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Abstract—In this paper, we present a systematic design and
implementation of a robust real-time embedded vision system
for an unmanned rotorcraft for ground target following. The
hardware construction of the vision system is presented, and the
on-board software system is developed based on a multithread
technique capable of coordinating multiple tasks. To realize the
autonomous ground target following, a sophisticated feature-
based vision algorithm is proposed by using an on-board color
camera and navigation sensors. The vision feedback is integrated
with the flight control system to guide the unmanned rotorcraft
to follow a ground target in flight. The overall vision system has
been tested in actual flight missions, and the results obtained
show that the overall system is very robust and efficient.

Index Terms—real-time systems, vision systems, image process-
ing, unmanned aerial vehicles, target detection and following.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have recently
aroused much interest in the civil and industrial markets,

ranging from industrial surveillance, agriculture, academic
research, to wildlife conservation [8], [14], [26], [6], [15],
[32], [34]. Particularly, thanks to its vertical take-off-and-
landing, hovering and maneuvering capabilities, the unmanned
rotorcraft has received much attention in the defense and secu-
rity community [1]. More specifically, an unmanned rotorcraft
equipped with a vision payload can perform a wide range of
tasks, such as search and rescue, surveillance, target detection
and tracking, etc., as vision provides a natural sensing modality
— in terms of human comprehension — for feature detection
and tracking [28], [29]. Instead of vision being merely a
payload, many research efforts have also been devoted to
vision-aided flight control [2], [17], [22], tracking [25], [28],
terrain mapping [27], and navigation [18], [23].

We note that most of the works reported in the literature,
however, focus on only a certain part of vision systems for
UAVs, such as hardware construction or vision algorithms.
Many of them are adopted from those designed for ground
robots, which are not very suitable for applications on UAVs.
To the best of our knowledge, there is hardly any system-
atic documentation in the open literatures dealing with the
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complete design and implementation of the vision system
for unmanned rotorcrafts, which includes architectural and
algorithmic design of real-time vision systems. In addition,
although the target tracking in video sequences have already
been studied in a number of applications, there has been very
little research related to the implementation of vision-based
target following for UAVs.

In this paper, we present the design and implementation
of a comprehensive real-time embedded vision system for an
unmanned rotorcraft, which includes an on-board embedded
hardware system, a real-time software system and mission-
based vision algorithms. More specifically, the on-board hard-
ware system is designed to fulfill the image processing re-
quirements by using the commercial off-the-shelf products,
such as PC104 embedded modules. A real-time vision software
is developed, which is running on the real-time operating
system QNX. An advanced and efficient vision algorithm is
then proposed and implemented to realize the ground target
tracking, which is suited for the unmanned aerial vehicles.
The proposed vision scheme is integrated with the on-board
navigation sensors to estimate the relative distance between
the target and the UAV. Finally, using the vision feedback,
a two-layer target tracking control framework is utilized to
control a pan/tilt servo mechanism to keep the target in the
center of the image, and guide the UAV to follow the motion
of the target.

The remainder of this paper is organized as follows:
Sections II and III present respectively the development of
hardware and software of the embedded vision system for a
UAV, whereas coordinate systems adopted in the UAV vision
systems are described in Section IV. Section V details the
vision-based ground target detection and tracking algorithms,
as well as the target following scheme based on vision
signal feedback. The experimental results of the vision system
obtained through actual flight tests are presented in Section VI.
Finally, we draw some concluding remarks in Section VII.

II. HARDWARE CONFIGURATION OF THE VISION SYSTEM

The hardware configuration of the proposed on-board vision
system for the UAV, as illustrated in Figure 1, consists of
the following five main parts: a visual sensor, an image
acquisition module, a vision processing module, a pan/tilt
servo mechanism, and a video- and data-link.

A. Visual Sensor: Video Camera

A visual sensor is employed on-board to obtain in-flight
visual information of the surrounding environment of the
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Fig. 1. The configuration of the overall vision system.

UAV. Interested visual information is composed of silent and
dynamic features, such as the color and shape of land marks,
and motions of vehicles. A color video camera is selected
as the on-board visual sensor in our system, which has a
compact size and a weight less than 30g, as well as 380 TV
line resolution and 40-degree field of view.

B. Image Acquisition Module: Frame Grabber

The primary function of a frame grabber is to perform the
A/D conversion of the analog video signals and then output the
digitalized data to a host computer for further processing. Our
selection is a PC/104(-plus)-standard frame grabber, a Colory
104, which has the following features: (1) high resolution:
Colory 104 is capable of providing a resolution up to 720×576
(pixels), which is sufficient for on-line processing; (2) multiple
video inputs: it is able to collect data from multiple cameras;
(3) sufficient processing rate: the highest A/D conversion rate
is 30 frames per second (FPS), which is higher than the on-
board vision processing rate (10 FPS); (4) featured processing
method: two tasks are used alternatively to convert the digital
video signal into specified formats.

C. Vision Processing Module: Vision Computer

As shown in Figure 1, the digitalized visual signals provided
by the frame grabber is transferred to the on-board vision
computer that is the key unit of the vision system. The vision
computer coordinates the overall vision system, such as image
processing, target tracking, and communicating with the flight
control computer, which is to be described in detail later
in Section V. In this work, the configuration of using two
separated embedded computers in the on-board system for
UAVs are proposed: one for flight control, and another one for
machine vision algorithms. We choose such a configuration
for on-board system because of the following reasons: (1)
the computation consumption of flight control task and vision

program are very heavy, which can hardly be carried out
together in a single embedded computer; (2) the sampling
rate of the flight control computer is faster than the vision
computer, since the faster sampling rate is required to stabilize
the unmanned rotorcraft; (3) the decoupled structure reduces
the negative effect of data blocking caused by the vision
program and flight control system, and thus makes the overall
system more reliable.

In the proposed vision system, a separated on-board PC104
embedded computer, Cool RoadRunner III, is employed to
process the digitalized video signal and execute the vision
algorithms. The core of the board is an Intel LV Pentium-
III processor running at 933 MHz. A compact flash memory
card is used to save the captured images.

D. Pan/Tilt Servo Mechanism

In the application of the ground target following, it is
required to keep the target objects in the field of view of
the camera to increase the flexibility of vision-based tracking.
As such, we decide to mount the camera on a pan/tilt servo
mechanism that can rotate in the horizontal and vertical
directions.

E. Wireless Data Link and Video Link

In order to provide ground operators with clear visualization
to monitor the work that the on-board vision is processing
during flight tests, the video captured by the on-board camera
is transmitted and displayed in a ground control station. An
airborne 2.4 GHz wireless video link is used to transmit the
live video captured to the ground control station.

III. CONFIGURATION OF THE VISION SOFTWARE SYSTEM

Based on the proposed hardware system, the configuration
of the on-board vision software system is presented. The
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purpose of the vision software system is to coordinate the work
of on-board devices and implement vision algorithms. Since
the vision software system targets for real-time applications
and runs in an embedded PC104 computer, QNX Neutrino,
a real-time embedded operating system, is employed as the
developing platform. QNX Neutrino has a microkernal that
requires fewer system resources, and performs more reliably
and efficiently for embedded systems during runtime compared
to the traditional monolithic kernel.

The vision software program coordinates tasks such as
capturing video, controlling pan/tilt servo mechanism, as well
as performing the vision detecting and tracking algorithms.
To make the vision software system easy to design and robust
to perform, the entire vision software system is divided into
several main blocks. Each block is assigned a special task.

1) CAM: Reading RGB24 image from the buffers assigned
to the frame grabber. The reading rate is set up to be 10
FPS. In order to reduce the risk of damaging the image
data, two buffers are used to store the captured images
by the frame grabber alternatively.

2) IMG: Processing the captured images, carrying out the
vision algorithms, such as the automatic tracking and
camera control, which will be explained in Section V.

3) SVO: Controlling the rotation of the pan/tilt servo mech-
anism to keep the ground target in a certain location of
the image.

4) SAV: Saving the captured and processed images to a
high-speed compact flash.

5) COM: Communicating with the flight control computer.
The flight control computer sends the states of the UAV
and commands from the ground station to the vision
computer, and the vision computer sends the estimated
relative distance between the UAV and the ground target
to the flight control computer to guide the flight of the
UAV.

6) USER: Providing a mean for users to control the vision
program such as running and stopping the tracking as
well as changing the parameters of the vision algorithms.

7) MAIN: Managing and scheduling the work of the entire
vision software system.

IV. COORDINATE FRAMES USED IN VISION SYSTEMS

Depicted in Figure 2 are coordinate systems adopted in the
UAV vision systems. More specifically, we have

1) The local north-east-down (NED) coordinate system
(labeled with a subscript ‘n’) is an orthogonal frame on
the surface of the earth, whose origin is the launching
point of the aircraft on the surface of the earth.

2) The body coordinate system (labeled with a subscript
‘b’) is aligned with the shape of the fuselage of the
aircraft.

3) The servo-base coordinate system (labeled with a sub-
script ‘s’) is attached to the base of the pan/tilt servo
mechanism, which is aligned with the body coordinate
system of the UAV.

4) The spherical coordinate system (labeled with a sub-
script ‘sp’) is also attached to the base of the pan/tilt

Fig. 2. Coordinate frames used in unmanned vision systems

servo mechanism. It is used to define the orientation
of the camera and the target with respect to the UAV.
Given a generic point ps = (xs, ys, zs)T in the servo-
base coordinate system, its position can be defined in
the spherical coordinate system by three numbers: radius
rsp, azimuth angle θsp and elevation angle φsp, which
is given by

psp =



rsp
θsp
φsp


 =




√
x2

s + y2
s + z2

s

tan−1

(
xs

zs

)

sin−1

(
ys
rsp

)


 (1)

5) The camera coordinate system (labeled with a subscript
‘c’), whose origin is the optical center of the camera. The
Zc-axis is aligned with the optical axis of the camera
and points from the optical center C towards the image
plane.

6) The image frame (or the principle image coordinate
system) (appended with a subscript ‘i’) has the origin
at the principal point. The coordinate axes, Xi and Yi,
are aligned with the camera coordinate axes, Xc and Yc,
respectively.

V. VISION-BASED GROUND TARGET FOLLOWING

To realize the vision-based ground target detection, many
vision approaches have been proposed worldwide, such as
template matching [28], [7], background subtraction [19], [35],
optical flow [18], [3], stereo vision based technologies [11],
and feature-based approaches [31], [39], [20], [36].

In this paper, a sophisticated vision-based target detection
and tracking scheme is proposed, as illustrated in Figure 3,
which employs robust feature descriptors and efficient image
tracking techniques. Based on the vision sensing data and nav-
igation sensors, the relative distance to the target is estimated.
Such estimation is integrated with the flight control system to
guide the UAV to follow the ground target in-flight.

A. Target Detection

The purpose of the target detection is to identify the target of
interest from the image automatically based on a database of



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

- -

-

-

-

-6

?

Input
image

Target
initialization

Image
tracking

UAV
following
control

Pan/tilt
servo control

UAV

Pan/tilt
servos

Measurement of
navigation sensors

TARGET SEEKING IN IMAGE

TARGET FOLLOWING

Fig. 3. Flow chart of the ground target detection, tracking and following

pre-selected targets. A toy car is chosen as the ground target.
A classical pattern recognition procedure is used to identify
the target automatically, which includes three main steps, i.e.,
segmentation, feature extraction, and pattern recognition.

1) Segmentation: The segmentation step aims to separate
the objects of interest from background. To simplify the further
processing, some assumptions are made. First, the target and
environments exhibit Lambertian reflectance, and in other
words, their brightness is unchanged regardless of viewing
directions. Second, the target has a distinct color distribution
compared to the surrounding environments.

Step 1: Threshold in Color Space. To make the surface color
of the target constant and stable under the varying lighting
condition, the color image is represented in HSV space,
which stands for Hue (hue), Saturation (sat) and Value (val)
introduced originally by Smith [33]. Pre-calculated threshold
ranges are applied to the hue, sat, and val channels:

huer = [h1, h2], satr = [s1, s2], valr = [v1, v2] (2)

Only the pixel values falling in these color ranges are described
as the foreground points, and pixels of the image that fall out
of the specified color range are removed. The procedure of the
image pre-process is illustrated in Figure 4.

Step 2: Morphological Operation. As shown in Figure 4,
normally, the segmented image is not smooth and has many
noise points. Morphological operations are then employed to
filter out noise, fuses narrow breaks and gulfs, eliminates
small holes, and fill gaps in the contours. Next, a contour
detection approach is used to obtain the complete boundary
of the objects in the image, which will be used in the feature
extraction.

2) Feature Extraction: Generally, multiple objects will be
found in the segmented images, including the true target and
false objects. The geometric and color features are used as the
descriptors to identify the true target.

Geometry Feature Extraction: To describe the geometric
features of the objects, the four lowest moment invariants
proposed in [25] are employed, since they are independent
of position, size and orientation in the visual field. The four

lowest moment invariants, defined in the segmented image
I(x, y), are given by

φ1 = ηm
20 + ηm

02 (3)

φ2 = (ηm
20 − ηm

02)
2 + 4(ηm

11)
2 (4)

φ3 = (ηm
30 − 3ηm

12)
2 + (ηm

03 − 3ηm
21)

2 (5)

φ4 = (ηm
30 + ηm

12)
2 + (ηm

03 + ηm
21)

2 (6)

where ηm
pq , for p+ q = 2, 3, . . . , is the improved normalized

central moment defined as

ηm
pq =

µc
pq

A(p+q+1)/2
(7)

where A is the interior area of the shape, and µc
pq is the central

moment defined as

µc
pq =

∫

C

(x− x̄)p(y − ȳ)qds, p, q = 0, 1, . . . (8)

Note that in (8), C is the boundary curve of the shape,
∫

C
is

a line integral along C, ds =
√

(dx)2 + (dy)2, and [x̄, ȳ] is
the coordinate of the centroid of the shape in the image plane.

In addition, compactness is another useful feature descriptor
for recognition. Compactness of a shape is measured by the
ratio of the square root of the area and the perimeter, which
is given by

Compactness: βc =
√
A

C
. (9)

It can be easily proven that compactness is invariant with
respect to translation, scaling and rotation.

Color Feature Extraction: To make the target detection
and tracking more robust, we also employ color histogram
to represent the color distribution of image area of the tar-
get, which is not only independent of the target orientation,
position and size, but also robust to partial occlusion of the
target and easy to implement. Due to the stability in outdoor
environments, only hue and val are employed to construct the
color histogram for object recognition, which is defined as:

H = {hist(i, j)}, i = 1, . . . , Nhue, j = 1, . . . , Nval (10)
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Fig. 4. Illustration of Segmentation.

where

hist(i, j) =
∑

(x, y)∈Ω

δ

(
i,

[
hue(x, y)
Nhue

])
δ

(
j,

[
val(x, y)
Nval

])
,

and where Nhue and Nval are the partition numbers of hue
and val channels, respectively, Ω is the region of the target,
[·] is the nearest integer operator, and δ(a, b) is the Kronecker
delta function.

Dynamic Features: Besides the static features extracted from
the foreground objects, we further calculate their dynamic
motion using the Kalman filtering technique. The distance
between the location of each object zi and the predicted
location of the target ẑ is employed as a dynamic feature. The
detailed procedure for predicting the location of the target in
the image is to be discussed in Section V-B1. Both the static
and dynamic features of them are then employed in the pattern
recognition.

The extracted features of an object need to be arranged in
a compact and identifiable form [30]. A straightforward way
is to convert these features in a high dimensional vector. For
example, the feature vector of i-th object is given by

αi = [βc,i, φ1,i, φ2,i, φ3,i, φ4,i, Hi, zi]
= {αk,i}, k = 1, · · · , d (11)

where d is the dimension of the feature vector.
3) Pattern Recognition: The purpose of the pattern recog-

nition is to identify the target from the extracted foreground
objects in terms of the extracted features in (11). The
straightforward classifier is to use the nearest-neighbor rule.
It calculates a metric or ‘distance’ between an object and
a template in a feature space, and assign the object to the
class with the highest scope. But to take advantage of a
priori knowledge of the feature distribution, the classification
problem is formulated under the model-based framework,

and solved by using a probabilistic classifier. A discriminant
function, derived from Bayes’ theorem, is employed to identify
the target. This function is computed based on the measured
feature values of each object and the known distribution of
features obtained from training data.

Step 1. Pre-filter: Before classifying the objects, a pre-filter
is carried out to remove the objects whose feature values are
outside certain regions determined by a priori knowledge. This
step aims to improve the robustness of the pattern recognition
and speed up the calculation.

Step 2. Discriminant Function: We use the discriminant
function, derived from Bayes’ theorem, to determine the target
based on the measured feature values of each object and the
known distribution of features of the target obtained from
training data. We assume these features are independent and
fulfill normal distributions. Thus, we can define the simplified
discriminant function with weightings as

f ′j(αi) =
5∑

k=1

wk

(
αk,i − µk,j

σk,j

)2

+ w6

(
dc(Hi, Gj) − µ6,j

σ6,j

)2

where

dc(Hi, Gj) =

Nh∑

p=1

Nv∑

q=1

min(Hi(p, q), Gi(p, q))

min(|Hi|, |Gj|)
, (12)

and αk,i is the k-the element of the feature vector of the
object i. µk,j and σk,j are the mean and standard deviation of
the distribution of the corresponding feature. Gj is the color
histogram template of a pre-defined target. In fact, the location
information is not used in the detection mode. The target i with
the minimum value is considered as the candidate target. w1

to w6 are the weighting scalars of the corresponding features.
In terms of the likelihood values of the objects, a decision rule
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is defined as:

D =





target = arg min
i
f ′j(αi),which belongs to class j,

if min f ′j(αi) ≤ Γ′
j

no target in the image,
if min f ′j(αi) > Γ′

j

where Γ′ is a threshold value chosen based on training data.
This decision rule chooses the object, say i, with the smallest
value of the simplified discriminant function as the candidate
target. If f ′j(αi) < Γ′

j , then the scheme decides that object i
is the target. Otherwise, the scheme indicates that there is no
target in the current image.

B. Image Tracking

As shown in Figure 3, after initialization, the image tracking
techniques are employed. The purpose of image tracking is
to find the corresponding region or point to the given target.
Unlike the detection, the entire image search is not required.
Thus, the processing speed of image tracking is faster than the
detection. The image tracking problem can be solved by using
two main approaches, 1) filtering and data association, and 2)
target representation and localization [13].

Filtering and Data Association: The filtering and data asso-
ciation approach can be considered as a top-down process. The
purpose of the filtering is to estimate the states of the target,
such as static appearance and location. Typically, the state
estimation is achieved by using filtering technologies [38],
[40]. It is known (see, for example, [24]) that most of tracking
algorithms are model based because a good model-based track-
ing algorithm will greatly outperform any model-free tracking
algorithm if the underlying model is found to be a good one.
If the measurement noise satisfied the Gaussian distribution,
the optimal solution can be achieved by the Kalman filtering
technique [4]. In some more general cases, particle filters are
more suitable and robust [21]. However, the computational
cost increases and the sample degeneracy is also a problem.
When multiple targets are tracked in the image sequence,
the validation and association of the measurements become a
critical issue. The association techniques, such as Probabilistic
Data Association Filter (PDAF) and Joint Probabilistic Data
Association Filter (JPDAF) are widely used [37].

Target Representation and Localization: Besides using the
motion prediction to find the corresponding region or point,
Target Representation and Localization is considered as an-
other efficient way, which is referred to as a bottom-up
approach. Among the searching methods, the mean shift ap-
proach using the density gradient is commonly used [5], which
is trying to search the peak value of the object probability
density. However, the efficiency will be limited when the
spatial movement of the target become significant.

To take advantages of the aforementioned approaches, using
multiple trackers are widely adopted in applications of image
tracking. In [37], the tracking scheme by integrating motion,
color and geometric features were proposed to realize robust
image tracking. In conclusion, combining the motion filtering
and advanced searching algorithms will definitely make the
tracking processing more robust, but the computational load
is heavier.
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In our approach, instead of using multiple trackers simulta-
neously, a hierarchical tracking scheme is proposed to balance
the computational cost and performance, which is illustrated
in Figure 5. In the model-based image tracking, the Kalman
filtering technique is employed to provide accurate estimation
and prediction of the position and velocity of a single target,
referred to as dynamic information. If the model-based tracker
fails to find the target, a mean shift based image tracking
method will be activated to retrieve the target back in the
image.

1) Model-based Image Tracking: Model-based image
tracking will predict the possible location of the target in the
subsequent frames, and then do the data association based on
an updated likelihood function. The advantage of the model-
based image tracking is to combine dynamic features with
geometric features of the target in the image tracking under
noise and occlusion condition. In addition, several methods
are employed to make the tracking more robust and efficient,
which are given by:

1) Narrow the search window in terms of the prediction of
the Kalman filter;

2) Integrate the spatial information with appearance and set
the different weightings for the discriminant function.

The motion of the centroid of the target, x = [x̄, ˙̄x, ȳ, ˙̄y]T,
in the two-dimensional image coordinate is tracked using a
4th-order Kalman filter, which predicts the possible location
of the target in the successive frames. The discrete-time model
of the target motion can be expressed as

x(k|k − 1) = Φx(k − 1) + Λw(k − 1),
z(k) = Hx(k) + v(k), (13)
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where w and v denote the input and measurement zero-mean
Gaussian noises

Φ =




1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1


 , Λ =




T2
s

2
0

Ts 0

0
T2

s

2
0 Ts



,

H =
[

1 0 0 0
0 0 1 0

]
,

Ts is the sampling period of the vision-based tracking system.
A Kalman filter can then be designed based on the above
motion model to estimate the states of the target in the image
plane. The filter consists of the following stages:

1) Predicted state

x̂(k|k − 1) = Φx̂(k − 1)

2) Updated state estimate

x̂(k) = x̂(k|k − 1) + K(k)(z(k) − Hx̂(k|k − 1))

where K(k) is the optimal Kalman gain.
The distance between the location of each object zi and the

predicted location of the target ẑ is employed as the dynamic
feature defined by

z̃i = zi(k) − ẑ(k) = zi(k) − Hx̂(k|k − 1)

Thus, the updated discriminant function, which includes the
appearance and spatial information, is shown as follows:

f ′j(αi) =
5∑

k=1

wk

(
αi(k) − µj(k)

σj(k)

)2

+

w6

(
dc(Hi, Gj) − µj(6)

σj(6)

)2

+ w7

(
‖z̃i‖ − µj(7)

σj(7)

)2

(14)

Most of time, the model-based tracker can lock the target in
the image sequence, but sometime it may fail due to the noise
or disturbance, such as partial occlusion. Thus, a scheme is
required to check whether the target is still in the image, and
then activate other trackers.

2) Switching Mechanism: The purpose of the switching
mechanism is to check whether the target is still in the image
when the target is lost by the model-based tracker. If yes, the
mean shift tracker will be activated. The lost of the target
can be attributed to the poor match of features due to noise,
distortion, or occlusion in the image. An alternative reason
may be the maneuvering motion of the target, and the target
is out of the image. Therefore, in order to know the reason
and take the special way to find target again, it is necessary
to formulate the decision making as the following hypothesis
testing problem:

H0 : The target is still in the image;
H1 : The target is not in the image due to maneuvers.

The estimation error is considered as a random variable, which
is defined by:

ε = (Hx̂k−1 − zk−1)
′
Σ−1(Hx̂k−1 − zk−1)

where Hx̂k−1 − zk−1 is assumed to be N (0, Σ)-distributed.
ε is Chi-square distributed with 2-degrees of freedom (x and
y directions) under H0.

{
ε < λ = χ2

2(α), if H0 is true

ε ≥ λ = χ2
2(α), if H1 is true

where 1 − α is the level of confidence, which should be
sufficient high (for our system, 1 − α = 99%). If H0 is true,
the Chi-square testing-based switching declares the target is
still in the image and enables the mean shift based tracker.

3) Mean Shift Based Image Tracking: If the target is still in
the image, Continuously Adaptive Mean Shift (CAMSHIFT)
algorithm [5] is employed, which is shown in Figure 5. This
algorithm uses the mean shift searching method to efficiently
obtain the optimal location of the target in the search window.
The principle idea is to search the dominated peak in the
feature space based on the previous information and certain
assumptions. The detected target is verified by comparing
with an adaptive target template. The CAMSHIFT algorithm
consists of three main steps: back projection, mean shift
searching, and search window adaptation.

Step 1. Back Projection: In order to search the target in
the image, the probability distribution image needs to be
constructed based on the color distribution of the target. The
color distribution of the target defined in hue channel is given
by

histtg(i) =
∑

(x, y)∈Ω

δ

(
i,

[
huetg(x, y)

Nhue

])
, i = 1, . . . , Nhue .

Based on the color model of the target, the back projection
algorithm is employed to convert the color image to the color
probability distribution image. The probability of each pixel
Ip(x, y) in the region of interest Ωr is calculated based on
the model of the target, which is used to map the histogram
results and given by

Ip(x, y) = histtg

([
Ihue(x, y)
Nhue

])
, (15)

where Ihue is the pixel values of the image in the hue channel.
Step 2. Mean Shift Algorithm: Based on the obtained color

density image, a robust non-parametric method, the mean-
shift algorithm, is used to search the dominated peak in the
feature space. The mean-shift algorithm is an elegant way of
identifying these locations without estimating the underlying
probability density function [12].

Recall the discrete 2D image probability distributions
in (15), the mean location (the centroid) of the search window
is computed by

xc(k) =
M10

M00
, yc(k) =

M01

M00
,

where k is the number of iterations,

M00 =
∑

(x, y)∈Ωw

Ip(x, y),

M10 =
∑

(x, y)∈Ωw

Ip(x, y)x, M01 =
∑

(x, y)∈Ωw

Ip(x, y)y
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and Ωw is the region of the search window; M00 is the zeroth
moment; M10 and M01 are the first moments for x and
y, respectively. The search window is centered at the mean
location c(k) = (xc(k), yc(k)). Step 2 is to be repeated until
‖c(k) − c(k − 1)‖ < ε.

Step 3. Search Window Adaptation: The region of interest
is calculated dynamically using the motion filtering given in
Section V-B1. To improve the performance of the CAMSHIFT
algorithm, multiple search windows in the region of interest
are employed. The initial locations and sizes of the searching
windows are adopted from the centers and boundaries of the
foreground objects respectively. These foreground objects are
obtained using the color segmentation in the region of interest.
In the CAMSHIFT algorithm, the size of the search window
will be dynamically updated according to the moments of the
region inside the search window [5]. Generally, more than
one target candidate will be detected due to multiple search
windows adopted. To identify the true target, the similarity
between the target model and the detected target candidate
is measured using the intersection comparison (12). This
verification can effectively reduce the risk of detecting the
false target.

C. Target Following Control

We proceed to design a comprehensive target following
system in this section. It consists of two main layers, the
pan/tilt servo mechanism control and the UAV following
control. The overall structure of the target following control
is depicted in Figure 6. As mentioned in Section II, a pan/tilt
servo mechanism is employed in the first layer to control the
orientation of the camera to keep the target in an optimal loca-
tion in the image plane, namely eye-in-hand visual serving [9],
[10], which makes target tracking in the video sequence more
robust and efficient. The parameters associated with the pan/tilt
servo control in Figure 6 are to be introduced in detail later. In
the second layer, the UAV is controlled to maintain a constant
relative distance between the moving target and the UAV in-
flight.

1) Control of the Pan/Tilt Servo Mechanism: As depicted in
Figure 6, given a generic point P, pi and p∗

i are the measured
and desired locations of the projected point P in the image
plane, respectively. e = [eφ, eθ]T is the tracking error, u =
[uφ, uθ]T is the output of the tracking controller, v = [vφ, vθ]T

is the output of the pan/tilt servo mechanism. M is the camera
model, which maps the points in the 3D space to the projected
points in the 2D image frame. N is a function to calculate the
orientation of an image point pi with respect to the UAV under
the current v. As mentioned in the definitions of the coordinate
systems, the orientation of P with respect to the UAV can
be defined using azimuth and elevation angle in the spherical
coordinate system, which is described by two rotation angles
pe = [pφ, pθ]T.

In image processing, the distortion of the lens is compen-
sated, and the origin of the image plane is set as the principle
point. Thus, we can obtain a simplified pinhole projection

model as
(

pi

1

)
=

1
λ



fx 0 0
0 fy 0
0 0 1


pc (16)

with

pc = Rc/npn + tc/n , (17)

where λ = zc is the depth of the point P in the camera
coordinate system; and fx and fy are respectively the vertical
and horizontal focal lengths in pixels; Rc/n and tc/n are
respectively the rotation matrix and the translation vector,
which define the rigid-body transformation from the NED
frame to the camera frame. Thus, we can define M as

pi = M (pn,v) =
1
λ

[
fx 0 0
0 fy 0

]
Rc/n

(
pn − tc/n

)
.

Next, to derive the function N , we write the transformation
between the camera coordinate system and the servo-base
coordinate system as

ps = Rs/c(v) pc , (18)

where ps is the coordinate of the point P relative to the servo-
base coordinate system; Rs/c describes the rotation from the
servo-base frame to the camera frame. We can then combine
(18) with (16), and define the coordinate of the target in the
spherical coordinate system

pe =
(
pφ

pθ

)
= N (pi,v) =




sin−1

(
ȳs
r̄sp

)

tan−1

(
x̄s

z̄s

)


 , (19)

where


x̄s

ȳs

z̄s


 = Rs/c(v)



f−1
x 0 0
0 f−1

y 0
0 0 1






xi

yi
1




r̄sp =
√
x̄2

s + ȳ2
s + z̄2

s (20)

The pan/tilt servo mechanism can be approximately consid-
ered as two decoupled servo motors, which regulate the visual
sensor for horizontal and vertical rotation, respectively. The
dynamic model of the servo motor can be described by using
a standard second order system. Before proceeding to design
the control law for the pan/tilt servo mechanism, we define
the tracking error function as

e(k) = pe − p∗
e = N (pi(k),v(k)) − N (p∗

i ,v(k)) , (21)

where p∗
e denotes the desired orientation of the camera. The

control inputs will be sent to the pan/tilt servos after the vision-
based target detection algorithm, which generally cost about
one sampling period. To track the moving target efficiently, we
calculate the pan/tilt servo control inputs using the predicted
location of the target in the subsequent frame, which is derived
from (13) and given by

p̂i(k + 1) = ẑ(k + 1|k) = Hx̂(k + 1|k) (22)

In implementation, it is not easy to measure the output of the
pan/tilt servo v in (21). We assume that the bandwidth of the
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Fig. 6. Block diagram of the tracking control scheme.

pan/tilt servo mechanism is much faster than that of the control
system. We then can ignore the transient of the pan/tilt servos,
and consider them as scaling factors with one step delay. The
estimate of v is defined as

v̂(k) = Kd u(k − 1) (23)

Replacing v and pi with v̂ and p̂i in (21), we then can obtain
the modified error function as

e(k) = N (p̂i(k + 1), v̂(k)) − N (p∗
i , v̂(k)) (24)

The purpose of the design of the tracking control law is to
minimize the tracking error function given in (24) by choosing
a suitable control input u(k). Since the dynamics model of the
pan/tilt servos is relatively simple, we employ a discrete-time
proportional-integral (PI) controller (see, for example, [16]),
which is structurally simple but fairly robust. It is very suitable
for our real-time application. The incremental implementation
of the PI controller is given by

∆u(k) = Kp [e(k) − e(k − 1)] +
Kp Ts

Ti
e(k),

where the proportional gain and the integral time are chosen
as Kp = 0.65 and Ti = 0.8, respectively. We note that two
identical controllers are respectively used for the pan and tilt
servos, since the dynamics of the two servos are very close.

2) Following Control of the Unmanned Aerial Vehicle:
As illustrated in Figure 6, to estimate the relative distance
between the target and the UAV, we combine the camera model
(16) with the transformation in (17), and generate the overall
geometric model from an ideal image to the NED frame:

pn = λ Rn/c



f−1
x 0 0
0 f−1

y 0
0 0 1






xi

yi
1


 + tn/c (25)

We assume that the ground is flat, and the height of the UAV
to the ground: h is known. We have

Rn/c =



r1 r2 r3
r4 r5 r6
r7 r8 r9


 , tn/c =



xn/c

yn/c

zn/c


 (26)

which can be calculated by using the measurements of the
on-board navigation sensors. Based on the assumption that
the target is on the ground, zn is equal to zero. We then can
derive λ as

λ =
−zn/c

r7
xi

fx
+ r8

yi
fy

+ r9

which together with (25) yields



xn

yn
zn


 =




λ(r1
xi

fx
+ r2

yi
fy

+ r3 + xn/c)

λ(r4
xi

fx
+ r5

yi
fy

+ r6 + yn/c)

0




(27)

As shown in Figure 6, the relative distance between the
target and the UAV is estimated, which is employed as the
reference signal to guide the UAV to follow the motion of the
target. The tracking reference for the UAV is defined as



xuav

yuav

zuav

ψuav




ref

=




(
xn

yn

)
−

[
1 0 0
0 1 0

]
Rn/b




cx

cy

0




h0

ψ0




where cx and cy are the desired relative distance between the
target and the UAV in the Xb- and Yb-axis respectively; h0

is the pre-defined height of the UAV above the ground; ψ0 is
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TABLE I
EXPERIMENT RESULTS OF TARGET DETECTION AND TRACKING IN FIGHT

Test No. Total time (s) Total frames Target frames detected Accuracy

1 101.8 761 728 95.66%
2 77.2 591 518 87.65%
3 50.4 388 382 98.45%
4 75.3 572 501 87.59%
5 86.4 662 645 97.43%

the predefined heading angle of the UAV; Rn/b is the rotation
matrix from the body frame to the local NED frame, which can
be calculated in terms of the output of the on-board navigation
sensors.

VI. EXPERIMENTAL RESULTS

To verify the proposed vision system, multiple tests of
the complete system were conducted. During these tests,
the proposed vision-based unmanned helicopter: SheLion was
hovering autonomously at a certain position. If the moving
target entered into the view of the on-board camera, the target
would be identified and tracked in the video sequence by the
vision system automatically. Based on the vision information,
the pan/tilt servo mechanism was controlled to keep the target
in a certain position in the image as described in Section V-C1.
The operator, then, can command the UAV to enter into the
following mode, in which the UAV followed the motion of the
target autonomously based on the estimated relative distance,
using the algorithm proposed in Section V-C2.

The experimental results of the vision-based target detection
and tracking in-flight are shown in Table I, which indicate
that the proposed vision algorithm could effectively identify
and track the target in the video sequence in the presence of
the disturbance of unknown motion between the UAV and the
target. One example of the pan/tilt servo tracking control in-
flight is also shown in Figure 7. The solid line in Figure 7
indicates the expected position of the target in the image, and
the dash line indicates the actual location of the target in image
during the flight test. From Figure 7, we can observe that in
spite of the unknown motion between the UAV and the target,
the pan/tilt servo mechanism can effectively control target in
a box-like neighborhood of the center point of the image by
employing the vision-based pan/tilt servo control.

In the flight tests, the relative distance between the target
and the UAV was estimated using the approach presented
earlier, which is shown in Figure 8. The relative distance is also
measured using the GPS receiver. The experimental results in
Figure 8 indicate that the vision sensor can provide acceptable
relative distance estimates between the UAV and the target
based on the altitude information of the UAV and the location
of the target in the image.

One example of the ground target following is described in
Figure 9. In the experiment, the target was manually controlled
to move randomly on the flat ground and the UAV followed
the motion of the target automatically based on the scheme
proposed in the previous sections. From Figure 9, we observe
that the UAV can follow the trajectory of the target and keep
the constant relative distance between the UAV and the target.
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The results for the moving ground target following of the UAV
indicate the efficiency and robustness of the proposed vision-
based following scheme. The videos of the vision-based target
following test is available upon requested.
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VII. CONCLUSION

In this paper, we have presented the comprehensive de-
sign and implementation of the vision system for the UAV,
including hardware construction, software development, and
an advanced ground target seeking and following scheme.
Multiple real flight tests were conducted to verify the presented
vision system. The experimental results show that this vision
system is not only able to automatically detect and track the
pre-defined ground target in the video sequence, but also able
to guide the UAV to follow the motion of the target in-flight.
The robustness and efficiency of the developed vision system
for UAVs could be achieved by the current system. Our future
research focus is to utilize the system for implementing vision-
based automatic landing of the UAV on a moving platform in
an environment without GPS signals.
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