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Abstract

A generalized dynamic energy performance scaling
(DEPS) framework is proposed for exploring application-
specific energy-saving potential in hard real-time embed-
ded systems. This software-centric framework focuses on
system-wide energy reduction and takes advantage of possi-
ble power control mechanisms to trade off performance for
energy savings. Three existing technologies, i.e., dynamic
hardware resource configuration (DHRC), dynamic volt-
age frequency scaling (DVFS), and dynamic power man-
agement (DPM) have been employed in this framework to
achieve the maximal energy savings. Static and dynamic
schemes of DEPS are proposed to deal with stable or vari-
able workload in the embedded systems. Through a case
study, its effectiveness has been validated.

1 Introduction

Power and energy consumption has become one of the
major concerns in today’s embedded system design. Re-
ducing power or energy consumption can extend battery
lifetime of portable systems, decrease chip cooling costs, as
well as increase system reliability. In contrast to the conven-
tional hardware-centric low power designs, the software-
centric energy performance tradeoff approach has attracted
much attention recently due to its flexibility and easy im-
plementation. This approach is based upon two observa-
tions. First, application needs for particular hardware re-
sources such as caches, issue queues, and instruction fetch
logic within an embedded processor can vary significantly
from application to application [4]. Furthermore, program

behaviors with respect to access of I/O devices (e.g. ex-
ternal memory) are also application-dependent. This fact
manifests the application-specific energy saving potential
via dynamically turning off the unnecessary hardware re-
source according to the actual requirements of different ap-
plications. Second, in real-time systems the utilization of
processor is always less than 100% even if all tasks run at
the worst case execution time (WCET). Moreover, the ac-
tual workload of the same task may vary from instance to
instance, which depends on the specific input data and ex-
ecution path. The fact of existing slack in real-time system
reveals the chance to trade off performance for energy sav-
ings since the highest performance is not always required if
the deadline can be met.

There are three kinds of frequently used power con-
trol technologies for energy performance tradeoff. One is
dynamic hardware resource configuration (DHRC), such
as adaptive branch predictor [6], selective cache way [7]
etc.. This technology tries to improve processor energy ef-
ficiency by dynamically tuning major processor resources
in accordance with varied needs of applications [4]. How-
ever, its effectiveness for energy savings is application-
dependent, i.e., a specific DHRC technique may be effec-
tive for some applications, but may be ineffective for other
ones [5]. The second technology is dynamic voltage fre-
quency scaling (DVFS) [1, 2, 3, 27, 19]. Because the dy-
namic power consumption of CMOS circuits is proportional
to its clock frequency and its voltage square, DVFS can save
energy effectively by lowering both frequency and voltage
of the processor. Unlike DHRC, DVFS generally has simi-
lar effectiveness on different applications. That is, lowering
frequency and voltage in a range always leads to degraded
performance and reduced energy consumption. Moreover,
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the variation of execution time and energy consumption af-
ter DVFS can be estimated by simple calculations. The third
one is dynamic power management (DPM) which is gen-
erally employed to reduce the energy consumption of pro-
cessor or device in idle state by transferring them to a low
power mode. However, the transition from low power mode
to the normal mode consumes additional time and energy.
The challenge of DPM is to balance the energy savings and
performance degradation by determining when the proces-
sor or device should be transferred to the low power mode,
and what low power mode should be entered [24].

It is desirable to save more energy by combining the
above technologies. Unfortunately, it is not a trivial prob-
lem, especially for the hard real-time systems. The reasons
are as follows. (1) While the energy consumption and ex-
ecution time can be estimated by calculation after DVFS,
they cannot be done so after reconfiguration of hardware.
Thus to guarantee deadline for DEPS application, the only
way to obtain the energy time relation under a hardware
configuration is physical or simulation measurement (here-
inafter measurement for short). (2) Combining them may
result in so many possible configurations that the total mea-
surement and computation time is unaffordable. (3) Con-
sider the fact that the efficiency of DHRC is application-
dependent, thus a framework should have the capability
to accommodate different hardware configuration mecha-
nisms for various applications.

It has been known recently that the energy savings in
processor does not necessarily lead to energy savings in
whole system including external devices [25, 26]. There-
fore, it is necessary to consider the energy savings of whole
system but not the processor alone. In this work, we pro-
pose a generalized framework, called dynamic energy per-
formance scaling (DEPS), to achieve system-wide energy
savings in hard real-time systems by combining three ex-
isting power control technologies. The main contributions
of this work are as follows. (1) Propose static and dynamic
schemes of DEPS corresponding to stable or variable work-
load to reduce the total energy consumption of processor
and external devices. (2) Propose an algorithm to reduce
both measurement and computation time by selecting the
effective DEPS configurations. (3) Construct a generalized
simulation environment to evaluate the DEPS framework,
and demonstrate its effectiveness via a case study.

The rest of the paper is organized as follows. Sec. 2
introduces the related work. Sec. 3 presents the proposed
DEPS framework. Sec. 4 gives a case study and simulation
results. Finally, Sec. 5 summarizes the paper.

2 Related work
Energy saving technologies using DVFS, DHRC and

DPM have been extensively studied so far. Although these
technologies are effective for energy savings, there are few
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Figure 1. DEPS framework

papers considering the combination of them. Huang et
al. first proposed the combination of DVFS and DHRC
for energy and temperature management in which an on-
line interval-based algorithm was presented for selecting the
most energy-saving configuration subject to a given slow-
down factor [9]. While their work is targeted at single-task
application with the given slowdown factor, our approach
is aimed at multi-task hard real-time application with given
period and deadline. Fan et al. proposed the combination of
DVFS and DPM for system-wide energy savings in which
the DPM was employed to reduce the standby energy of
external memory [25]. Nacul and Givargis proposed the
combination of DVFS and cache reconfiguration for low
power [10]. Unlike our off-line optimal global exploration
algorithm for all tasks, [10] used an on-line algorithm for
selecting the Pareto-optimal configuration that best fill the
slack for the next task to be executed. Recently, Zeng et
al. first proposed the combination of DVFS and DHRC for
the fixed-priority real-time systems [11]. However, previ-
ous approach primarily focused on the processor energy re-
duction, and only dealt with the stable workload, which is
different from this approach targeting at the system-wide
energy reduction and dealing with both the stable and vari-
able workload. Moreover, the paper did not discuss how
to reduce the measurement and computation time, which
makes it unrealistic for large task set.

3 DEPS framework

The entire DEPS framework includes three layers, i.e.,
power controllable hardware, power-aware software, and
power analysis tools. Figure 1 shows the framework and
interactions between the three layers. As software-centric
approach, the DEPS engine is implemented in the scheduler
of OS. The power analysis tools are employed to analyze
and extract the power relative information. The power mea-
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surement tool is utilized to obtain the energy time relations
under each selected configuration.

3.1 System model

This work focuses on the embedded systems and as-
sumes a DHRC and DVFS enabled embedded processor.
Since our objective is to achieve system-wide energy sav-
ings, the main memory, a representative of external device,
is included into our framework as shown in Fig.2. The en-
ergy model of external memory and DPM for the reduction
of memory energy are given in Sec. 4.1 in detail. Note that
other devices with DPM capability can also be incorporated
into the model.

We consider hard real-time applications including a set
of independent n periodic real-time tasks, represented as
Γ = {τ1, τ2, ..., τn}. Each task τi has a period Pi and
relative deadline Di that is equal to Pi. A task τi has mi

effective DEPS configurations Ci1, Ci2, ..., Cimi consisting
of DHRC configuration, DVFS parameters, and DPM poli-
cies. Each DEPS configuration Cij is associated with a spe-
cific energy time relation, which can be represented by a
pair of values (Tij , Eij) where Tij is the worst-case execu-
tion time under the Cij configuration, and Eij is the energy
consumption of processor and external device during Tij .

3.2 Problem formulation for static scheme

We assume that the overhead for task switching and
DEPS reconfiguration is negligible for simplicity, and the
energy time relations of the effective DEPS configurations
have been obtained in advance. We denote hyperperiod =
LCM(P1, P2, ..., Pn), i.e., the least common multiple of
all task periods. Then, the energy optimization problem is
to determine the optimal DEPS configuration for each task
such that the total energy consumption over a hyperperiod is
minimized and all deadline constraints are met. We extend
the formulation defined in [11] to include both fixed-priority
and dynamic priority scheduling as follows:
Minimize energy:

n∑
i=1

mi∑
j=1

hyperperiod

Pi
(Eij − TijWidle)xij (1)

subject to
n∑

i=1

mi∑
j=1

Tij

Pi
xij ≤ n(2

1
n − 1) (2)

or
n∑

i=1

mi∑
j=1

Tij

Pi
xij ≤ 1 (3)

where
mi∑
j=1

xij = 1, i = 1, 2, ..., n, xij ∈ {0, 1}, ∀i, j (4)

In the above equation (1), the Widle denotes the idle
power of processor and device. The equations (2) and
(3) represent utilization-based schedulability test for rate
monotonic (RM) and EDF scheduling, respectively [13].
Equation (4) indicates that for one task, only one DEPS
configuration can be selected where xij = 1 denotes that
the configuration Cij has been selected for task τi, other-
wise xij = 0.

It is clear that the problem for selecting the optimal
DEPS configuration is a typically multiple choice 0/1 knap-
sack problem, which is a NP-hard problem [12]. While
there is no polynomial-time exact method for this problem,
we can use common methods for solving any reasonable
size by off-line computation. In the following case study,
we use LPSolve tool [20], a free mixed integer linear pro-
gramming solver, to solve this energy optimization prob-
lem. Although we do not consider the configuration over-
head in the above formulation for simplicity, they can be
included as discussed in [11].

3.3 Algorithm for selecting effective
DEPS configurations

Consider a DEPS framework with L voltage levels, Q
DPM policies, as well as K kinds of DHRC (each DHRC
has Fj(j = 1 ∼ K) configurations), we thus need to per-
form L × Q × F1 × F2 × ... × FK times measurements to
obtain all possible energy time relations for one task. Fur-
thermore, the same number of variables will be employed
for one task in the optimization computation. Fortunately,
not all configurations are energy efficient. That is, only the
DEPS configurations those have less energy consumption
than any other configurations with same or shorter execu-
tion time are effective for energy and performance tradeoff.
Therefore, we can reduce both measurement and computa-
tion time by only selecting effective DEPS configurations.
As discussed in Sec. 1, since DVFS is effective for any ap-
plications, we retain all DVFS parameters directly. Then,
to find the effective configurations in one kind of DHRC,
we assume that different DVFS parameters or DPM poli-
cies do not affect the selection of effective DHRC parame-
ters, which has been confirmed in our case study and also
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was suggested in [5]. For example, the appropriate instruc-
tion cache size is dependent on the characteristics of pro-
gram but not voltage/frequency of the processor. There-
fore, the measurements can be performed separately, each
time for one kind of DHRC or DPM policy and with fixed
the other parameters, thus only Q + F1 + F2 + ... + FK

times measurements are needed to find all effective config-
urations and policy in DHRC and DPM. After that, if each
DHRC has Hj(j = 1 ∼ K) effective configurations where
Hj <= Fj , and only one DPM policy is effective, then the
total L × (H1 + H2 + ... + HK) times measurement are
required under different DVFS parameters for each task in
the optimization computation.

In the above procedure, we use the following algorithm
to find the effective DHRC parameter in one kind of DHRC.
First, we conduct Fj measurements to obtain all possi-
ble energy time relations in one kind of DHRC. Second,
sort the configurations in increasing execution time order.
Third, check the configurations from the first one to the last
one, and configurations that have less energy consumption
than any previous configurations are selected as the effec-
tive configurations. The above algorithm can also be used
for the selection of effective DPM policies. Note that we
can further reduce measurement and computation time at
the cost of more energy consumption over the optimal one
by only selecting the most effective DEPS configurations
and ignoring other ones. The energy efficiency of each ef-
fective configuration can be evaluated as reduced energy /
increased execution time, which is compared with the con-
figuration with the shortest execution time.

3.4 Implementation of static scheme
The implementation procedure of static DEPS mainly in-

cludes the following steps:
1. Select effective DEPS configurations for each task as

the algorithm given in Sec. 3.3.
2. Obtain energy time relations associated with each ef-

fective DEPS configurations by measurement.
3. Solve the energy optimization problem using the for-

mulation described in Sec. 3.2 to obtain the optimal
DEPS configuration for each task.

4. Store the optimal DEPS configurations and the asso-
ciated configuration parameters into a static configura-
tion table.

5. For each context switch or dispatch of task, the OS
scheduler sets the optimal DEPS configuration for the
next task to run according to the static configuration
table when the current DEPS configuration is not the
expected one.

3.5 Dynamic scheme
As described earlier, the static scheme is suitable for sta-

ble WCET workload. However, embedded systems often

exhibit fluctuation of workload in practice due to data de-
pendence of program behaviors. In the case of early com-
pletion of task, dynamic slack can be employed to further
save energy. To this end, we propose a dynamic scheme of
DEPS for additional energy savings by reclaiming runtime
slack. Some dynamic DVFS algorithms have been proposed
in literature to reclaim dynamic slack [1, 2, 3, 21]; they how-
ever cannot be directly applied to DEPS due to the differ-
ence between them. The key difference is that while most
existing DVFS algorithms assume constant number of cy-
cles for each task even if voltage and frequency have been
changed during the execution of task, this assumption is no
longer held for DEPS. It is evident that when DEPS con-
figuration is changed such as cache size, branch prediction
etc., the number of cycles required for task execution is also
changed. As a result, the left execution time of task will
become unpredictable if its DEPS configuration is changed
during execution, and ignoring this fact may lead to miss of
deadline. For this reason, DEPS configurations are merely
allowed to change at the first dispatch time after release of
the task in our dynamic scheme. In other words, even if the
preempted task gets the slack from the early completion of
higher priority task, it cannot change its DEPS configura-
tion for the remaining execution time.

Some definitions and notations used in the algorithm are
given as follows:
• NTAi: the earliest arrival time of next task from cur-

rent dispatch time of task τi.
• AETi: the actual execution time of task τi measured

by OS.
• Usable slack: the slack time can be used by next task.

It is equal to the total slack minus the CPU idle time.
• EETi: the effective execution time for task τi running

without miss of deadline.
As an example, Fig.3 shows the relative time relation of the
notations. The complete algorithm for dynamic DEPS is
presented in Fig.4. In brief, the dynamic scheme includes
two steps, i.e., off-line static optimization algorithm and
on-line dynamic slack reclaiming algorithm. The on-line
algorithm can be further divided into two processes, i.e.,
slack detection process and DEPS configuration updating
process. The basic rules of the algorithm are described as
follows. (1) The default configuration is obtained by using
static DEPS scheme in which the schedulability is guaran-
teed even for the WCET. (2) When a task is released, it is
assumed that at least the WCET of the default configuration
is required to execute. (3) Only the slack generated by high
priority task can be used by low priority task. (4) If only one
task exists in the ready queue, the NTA time can be used for
this task. As proved in [3, 21], these rules can guarantee the
schedulability of the dynamic scheme.

To illustrate how to update the DEPS configuration us-
ing the detected slack, we utilize the configuration table of
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Dynamic (on - line) slack reclaiming algorithm
¨ Completion of task τ 

n slack = EETi – AETi ; // total slack

¨ Dispatch of task τ at time t (excluding the redispatch after preemption)

n EETj = WCETj ; // WCET of task τ under static optimal DEPS configuration

n if only one task in the ready queue and NTA > t + WCET  thenj

¨ EETj = NTA – t;

n if the priority of task τ is higher than that of task τ  then

¨ slack = slack – CPU idle time; // usable slack

¨ if slack < 0, then slack=0;

¨ if WCETj + slack > EETj then EETj = WCETj + slack

n if EETj > WCETj then search DEPS config. table to find new config. 
WCET   such that WCET  is the largest one but <= EETj* 

¨ WCETj =  WCETj ;

¨ configure the processor hardware as the updated DEPS config.

Dynamic scheme of DEPS
¨ STEP 1: static (off-line) optimization algorithm

n off -line implementation to obtain the static optimal DEPS 

configurations which are used as the default configurations

n construct the DEPS config. table for each task using the 

optimal and other effective DEPS configurations

¨ STEP 2: dynamic (on-line) slack reclaiming algorithm
n implemented by OS scheduler when task is completed or released

assume task τ  has been completed before release of task τ

jj
*   

* 

n record the priority of task τ   

n i j

i

i

j

j

i j

j

j

Figure 4. Algorithm of dynamic scheme.

cjpeg benchmark in Table 1 as an example. The first entry
of the table should be the optimal static DEPS configura-
tion obtained as described in Sec. 3.2, and the others are
some of effective configurations that have longer execution
time and less energy consumption than the optimal configu-
ration. These configurations are sorted in increasing WCET
or decreasing energy order. Dynamic scheme attempts to
find new DEPS configuration with less energy through ab-
sorbing dynamic slack. For example, when cjpeg task ob-
tains a 100ms slack from the higher priority task, then it can
update its current DEPS configuration to 3 which consumes
less energy than the configuration one.

4 A case study
As mentioned earlier, the achievable energy savings of

DEPS are highly dependent on the employed technologies.
For this reason, we use a case study to demonstrate the
effectiveness of DEPS. In this case study, we choose a 4-
level voltage processor for DVFS and the selective cache
way (SCW) [7], configurable branch predictor (CBP) for
DHRC in the DEPS enabled processor. And, the proces-
sor is supposed to equip with two 256MB mobile DDR

Table 1. DEPS configuration table of cjpeg.
No. DEPS configuration parameters WCET(ms) Energy(mJ)

1 160MHz/1.6V; EBP; 4k Icache; DPM2 159.32 26.21

2 100MHz/1.4V; EBP; 8k Icache; DPM2 247.54 24.04

3 100MHz/1.4V; EBP; 4k Icache; DPM2 251.22 23.32

Table 2. SimpleScalar/ARM configuration.
Fetch queue 2

Branch Predictor configurable

Fetch, Decode width 1

Issue width 1 (in-order)

Functional units 1 int ALU, 1 int Multiplier
1 FP ALU, 1 FP Multiplier

Instruction L1 Cache Selective cache way (SCW)

Data L1 Cache Size 8KB; sets 64
block size 32-byte; 4-way

L2 Cache None

Memory bus width 4-byte

SDRAM chips with 32-bit width. We select the 4-level
DVFS because embedded processors typically have less
voltage levels than general-purpose processors. For ex-
ample, the TMS320C5509 only provides 3-level voltages.
The reason for selecting SCW and CBP is their easy im-
plementation and low configuration overhead. The detailed
description of SCW and its configuration overhead can be
found in [7, 8]. Note that our DEPS framework is general
and independent of the employed DHRC and DVFS tech-
nologies. We simply choose the above technologies as an
example of DEPS.

4.1 Simulation environment setup

A SimpleScalar/ARM [14] based power simulator, Sim-
Panalyzer [15], is employed to measure energy and time
in our experiments. Sim-Panalyzer is an infrastructure for
microarchitectural power simulation considering both dy-
namic and leakage power. Default configuration is used for
Sim-Panalyzer. The ARM configuration of SimpleScalar is
listed in Table 2. The configurations of CBP, SCW, DVFS
are given in Table 3, Table 4, and Table 5, respectively. We
only implement the SCW on instruction cache to avoid large
configuration overhead for keeping data coherence. Fur-
thermore, DVFS capability has been incorporated into the
Sim-Panalyzer.

Figure 5 shows the power state transition graph of the
employed SDRAM chip. As can be seen, this chip can pro-
vide multiple low power modes for different power-saving
levels. An access count based energy model is employed
to calculate the energy consumption of external memory
which is composed of standby energy and access energy.
To save the standby energy, we propose two DPM policies
using different low power modes. Both DPM policies can
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Table 3. Branch prediction configuration.
Enable Branch Prediction (EBP) Bimodal 2K entries; 3 cycle penalty

Disable Branch Prediction (DBP) Not-taken; 3 cycle penalty

Table 4. SCW configurations for L1 Icache.
Parameters cfg.1 cfg.2 cfg.3

Cache size (KB) 8 4 2

Num. of sets 64 64 64

Block size 32 32 32

Associativity 4 2 1

Replacement policy LRU LRU LRU

be implemented by the SDRAM controller. Table 7 summa-
rizes the energy model, DPM policies, as well as the associ-
ated parameters used in the simulation. This energy model
including DPM capability has been integrated into the orig-
inal Sim-Panalyzer to calculate the runtime energy con-
sumption of external memory in cycle accuracy. For sim-
plicity, the power consumption of processor and memory is
assumed to be zero during idle state of OS. Some bench-
mark programs from MiBench [16], MediaBench [17] and
Powerstone [18] are selected for the evaluation. A synthetic
task set consisting of these benchmark programs is assumed
to run on the ARM simulator using fixed-priority schedul-
ing with specified periods as given in Table 6.

4.2 Simulation results of static scheme

According to the above Table 3, 4, and 7, there are 6
configurations for DHRC, 4 configurations for DVFS, and
3 policies for DPM. The DEPS framework can thus provide
total 72 configurations in this case study. To observe all
possible energy and time relations under different configu-
rations, each benchmark is simulated 72 times using Sim-
Panalyzer. Due to the space limitation, only partial simu-
lation results are given in Table 8. Since DPM2 achieves
consistently better results than DPM1, only the results of
DPM0 and DPM2 are given in the table. As can be seen, dif-
ferent benchmarks present distinct hardware requirements.
For example, V42 requires large size of instruction cache.
Otherwise, small cache will lead to more energy due to re-
markably increased cache misses and execution time. In
contrast, small cache is better for g3fax, since small cache
results in negligible performance degradation and signifi-
cant energy reduction. The selected effective DEPS config-
urations for each benchmark as the proposed algorithm are
denoted in boldface in the table. As can be seen in the Table
8, only 8 and 4 measurements are necessary for g3fax and
v42, respectively, rather than the 72 measurements. In sum-
mary, total 36 instead of 360 measurements or variables are
required for 5 tasks in the optimization computation of the
case study. Execution time of LPSolve [20] in all experi-

Table 5. DVFS parameters.
Processor frequency (MHz) 280 220 160 100

Processor voltage (V) 2.0 1.8 1.6 1.4

Table 6. Synthetic task set.
Task Period WCET(ms) at Total

name (ms) 280MHz & EBP CPU uti.

sha 200-800 63.0

v42 200-800 35.7

engine 100-200 8.8 26.2-95.8 %

g3fax 100-400 14.6

cjpeg 400-1600 92.2

ments is less than 0.02 second on a computer equipped with
a 1.6GHz Pentium processor and 1GB RAM.

Figure 6 shows the comparisons of DEPS and the exist-
ing methods at different CPU utilizations. Because the pro-
posed DEPS is an inter-task based static method, we also se-
lect the inter-task based static DVFS [1, 3] and static DHRC
for fair comparison. In addition, we assume that both meth-
ods are without using DPM for external memory; the static
DVFS utilizes full hardware resource; and the static DHRC
utilizes the highest processor performance. Because the en-
ergy consumption is dependent on the run time of applica-
tion, we compare the average power of several methods over
the hyperperiod to the maximal power consumption in this
ARM-based simulator, i.e., 475.2 mW when running cjpeg
at 280 MHz on 8k Icache with EBP. As can be seen from
Fig.6, the DEPS can achieve average 62.7% power reduc-
tion, and average 13.6% and 13.7% improvement over the
DVFS alone and the DHRC alone respectively. Also, the
results indicate that the DEPS can achieve consistently bet-
ter results than DHRC or DVFS alone for any CPU utiliza-
tion. This is because the DEPS can provide more chances
for energy performance tradeoff than any existing technol-
ogy alone. To evaluate the effect of DPM, we perform ad-
ditional experiment without using any DPM. Results show
that DEPS without DPM achieves 10% less energy savings
than DEPS with DPM2 at medial CPU utilization.

4.3 Simulation results of dynamic scheme

To evaluate the efficiency of the dynamic scheme, we
utilize the same synthetic task set as shown in Table 6. Un-
like the static scheme, workload is supposed to vary from
20 to 100 percent of the WCET in the dynamic scheme. For
the calculation of energy, we assume that the average power
remains constant for each DEPS configuration whatever the
actual execution time is. The results of static scheme are
employed as the default configurations, and the dynamic
DEPS configuration table is constructed as described in Sec.
3.5. We build an evaluation environment to simulate the ex-
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Table 8. Partial simulation results of g3fax and V42.
Name of DEPS configuration 280MHz/2.0V 220MHz/1.8V 160MHz/1.6V 100MHz/1.4V

benchmark parameters T(ms) E(mJ) T(ms) E(mJ) T(ms) E(mJ) T(ms) E(mJ)

DBP+DPM0 20.04 6.60 25.49 5.94 35.02 5.64 56.01 6.17

4K DBP+DPM2 20.06 5.44 25.51 4.47 35.04 3.61 56.03 2.92

2-way EBP+DPM0 14.61 6.10 18.59 5.38 25.52 4.95 40.82 5.16

I cache EBP+DPM2 14.63 5.25 18.61 4.31 25.54 3.48 40.84 2.80

g3fax DBP+DPM0 20.05 6.17 25.51 5.60 35.03 5.37 56.03 5.96

2k DBP+DPM2 20.07 5.01 25.53 4.12 35.05 3.33 56.04 2.71

1-way EBP+DPM0 14.62 5.78 18.60 5.13 25.54 4.75 40.84 5.01

I cache EBP+DPM2 14.64 4.93 18.62 4.05 25.55 3.27 40.85 2.64

DBP+DPM0 43.22 17.11 54.62 15.41 73.31 14.30 116.44 15.12

8K DBP+DPM2 43.53 14.98 54.89 12.94 73.66 10.61 116.73 9.42

4-way EBP+DPM0 35.71 16.69 45.06 14.86 60.17 13.52 95.42 13.87

I cache EBP+DPM2 35.99 14.95 45.31 12.89 60.49 10.53 95.68 9.29

V42 DBP+DPM0 51.14 20.56 63.81 19.18 81.88 17.90 128.19 19.13

4K DBP+DPM2 52.10 18.06 64.63 16.26 82.99 13.82 129.09 12.89

2-way EBP+DPM0 42.45 19.80 52.89 18.20 67.47 16.67 105.44 17.35

I cache EBP+DPM2 43.29 17.73 53.60 15.84 68.44 13.32 106.22 12.28

Table 7. Energy model of external memory.
Energy model

Standby energy exe. time × standby power

Access energy access count × energy per access
(excluding standby power)

DPM policy for standby power reduction

DPM0 without using any DPM in standby state

DPM1 transition the memory into standby power
down mode immediately after each access operation

DPM2 transition the memory into self refresh
mode when no access during specified time window

Parameters [22, 23]

Active read energy burst read: 27.15 nJ /access

Active write energy burst write: 20.17 nJ /access

Standby power DPM0: 59.1mW; DPM1: 8.9mW; DPM2: 0.65mW

Time window size 1700 cycles

ecution of tasks and the proposed dynamic scheme as de-
scribed in Fig. 4. The simulation results are given in Fig.
7 where dynamic DVFS alone represents the same algo-
rithm as the dynamic DEPS with disabled DHRC and DPM.
As can be seen, the dynamic DEPS achieves the maximal
5.7% and 15.2% improvement over the static DEPS and the
dynamic DVFS, respectively. The oracle that is assumed
to know the precise execution time in advance shows the
maximal 7% improvement over the dynamic DEPS. This
method, however, is not realizable in practice. We also
evaluate the dynamic DEPS without DPM, and results show
that it can only achieve a slightly better result than dynamic
DVFS alone. This result also suggests that the power re-
duction of the external memory in this framework is very
important to exploit the potential of DEPS completely.

Active

258mW

Standby

59.1mW

Deep Power

Down (data lost)

0.03mW

Self 

Refresh
0.65mW

Normal 

operational 

mode

Power 

management 

mode (PMM)

120 ns

200 us

Standby

Powerdown + 

Auto refresh

8.9mW

7.5 n
s

Figure 5. Mobile DDR SDRAM power state
transition graph [22, 23].

5 Conclusion

We proposed a generalized software framework DEPS:
dynamic energy performance scaling, for system-wide en-
ergy reduction in hard real-time embedded systems. It inte-
grates three existing energy performance tradeoff technolo-
gies, i.e., DHRC, DVFS, and DPM into the framework to
achieve the maximal energy savings. Static and dynamic
schemes of DEPS are proposed to cope with stable and fluc-
tuant workload, respectively. In the case study, simulation
results show that static DEPS achieves 13.6% and 13.7%
improvement over DVFS alone and DHRC alone on aver-
age, and dynamic DEPS achieves the maximal 5.7% im-
provement over static DEPS. For future work, we plan to
evaluate the DEPS framework on a multiple performance
processor chip [28] that requires only about 1 us transition
time for DVFS and SCW.
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