-performing technique for

any given workload. We demonstrate in this paper that our

proposed scheme quickly converges to the best-performing

technique at any point in time. HyPowMan scheme enhances

the ability of portable embedded systems to adapt with

changing workload and give an overall performance and

energy savings that is better than any single policy can

offer. Rest of this paper is organized as follows. In Section-

II,some related research work and contributions of this work

is presented. In Section-III, system model is discussed.

Section-IV presents HyPowMan scheme in detail. Section-

V presents experimental setup and simulation results. This

paper is concluded in Section-VI.

II. RELATED WORK

A. Dynamic Power Management

Dynamic power management policies include simple

timeout policies [1], predictive [2], stochastic-modeling-
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based [3], session clustering [4], online [5], and adaptive

learning-based policies [14]. Lu and De Micheli present in

[4] a quantitative comparison of various existing policies.

Existing policies can be broadly classified into predictive

schemes and stochastic schemes according to authors in [6],

[7], [15]. Predictive policies predict the duration of upcom-

ing idle period as soon as a system component goes idle and

the decision to transition state can be made if the prediction

indicates a long idle period. Stochastic policies take into

account both power consumption as well as performance

penalty. They model the request arrival and device’s power

state changes as stochastic processes. Minimizing power

consumption and delays then become stochastic optimization

problems [13]. In [16], authors assume the arrival of requests

as a stationary geometric distribution and model power man-

agement as a discrete-time markov decision process. In [14],

the work is extended to handle non-stationary request arrival.

Authors in [10] propose to accumulate idle time intervals

on some processors before applying state-transition while

other processors work more to meet deadline guarantees in

a multiprocessor platform.

B. Dynamic Voltage & Frequency Scaling
Numerous researchers have explored DVFS on single-

processor systems such as [17], [18], [12]. However, fewer

have considered the problem of applying DVFS on multipro-

cessor platforms [8]. In [9], authors have broadly classified

DVFS techniques into intra-task and inter-task strategies.

In intra-task strategies, available dynamic slack time is

reallocated inside the same task. These techniques often

require insertion points in application’s code to measure

the evolution of a task over its execution time. Drawback

of such techniques is the complexity and cost of insertion

points for measurement [17]. Inter-task DVFS techniques

redistribute dynamic slack either among all ready tasks [9] or

to appropriate priority single task only at task’s boundaries

(release, termination). Authors in [19] consider dynamic

slack sharing among multiple processors and reducing the

speed globally. In [20], Aydin et al. propose their solution

for periodic hard real time tasks on identical multiprocessors

with DVFS support when only partitioned scheduling is

used. In [21], authors propose an inter-task multiprocessor

DVFS technique in which execution of tasks in real schedule

mimics the canonical schedule (produced at runtime) and

dynamic slack is fully consumed by a single appropriate

priority task.

C. Interplay of DPM and DVFS Techniques
Some recent research work that focuses on system-wide

energy efficiency, applies both, DPM and DVFS techniques

together on different system components such that certain

components apply DVFS only while others apply DPM

only. Authors in [13], [22], [23] propose to apply DVFS on

processors only while DPM for I/O devices to save overall

energy consumption. Authors in [13] propose an approach to

apply multiple existing DPM policies on a single processor

system in order to achieve best performance and adaptability

to the varying workload. They take a set of existing DPM

policies and design a control mechanism that selects, in an

online fashion, the best-suited policy for a given idle period.

However, none of the previous research work has attempted

to apply an entirely online and adaptive interplay of multiple

DVFS as well as DPM techniques together on an identical

multiprocessor platform.

D. Our Contributions

1) This work proposes a novel and generic scheme for

power management, called HyPowMan scheme. In-

stead of designing new power management policies

(DPM or DVFS) to target specific operating condi-

tions, HyPowMan scheme takes a set of well-known

existing policies, each of which performs well for

a given set of conditions, and proposes a machine-

learning mechanism to adapt at runtime to the best-

performing policy for any given workload. The de-

cision of applying suitable policy (whether DPM or

DVFS) is online and adaptive to the varying workload.

HyPowMan scheme enhances the ability of portable

embedded systems to work with larger set of condi-

tions by adapting with the changing workloads and

gives an overall performance that is better than any

single policy can offer.

2) Our proposed scheme is generic in the sense that it

permits to integrate existing as well as new power

management techniques (DPM and/or DVFS). More-

over, HyPowMan scheme can be applied under the

control of global as well as partitioning-based schedul-

ing algorithms.

3) HyPowMan scheme is intended mainly for multi-

processor real time systems. However, applying this

scheme on single-processor systems is rather trivial.

To the best of our knowledge, this is the first research work

which applies a completely online and adaptive interplay

of multiple DVFS and DPM techniques together through

a machine-learning mechanism on identical multiprocessor

systems that run real time preemptive tasks.

III. SYSTEM MODEL & NOTATIONS

We consider a multiprocessor platform composed of m

identical processors such that P = {P1, P2, ..., Pm}. All

processors in P possess DPM and DVFS support and volt-

age/frequency on every processor can be scaled indepen-

dently and over a continuous spectrum. This assumption

can be easily lifted for processors with discrete operating

frequencies. We consider that a statically specified optimum

supply voltage (Vdd) and operating frequency (Fref ) are

available. Fop and Vop refer to all other frequencies and

corresponding supply voltages, respectively. To simplify

our discussion, we consider that voltage and frequency
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are always adjusted together. We consider a frame-based

system (of application) in which a frame of certain length

is executed repeatedly. A finite set of n tasks such that

TS = {Ta1, Ta2, ..., Tan} is executed in each frame. Each

member task of TS is characterized by at least a quadruplet

(ri, Ci, di, Ti) where the elements of quadruplet refer to

release time, worst-case execution time, relative deadline,

and periodicity of a task, respectively. Moreover, a task may

have runtime parameters such as its actual execution time

(AETi) which is smaller than Ci and greater than its best-

case execution time Bi. Deadlines of all tasks are considered

equal to their period (di=Ti). Utilization factors of a single

task as well as that of complete task set are given by ratio

ui=Ci/Ti and Eq.1, respectively.

usum(TS) =
∑

Ti∈(TS)

ui (1)

Note that a necessary condition for schedulability of a

task set on a system of m identical processors is to have

the aggregate utilization less than or equal to the computing

capacity of the system. Consequently, we assume that the

condition usum(TS) ≤ m holds throughout this paper. We

adopt a global approach to multiprocessor scheduling in

which no task is permanently assigned to any processor.

All tasks are preemptive and support migration as in case

of SMP architectures [24]. Power consumption of CMOS

technology-based processors, represented as a function of

speed (S) in variable speed settings, can be decomposed

into static and dynamic components which relate to supply

voltage Vop, operating frequency Fop, and leakage-current

(Iq) through an approximate relation given by Eq.2.

Pwr(S) = γCeffV
2
opFop + IqVop (2)

Here, γ and Ceff refers to the switching activity and

effective load capacitance, respectively. The first addend in

Eq.2 corresponds to the amount of dynamically dissipated

power caused by switching circuitry while second addend

models statically dissipated power caused by leakage cur-

rent. If a task occupies a processor during an execution

interval of [t1, t2] then the energy consumed by the processor

during this time interval is given by Eq.3.

E(t1, t2) =

∫ t2

t1

Pwr(S(t))dt (3)

Eq.2 and Eq.3 demonstrate that striking power/energy

savings can be achieved by either putting system compo-

nents in power-efficient state or scaling the Fop and Vop

simultaneously. However, g a processor’s state or scaling

Fop & Vop consumes energy and increases latency to service

an incoming task which cannot be ignored.

IV. HYBRID POWER MANAGEMENT SCHEME

HyPowMan scheme takes a set of well-known existing

power management policies, each of which performs well

for a given set of conditions, and on top of them, de-

vises a policy selection mechanism which could select best-

performing policy for a given type of workload. HyPowMan

scheme implements this policy selection mechanism through

a machine-learning algorithm. Machine-learning algorithm

provides theoretical guarantee on overall performance con-

verging to that of the best-performing policy among the

available ones. This is somewhat similar to that of hybrid

branch predictors employed in microprocessors and used in

[13] as well. We refer to each participating power manage-

ment policy as an expert and the set of all participating

policies collectively as expert set. Any multiprocessor DPM

or DVFS policy is eligible to become member of expert

set. When a processor is busy in executing tasks, all DPM-

based experts are inactive and are said to be dormant experts.

However, DVFS-based experts can (or cannot) be in inactive

state depending on the workload. Conversely, whenever the

processor is idle, all DVFS-based experts are dormant. Any

expert, which is currently active, is said to be working expert.

A working expert makes the power management decisions

on processors under the control of applied scheduling policy.

For instance, expert3 in Fig.1 is the working expert. Working

expert returns to dormant state, which is the default state

for all experts, once it finishes its job or another working

expert replaces it. The most critical task for HyPowMan

scheme is to select an appropriate expert for a given power

management opportunity. Before we present our machine-

learning algorithm in detail, we would like to emphasis

a fundamental difference between DPM-based and DVFS-

based experts. As mentioned earlier in Section-1, the power

management opportunities (also referred as input hereafter)

for DPM-based experts are the idle time intervals which

are inherently present in an application’s schedule. Whereas,

input for DVFS-based experts is dynamic slack, which is

generated at runtime due to the variations in actual workload

(to which, DPM-based experts can also exploit while work-

ing expert). Thus, challenges for HyPowMan scheme are,

how to measure the performance (at runtime) for different

experts which work for different kind of inputs, how to

evaluate them, and how to employ them in a multiprocessor

context. Note that the objective of HyPowMan scheme is

to converge towards the best-performing technique within
given expert set only and not to find the best possible energy

savings under given operating conditions.

Figure 1. HyPowMan scheme working mechanism
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A. Machine-Learning Algorithm
Machine-learning algorithm employed in HyPowMan

considers at most N experts are present in expert set. The

algorithm associates a weight vector W input with expert

set, where W input= (winput
1 , winput

2 , ..., winput
N ) consists of

weight factors corresponding to each expert k (∀k, 1 ≤
k ≤ N ) for a given input. Every time an input arrives,

this weight vector is updated. Initially, weight factors of

all individual experts are equal and sum to one in order to

provide equal opportunity for all experts to perform well.

However, these weights may not sum to one later dur-

ing execution. HyPowMan scheme maintains a probability

vector Hinput associated with expert set, where Hinput=

(hinput
1 , hinput

2 , ..., hinput
N ) consists of probability factors

corresponding to each expert k such that, (0 ≤ hinput
k ≤ 1).

This probability reflects the performance of an expert based

on its weight factor. It is obtained by normalizing weight

factors as shown in Eq.4. The probability factor provides

a measure on each expert’s performance on previous input

such that, at any point in time, the best-performing expert

has the highest probability.

Hinput = W input/

N∑
k=1

winput
k (4)

HyPowMan selects expert with highest probability

amongst all experts to become a working expert on next

input. In case the probability factors of multiple experts are

equal, working expert is chosen randomly. Once selected,

a working expert governs all decisions related to power

management under the control of scheduling policy. When

an input is finished, the performance of all experts is

evaluated. Working expert is evaluated based on how much

energy was saved and how much performance degradation

was incurred under that particular expert. Dormant experts

are evaluated based on how they would have performed had

they be selected as working expert. This evaluation is based

on the loss factor of each expert. Loss factor is evaluated

with respect to an ideal (offline) power management policy

that offers maximum possible energy savings and zero

performance degradation. The loss factor incurred by an

expert k is referred as linputk . The value of loss factor is

a composition of loss in energy saving and performance

degradation and it is influenced by their relative importance

which is expressed by factor α such that (0 ≤ α ≤ 1).

We refer to the loss factors corresponding to energy and

performance as linputke and linputkp , respectively, for expert k.

Eq.5 represents joint loss factor of individual experts.

linput
k = αlinput

ke + (1− α)linput
kp (5)

Computation of loss factor slightly differs for DPM and

DVFS experts. We shall elaborate this difference shortly.

Once the joint loss factor linputk is calculated, final step in

algorithm is to update weight factors for each expert based

on the loss they have incurred as shown by Eq.6.

winput+1
k = winput

k βl
input
k (6)

Here, β is a constant such that (0 ≤ β ≤ 1). The value of

β should be set between 0 and 1 depending on the granular-

ity of weight factors, i.e. the higher the value of β is set, the

lower the variation in weight occurs for a given input. Eq.6

depicts that the weight factors corresponding to experts with

higher loss factors are reduced while for the experts with

lower loss factors are increased by simple multiplicative rule.

This gives higher probability of selecting better performing

experts for the next input. Note that weight and probability

factors for all experts are updated once the input is termi-

nated. Calculations related to selecting the working expert

(for next input) are performed during the active time and

hence no additional overhead or latency is incurred when the

inputs actually occur. HyPowMan scheme itself has linear

time-complexity of the order O(N), where N refers to the

size of expert set. For known size of expert set, HyPow-

Man scheme has a constant time-complexity, i.e. O(1). For

experts have different time-complexities within expert set,

the overall time-complexity of HyPowMan scheme would

be bounded by the expert having largest time-complexity.

1) Loss Factor for DPM and DVFS Experts: For DPM

experts, the input is an idle time interval. Energy loss factor

(linputke ) is calculated by comparing the length of idle period

with the time a processor has or would have spent in power-

efficient state. If this time is less than the break-even time2

of processor, then there is no savings on energy and loss is

maximum (linputke =1). Otherwise, for sleep time greater than

break-even time, Eq.7 is used to compute linputke .

linput
ke = 1− (Tsleep−k/Tidle) (7)

Here, Tsleep−k and Tidle refer to the time a processor

passed in power efficient state and available idle time, re-

spectively. Performance loss is computed based on whether

a processor switched to a power efficient state or not. If

processor was transitioned to power efficient state, the loss

on performance is incurred (linputkp = 1). Otherwise, loss

of performance is zero (linputkp = 0). For DVFS experts,

the input is dynamic slack time. Similar to DPM experts,

whenever there is an input available, the time it takes to

scale Fop and Vdd is compared to available slack time. If

the amount of slack justifies the scaling of Fop and Vop to

lower values and back to Fref and Vdd, then the loss on

energy is considered zero (linputke = 0). Otherwise, no gain

on energy can be achieve by applying DVFS and thus, the

loss is maximum (linputke = 1). Performance loss is com-

puted based on whether Fop and Vop were scaled or not. If

scaling is applied, performance loss is incurred (linputkp = 1).

Otherwise, no loss would have incurred (linputkp = 0).

Algorithm-1 presents our machine-learning algorithm. Suit-

able values for parameters (α and β corresponding to DPM

2Given that, a device is associated with non-zero transition costs,
break-even time denotes the minimum length of idle interval which
justifies a device’s transition from active state to an energy-efficient
state.
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and DVFS experts) should be specified by the user in ac-

cordance with the relative importance of energy and per-

formance loss factors (line 1). Initial weights, as described

earlier, are equal and sum to one in the beginning. Then

the expert which offers highest probability is selected to

become working expert at the start of next input (line 4). If

all probability factors are equal, (which is the case at start

up) then any expert is chosen randomly to become working

expert. At the end of an input, each expert is evaluated (line

5) and its weight and probability is updated (line 6 and 7).

Note that HyPowMan scheme has no direct control on the

decision-making process of either experts or of the schedul-

ing algorithm itself. HyPowMan scheme rather functions as

a top-level entity which evaluates the performance of differ-

ent experts and based on previous performance, selects best-

performing expert. Once selected, its the responsibility of an

expert to provide temporal guarantees for real time tasks as

long as it is a working expert. Whenever a DVFS-based

expert is substituted by any other expert, all parameters

of running/preempted tasks are reinstated with respect to

nominal operating conditions ( Fop & Vop). Similarly, when

a DPM-based expert is substituted by any other expert, all

processors from power-efficient state (if any) are recovered

to running state. Only those techniques providing real time

guarantees are chosen to be member of expert set.

Algorithm 1 Machine-learning

Set Parameters{
αdpm, αdvfs

} ∈ [0, 1]{
βdpm, βdvfs

} ∈ [0, 1]
Initialize weight factors: w1

k ∈ [0, 1]; (∀k, 1 ≤ k ≤ N)
for all future inputs do

Select expert having maximum probability:

hinput+1 = max
[
hinput
k

]
if input arrives then

Apply selected expert as working expert

else if input terminates then
Update weight vector (W input)
Update probability vector (Hinput)

end if
end for

B. Selection of Experts

To clearly demonstrate the working of HyPowMan scheme,

we have selected a DVFS expert [21] and a DPM expert

[10]. Authors in [21] suggest that their DVFS technique

is an online slack reclamation technique which permits the

dynamic slack, produced by the precedent task, to be fully

consumed by single subsequent task at the appropriate prior-

ity level. Such greedy allocation of slack allows large varia-

tions in Fop and Vop which eventually results in larger gains

on energy consumption. Authors in [10] suggest that, in a

multiprocessor real time system composed of m processors,

their DPM technique aggressively extracts out idle intervals

from some processors (let us say k processors) and clusters

them on some other processors (let us say m-k processors) to

elongate the duration of idle period. Once the idle period is

accumulated, transitioning m-k processors to power-efficient

states then become a matter of comparing the length of idle

period against the break-even time of particular processor in

question. Further details on individual experts can be found

in [21] and [10].

V. EXPERIMENTAL SETUP & RESULTS

In this section, we provide an experimental evaluation of

HyPowMan scheme. Penalties associated with state-transition

of processor and changes in Fop and Vop are considered in

presented results. We have evaluated the performance of Hy-

PowMan scheme using a freeware java-based simulation tool

called STORM (Simulation TOol for Real-time Multiproces-

sor Scheduling) [25]. Energy consumption in processors is

measured under the control of each expert alone as well as

under the control of HyPowMan scheme. These measure-

ments are performed as a function of variations in three pa-

rameters, i.e. variations in total utilization usum(TS), num-

ber of tasks, and best-case to worst-case execution time

ratio (bcet/wcet) of each task. Moreover, our results show

that the variations in α and β significantly alter the con-

vergence of HyPowMan scheme towards best-performing

expert. For each data point, a task set is randomly gener-

ated, in which, each task has a uniform probability to have

small (5-25ms), medium (25-75ms), or long (75-120ms) pe-

riods. All task periods are uniformly distributed among these

three ranges. Note that a similar period generation scheme

is used in [18], [26]. Individual utilization of each task ui

is also generated randomly such that the Eq.1 always holds.

We have used hardware parameters from Marvell’s XScale

technology-based processor PXA270 [11] in experiments.

PXA270 processor supports six voltage-frequency levels as

shown in table-I and five power-efficient states as shown in

table-II. All results on energy consumption characteristics

are scaled between 0.0 and 1.0 with respect to the non-

optimized values. All tasks are scheduled under global Ear-

liest Deadline First (EDF) scheduling algorithm. Note that

our proposed scheme is generic in the sense that it can work

with other global scheduling algorithms as well.
Table I

VOLTAGE-FREQUENCY LEVELS OF PXA270 PROCESSOR

Parameter Level1 Level2 Level3 Level4 Level5 Level6

Voltage 1.55 1.45 1.35 1.25 1.15 0.90
Frequency 624 520 416 312 128 104
Active Power 925 675 468 301 208 52
Idle Power 260 222 186 154 129 064

A. Simulation Results

1) Effect of variations in bcet/wcet ratio: Simulation

settings for this scenario are presented in table-III. We

have varied bcet/wcet ratio between 50% and 100% of

WCET of tasks such that AET of all tasks has a uni-

form probability distribution function as suggested in [12].
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Table II
POWER-EFFICIENT STATES OF PXA270 PROCESSOR

States Power(mWatts) Recovery Time(ms)

Running 925 0
Idle 260 0.001
Standby 1.722 11.43
Sleep 0.163 136.65
Deep sleep 0.101 261.77

We make the following observations on these results. For

bcet/wcet ratio = 1, Fig.2 depicts no change in total energy

consumption due to constant dynamic and static power con-

sumption. Since AET remains constant, energy consumed by

processors under non-optimized case and under DVFS expert

alone remains unchanged. DPM expert alone, however,

saves energy by exploiting the presence of inherent (static)

idle intervals. HyPowMan scheme, in this case, converges

to DPM expert in a straightforward manner as shown in

Fig.2. As bcet/wcet ratio decreases (< 1), opportunities

for DVFS expert to save energy are created as well. Fig.2

shows that both DVFS and DPM experts, while working

alone, save energy as compared to non-optimized case. For

bcet/wcet ratio between 0.5 and 0.9, it can be observed that

HyPowMan scheme converges to the best energy savings

offered by either expert. This convergence validates our

earlier claims that under HyPowMan scheme, (more or less)

best possible energy savings can be achieved. Fig.2 shows

that under HyPowMan scheme, processors consume slightly

more energy than the one offered by best-performing expert

alone. This is due to the convergence mechanism in which,

initially, experts are frequently substituted amongst them in

an attempt to figure out the best-performing expert. We have

measured energy savings up to 23.12% for DVFS expert

alone, up to 47.94% for DPM expert alone, and up to

47.22% for HyPowMan scheme by interplaying DVFS and

DPM experts.

Figure 2. Simulation results on variation of bcet/wcet ratio

2) Effect of variations in number of tasks: Simulation

settings for this scenario are presented in table-IV. We have

performed simulations by doubling and tripling the number

of tasks. Results in Fig.3 depict that, increasing the number

of tasks increases the energy savings in all cases (up to

18.05% for DVFS expert alone, 10.23% for DPM expert

alone, and 24.71% for HyPowMan scheme). Based on sim-

Table III
SIMULATION SETTINGS FOR VARIABLE BCET/WCET RATIO

Parameters Settings

Number of processors(m) in platform 4
Number of tasks (n) in task set 8
Utilization (usum) of task set 2.50
α for DPM expert 0.80
α for DVFS expert 0.90
β for DPM expert 0.70
β for DVFS expert 0.90
bcet/wcet ratio 50%−100% of WCET

Figure 3. Simulation results on variation in number of tasks

ulation results, we make two very interesting observations.

Firstly, in case when both experts are applied as stand-alone

techniques, DVFS expert saves more energy than DPM ex-

pert does. This is because the main determinant of variations

in energy consumption is actual workload and with increased

number of tasks, there are potentially more opportunities for

tasks to generate dynamic slack and therefore, more possibil-

ities for DVFS expert to reclaim energy. Secondly, HyPow-

Man scheme can even result in energy savings more than

any stand-alone technique in some cases. This is because,

over entire simulation time, a single expert cannot always

change a processor’s power consumption profile (often due

to transition costs). HyPowMan scheme, on the other hand,

substitutes an expert with the other if it is not performing

well under such conditions and eventually results is better

energy savings.
Table IV

SIMULATION SETTINGS FOR VARIABLE NUMBER OF TASKS

Parameters Settings

Number of processors(m) in platform 4
Number of tasks (n) in task set 8, 16, & 24
Utilization (usum) of task set 2.50
α for DPM expert 0.80
α for DVFS expert 0.90
β for DPM expert 0.70
β for DVFS expert 0.90
bcet/wcet ratio 60% of WCET

3) Effect of Variations in total utilization: Simulation set-

tings for this scenario are presented in table-V. Multiple

task sets with total utilization varying between 50% (lower

workload) and 100% (maximum workload) of platform ca-

pacity have been generated. Results in Fig.4 depict that the

difference in energy savings for a given utilization is more or

less the same in all cases. That is, the variations in cummu-

189



lative utilization do not significantly vary the performance

of these techniques and lesser workload naturally favors

more energy savings on fixed capacity platforms. Simulation

results indicate an average energy savings compared to non-

optimized case by up to 22.8% for DVFS expert alone,

41.6% for DVFS expert alone, and 48.2% for HyPowMan

scheme for varying utilization values.

Figure 4. Simulation results on variation in cumulative utilization

Table V
SIMULATION SETTINGS FOR VARIABLE CUMULATIVE UTILIZATION

Parameters Settings

Number of processors(m) in platform 4
Number of tasks (n) in task set 8
Utilization (usum) of task set 60%− 100%
α for DPM expert 0.80
α for DVFS expert 0.90
β for DPM expert 0.70
β for DVFS expert 0.90
bcet/wcet ratio 60% of WCET

4) Effect of Variations in α (Low, Medium, & High):
Simulation settings for this scenario are presented in table-

VI. Recall from Section 4.1 that value of α indicates the

desirable settings of the importance of energy savings com-

pared to the performance degradation. A high value of α
indicates a higher preference to energy savings, a low value

indicates higher preference to performance while a medium

value indicates a reasonable ratio of both. In our experi-

ments, we have varied the value of α ranging from 0.6

(low) to 0.9 (high). We used values of α around 0.7 and

0.75 for the medium values. Results in Fig.5 show that, as

the value of α increases, the convergence of HyPowMan

scheme is refined with respect to energy savings, i.e. the

gains achieved on energy become closer to that of best-

performing individual expert. For lower values of α, the

relative importance of energy savings is reduced and as a

result, HyPowMan scheme converges to the individual expert

offering lesser performance degradation. Note that we have

limited the value of α between 0.6 and 0.9. For even higher

values (close to 1), energy savings closer to ideal policy can

be achieved.

5) Effect of Variations in β (Low, Medium, & High):
Simulation settings for this scenario are presented in table-

VII. Recall from Section 4.1 that the value of β determines

Table VI
SIMULATION SETTINGS FOR VARIABLE α

Parameters Settings

Number of processors(m) in platform 4
Number of tasks (n) in task set 8
Utilization (usum) of task set 2.50
α 0.60− 0.90
β for DPM expert 0.70
β for DVFS expert 0.90
bcet/wcet ratio 60% of WCET

Figure 5. Simulation results on variation in α

Figure 6. Simulation results on variation in β

Table VII
SIMULATION SETTINGS FOR VARIABLE β

Parameters Settings

Number of processors(m) in platform 4
Number of tasks (n) in task set 8
Utilization (usum) of task set 2.50
α for DPM expert 0.80
α for DVFS expert 0.90
β 0.60− 0.90
bcet/wcet ratio 60% of WCET

the granularity of weight factors, i.e. the higher the value of

β is set, the lower the variation in weight of each expert oc-

curs for a given input. From results in Fig.6, we observe that

as the value of β increases, the granularity of weight update

(and hence the probability factor) associated with individual

experts with respect to their performance is refined. This

refinement in weight update permits HyPowMan scheme to

precisely and more frequently evaluate the performance of

working expert as well as dormant experts which eventu-

ally leads to a better convergence to best-performing ex-
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pert. Conversely, when the value of β decreases, HyPowMan

scheme has lesser precision in weight updates and therefore,

frequently substitutes the working expert, which eventually

leads to lesser gains on energy.

VI. CONCLUSION
In this paper, we have proposed a novel and generic scheme for

power management in multiprocessor systems. HyPowMan scheme,
instead of designing new power management policies (whether
DPM or DVFS) for specific operating conditions, takes a set of
well-known existing policies, each of which performs well for a
given set of conditions, and adapts at runtime to the best-performing
technique for any given workload. A machine-learning algorithm is
implemented to evaluate the performance of all techniques and the
decision to select best-performing technique at any point in time is
taken online and adaptive to the varying workload. Experiments
validate that our proposed scheme adapts well to the changing
workload and quickly converges to the best-performing technique
within the selected policy set by a margin of 1.5% to 11% on
energy savings. Results also show that HyPowMan scheme is robust
to changing operating conditions. Our proposed scheme enhances
the ability of portable embedded systems to adapt with changing
workload and work with a larger set of operating conditions to
give an overall performance and energy savings that is better than
any single policy can offer. HyPowMan evaluates the performance
of all experts (working as well as dormant) at every input which
may increase the computational overhead if larger expert sets are
used. Hence, this aspect requires improvements for an efficient
implementation on hardware platforms.
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