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Speedups and Energy Reductions From Mapping DSP
Applications on an Embedded Reconfigurable System

Michalis D. Galanis, Gregory Dimitroulakos, and Costas E. Goutis

Abstract—This paper presents performance improvements and energy
savings from mapping real-world benchmarks on an embedded single-chip
platform that includes coarse-grained reconfigurable logic with a micro-
processor. The reconfigurable hardware is a 2-D array of processing ele-
ments connected with a mesh-like network. Analytical results derived from
mapping seven real-life digital signal processing applications, with the aid
of an automated design flow, on six different instances of the system ar-
chitecture are presented. Significant overall application speedups relative
to an all-software solution, ranging from 1.81 to 3.99 are reported being
close to theoretical speedup bounds. Additionally, the energy savings range
from 43% to 71%. Finally, a comparison with a system coupling a micro-
processor with a very long instruction word core shows that the micro-
processor/coarse-grained reconfigurable array platform is more efficient
in terms of performance and energy consumption.

Index Terms—Coarse-grained reconfigurable array (CGRA), design
flow, embedded systems, energy reduction, performance improvement,
reconfigurable computing.

I. INTRODUCTION

Reconfigurable architectures have received growing interest in the
past few years [1]. Such systems usually combine reconfigurable hard-
ware with a software-programmable general-purpose microprocessor.
The microprocessor typically executes noncritical control intensive
parts of the applications and provides software programmability.
Compute-intensive sections, called kernels, are implemented in re-
configurable hardware. The operation parallelism present in kernels is
exploited by the available abundant processing elements (PEs) of the
reconfigurable hardware, resulting in performance improvements. Sev-
eral coarse-grained reconfigurable architectures have been introduced
[1]–[8]. Coarse-grained reconfigurable logic has been proposed as
coprocessor for speeding-up kernels of multimedia and digital signal
processing (DSP) applications in embedded systems. This type of
hardware consists of PEs with word-level data bit-widths [like 32-bit
arithmetic logic units (ALUs)] connected with a reconfigurable inter-
connect network. The coarse-grained PEs better exploit the word-level
parallelism of many DSP applications than the field-programmable
gate arrays (FPGAs) which are more effective for bit-level opera-
tions. The coarse granularity greatly reduces the delay, area, power
consumption, and reconfiguration time relative to an FPGA device at
the expense of flexibility [1], [2]. In this paper, we consider the most
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Fig. 1. (a) Outline of the embedded reconfigurable SoC platform. (b) CGRA
architecture overview.

widespread subclass of coarse-grained architectures where the PEs
are organized in a 2-D array and they are connected with mesh-like
reconfigurable networks [1], [3]. In this paper, these architectures are
called coarse-grained reconfigurable arrays (CGRAs).

The main contribution of this paper is the extensive study of the
performance improvements as well as the energy reductions by
executing time critical kernels on the coarse-grained reconfigurable
logic. A generic reconfigurable system coupling a microprocessor
with a CGRA is the target platform. Seven real-world data dominated
DSP benchmarks are mapped on three systems employing 32-bit
ARM processors. Every ARM system is coupled each time with two
different CGRA architectures, a 4 � 4 and a 6 � 6 array of PEs.
The applications’ execution times are evaluated using an automated
design flow. The flow is proposed for mapping complete applications
described in C software on the system platform. The core of the design
flow is based on an efficient software pipelining algorithm that was
introduced in [6]. Large values of instructions per cycles (IPCs) are
achieved by the considered software pipelining-based mapper.

Few works exist for the thorough study on CGRAs. Research activ-
ities that consider the mapping of complete applications on processor/
CGRA systems are presented in [3], [5], [7], and [8]. Our paper is more
comprehensive than existing ones since more applications are mapped
in the system, experiments with different instances of the system are
performed and a high-level automated design flow that employs an ef-
ficient mapper for CGRAs is used. Furthermore, we present energy
measurements at the system level whereas only one work [8] illus-
trated such type of measurements. Additionally, the comparison in exe-
cuting complete applications with a microprocessor/very long instruc-
tion word (VLIW) system, which is a type of system widely used nowa-
days in embedded systems, was not performed in previous works. So,
we consider that our study better reflects the computational abilities of
CGRA systems.

The rest of this paper is organized as follows. Section II overviews
the system architecture and the design flow. Section III presents the
experiments, while Section IV concludes this paper.

II. SYSTEM ARCHITECTURE—DESIGN FLOW

A. Architecture Overview

Fig. 1(a) shows an overview of the reconfigurable system-on-chip
(SoC) architecture considered in this paper. The platform is composed
by a CGRA, an embedded microprocessor, instruction memory for
storing program code, configuration memory for storing the complete
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configuration of the CGRA, and shared data RAM. Local data and in-
struction (configuration) memories are located in both the micropro-
cessor and in the CGRA. The execution model of the reconfigurable
platform considers that the data communication between the CGRA
and the microprocessor uses shared-memory mechanism. The shared
memory is comprised by the system’s shared data RAM and CGRA’s
local data memory which a scratch-pad one. Scalar variables, either
live-in or live-out ones, are exchanged via the CGRA’s scratch-pad.
Global variables and data arrays are allocated in the system’s shared
data RAM. The communication process used by the microprocessor
and the CGRA preserves data coherency by requiring the execution of
the processor and the CGRA to be mutually exclusive.

For the CGRA, a flexible template architecture is considered which
allows exploration in respect to various parameters. The CGRA tem-
plate can represent a diversity of existing reconfigurable array architec-
tures [1], [3] by being parametric in respect to: 1) the number and type
(functionality) of PEs; 2) the interconnect structure among the PEs;
and 3) their interface to the data memory. An overview of the con-
sidered CGRA template is shown in Fig. 1(b). A scratch-pad memory
serves as a local data RAM for quickly loading data in the PEs. The
PEs residing in a row or column share a common bus connection to the
scratch-pad memory. The scratch-pad memory is composed by mul-
tiple banks for providing the necessary bandwidth to the CGRA PEs.
Each bank’s ports can be shared among the CGRA buses according to
the description of the CGRA template. A control unit manages the ex-
ecution of the CGRA every cycle by defining the operations performed
by the PEs and the loading/storing of data from/to the memory. The
microprocessor sets the control unit at the beginning of the kernel ex-
ecution on the CGRA. A PE contains one functional unit (FU), which
it can be configured to perform a specific word-level operation each
cycle. Characteristic operations supported by the FU are ALU, multi-
plication, and shifts. For storing intermediate values between compu-
tations and data fetched from memory, local register file exists inside a
PE. For more details about the CGRA template, the reader is referred
to [6].

B. Design Flow Outline

Fig. 2 illustrates the diagram of the design flow for executing ap-
plications on the microprocessor/CGRA system. The input is an ap-
plication described in the C language. Initially, a profiling procedure
outputs the kernels and the noncritical parts of the source code. Ker-
nels are considered those loops that contribute more than a certain
amount to the total application’s execution time on the processor. For
example, loops that account 10% or more to the application’s time can
be characterized as kernels. The kernels are moved for execution on the
CGRA. The intermediate representation (IR) of the kernel is created by
utilizing the SUIF2 and MachineSUIF compiler infrastructures. Opti-
mizations are then applied to the kernel’s IR for efficient mapping after
taking into account the CGRA characteristics, like the number of PEs
in the CGRA. Examples of optimizations are dead code elimination,
common subexpression elimination, constant propagation, if-conver-
sion, and loop transformations. Transformations typically applied are
loop unrolling and loop normalization. For instance, the loop unrolling
is utilized for increasing the kernel’s operation parallelism.

The optimized kernels are mapped on the CGRA for improving per-
formance by utilizing our mapping procedure introduced in [6]. The
second input to the mapper is a text file containing the description of
the CGRA. The considered mapper [6] exploits instruction level par-
allelism in kernels by modulo scheduling which is a widely utilized
software loop pipelining technique. The developed mapper advances
existing works considering software pipelining approaches for CGRAs

Fig. 2. Design flow for the microprocessor/CGRA platform.

since: 1) concurrently encounters the scheduling, register allocation,
and register spilling phases as these are highly related and 2) reduces
the data bandwidth bottleneck by exploiting data reuse opportunities
and by utilizing the PE’s local storage and interconnections. For a
detailed description of the mapper, the reader is refereed to [6]. The
noncritical source code is compiled using a compiler for the specific
processor. The performance is estimated via cycle-accurate simulation
having as inputs the software binary of the processor and the configu-
ration of the CGRA.

III. EXPERIMENTS

A. Set-Up

Two different CGRA architectures are used each time for acceler-
ating critical kernels. The first architecture is a 4 � 4 array of PEs
(CGRA1), while the second one (CGRA2) consists of 36 PEs connected
in a 6� 6 array. Both architectures have a data-width of 32-bits and
their PEs are directly connected to all other PEs in the same row and in
the same column through vertical and horizontal interconnections. The
FU in each PE can execute a supported operation in one clock cycle.
Two bidirectional buses per row are dedicated for transferring data to
the PEs from the scratch-pad memory. Each bus transfers one 32-bit
word with one-cycle delay. The CGRA architectures were described in
register-transfer level VHDL. For the SRAMs, optimized components
from TSMC 0.13-�m SRAM generators of artisan components were
used. The Synopsys synthesis and power estimation tools were utilized
to obtain delay, area, and power estimates for a 0.13-�m TSMC stan-
dard cell CMOS process from artisan components. It was found that
the critical path delay allows the clock frequency to be 150 MHz for
both CGRAs. The average power consumption for the 4� 4 CGRA is
154.5 mW at 150 MHz, while for the 6 � 6 CGRA it is 258.0 mW at
150 MHz.

Three different architectures of 32-bit ARM processors are coupled
each time with a CGRA. These processors are: 1) an ARM7 clocked at
133 MHz; 2) an ARM9 clocked at 250 MHz; and 3) an ARM10 having
clock frequency of 325 MHz. The power consumption, at 0.13 �m for
the ARM7 is 26.6 mW at 133 MHz, for the ARM9 is 112.5 mW at
250 MHz, while for the ARM10 is 195.0 mW at 325 MHz.

Seven real-world DSP applications, described in C language, are
used in the experiments. These are a JPEG encoder, an IEEE 802.11
an OFDM transmitter, a wavelet-based image compressor, a medical
imaging application called cavity detector, an image edge detection
technique, a JPEG decoder, and a GSM voice encoder.
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TABLE I
RESULTS FROM MAPPING KERNELS ON THE 4 � 4 CGRA

B. Speedups

1) Kernel Mapping Results: The results from mapping the critical
loops of the applications on the 4 � 4 CGRA are given in Table I.
The first column refers to the kernel app.kn of an application app,
while the second one refers to the number of operations composing
each loop after the unrolling performed for achieving better CGRA
utilization and, consequently, better performance. The MII is the min-
imum initiation interval, while II is the interval actually achieved during
modulo scheduling. The instructions per cycle (IPC) indicates the av-
erage number of computing operations executed per clock cycle in the
scheduled loop. The IPC is a measure of the operation parallelism ex-
ploited and dictates the performance in modulo schedulers. The CGRA
utilization is the average percentage of the PEs active per cycle and it
is equal to the IPC divided by the number of PEs in the CGRA.

From Table I, it is inferred that the achieved II is equal to the MII in
19 out 23 kernels, a fact that reflects the quality of the CGRA mapping.
The 4� 4 CGRA is efficiently utilized since the average percentage of
the CGRA utilization is 83.1%. The large values of CGRA utilization
reveal the high-performance mapping of the kernels on the 4� 4 array.

The maximum combined II (sum of the II values for an applica-
tion’s loops) among the applications equals 17 and refers to the JPEG
decoder. The II defines the number of configuration words needed to
execute the loop. Since in our experimental scenario each PE’s local
configuration RAM stores 32 contexts, there will be no time overhead
for loading the local context RAMs during the execution of each appli-
cation as all the PE configurations for the application’s kernels can be
stored in the local context RAM. When the kernels are mapped on the
6 � 6 CGRA, the achieved average CGRA utilization is 71.7%.

2) Application Speedups: The execution times and the application
speedups for the seven applications are presented in Table II. Timesw
represents the software execution time of the whole application on a
specific microprocessor (Proc.). The ideal speedup (Ideal Sp.) is the
application speedup that would ideally be achieved, according to Am-
dahl’s Law, if application’s kernels were executed on the CGRA in zero
time. Timesystem corresponds to the execution time of the application

TABLE II
COMPARISON OF EXECUTION TIMES FOR MICROPROCESSOR EXECUTION AND

MICROPROCESSOR WITH CGRA

when the critical code is executed on the CGRA, either the CGRA1 or
the CGRA2. All execution times are normalized to the software execu-
tion times on the ARM7. The Sp. is the estimated application speedup,
after utilizing the developed design flow, over the execution of the ap-
plication on the microprocessor.

From the results given in Table II, it is evident that significant overall
performance improvements are achieved when critical software parts
are mapped on the reconfigurable logic. These speedups range from
1.81 to 3.99. It is noticed from Table II that the largest application per-
formance gains are achieved for the ARM7-based systems since the
ARM7 exhibits the highest cycles per instruction (CPI) and it has the
slowest clock relative to the rest two ARM processors. The average
application speedup of the data dominated DSP benchmarks for the
ARM7-based systems is 2.96, for the ARM9 systems is 2.74, while for
the ARM10 systems is 2.57. For the case of mapping the kernels on
the 6 � 6 CGRA, the application speedups are somewhat larger than
the 4 � 4 CGRA case. The larger application speedups are due to the
better kernel speedups that obtained with the 6� 6 array relative to the
4� 4 CGRA. The overall application speedup slightly increases due to
the fact that the noncritical code segments are executed on the micro-
processor. The average estimated speedup is 2.71 for the 4� 4 CGRA
systems, while for the 6 � 6 CGRA ones equals to 2.80.

We notice that the reported estimated speedups for each application
and for each processor type are somewhat close to the ideal speedups
determined by the Amdahl’s Law, especially for the case of the 6 �
6 CGRA systems. In particular, the average estimated speedup for the
CGRA2 is 6.0% smaller than the average ideal speedup for all the pro-
cessor systems. This illustrates that the proposed design flow efficiently
exploited the processing capabilities of the CGRAs for speeding-up the
applications close to the theoretical bounds.

C. Energy Savings

The energy savings by utilizing a CGRA in the microprocessor sys-
tems are presented. For estimating the total energy of the system the
following formula is used:

Etotal = Timeproc � (Pproc + 0:20 � PCGRA + Pmem icon)

+ TimeCGRA � (PCGRA + 0:25 � Pproc + Pmem icon) (1)
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Fig. 3. Normalized energy consumption for the (a) 4 � 4 CGRA and (b) for
the 6 � 6 CGRA systems.

where Timeproc is the time of noncritical software parts on the micro-
processor, TimeCGRA is the execution time of the kernels, Pproc is the
active power of the microprocessor, PCGRA is the active power of the
CGRA, and Pmem icon is the power consumption of the shared data
RAM and of the interconnection. The active power is when the logic
(either microprocessor or the CGRA) evaluates. In (1) it is considered
that the low-power idle mode (standby) of the CGRA consumes 20% of
the power of its active state as in standby mode the power is primarily
due to current leakage. In contemporary CMOS processes, leakage can
account for 10% to 30% of the active power. The power-down mode of
the microprocessor dissipates 25% of its power when it is active. It is
assumed that the systems have Pmem icon of 210 mW. This value was
estimated from commercial and academic microprocessor platforms
implemented at 0.13 �m as well as from industrial SRAM modules.

Fig. 3(a) illustrates the normalized energy consumptions when the 4
� 4 CGRA is coupled with each one of the three ARM processors. The
normalized energy values for the 6 � 6 CGRA systems are presented
in Fig. 3(b). The energy values are normalized to the software-only ex-
ecution of each application on the microprocessor. From the presented
results it is inferred that significant energy savings are achieved by ex-
ecuting critical kernels on the CGRAs. The largest energy reductions
for both CGRA systems are reported for the JPEG decoder. The en-
ergy is reduced by an average of 59% for the ARM7/CGRA1 systems.
The savings are slightly smaller for the ARM9 and ARM10-based plat-
forms due to the smaller application speedups relative to the ARM7
systems as these are shown in Table II. More specifically, the system
energy is smaller by an average of 58% relative to the all-software so-
lution for the ARM9/CGRA1 systems, while for the ARM10/CGRA1
systems the energy is reduced by 55%. The energy savings for the
ARM/CGRA2 platforms, for all applications, are slightly smaller rela-
tive to the ARM/CGRA1 systems. This is due to the larger power dis-
sipation of the 6� 6 CGRA relative to the 4� 4 CGRA and due to the
slightly larger application speedups that cannot result in further reduc-
tion of the energy consumption relative to the all-software solution.

D. Comparison With a VLIW-Based Microprocessor System

In this section, we present a comparison in terms of performance and
energy consumption when complete applications are mapped on micro-

Fig. 4. Kernel acceleration achieved by the 4 � 4 CGRA relative to an eight-
issue VLIW.

TABLE III
APPLICATION SPEEDUP AND ENERGY SAVINGS COMPARISON FOR THE

ARM/CGRA AND THE ARM/VLIW SYSTEMS

processor/CGRA and on microprocessor/VLIW systems. The CGRA
used is the 4� 4 as achieves better energy savings than the 6� 6 CGRA
systems. A unified VLIW processor with eight functional units is cou-
pled each time with an ARM processor. Eight-issue VLIWs are widely
used as coprocessors in system-on-chips. For example, the commercial
Digital Media SoC TMS320DM6446 of Texas Instruments couples an
ARM9 and a TMS320C64x DSP VLIW core. The Trimaran frame-
work is used for defining the architecture of the eight-issue VLIW pro-
cessor, for compiling the kernels on the VLIW and for obtaining their
execution cycles. The VLIW has the same operating frequency as the
CGRA. We have selected the same clock period for having a straight-
forward comparison of the computational abilities (and of the mapping
algorithms of the CGRA and the VLIW) without being affected by a
different clock period. We mention that a considerably larger clock fre-
quency is expected to be achieved for the CGRAs if they are designed
in custom logic instead of standard cell logic as in this paper.

Fig. 4 shows the acceleration that the 4 � 4 CGRA provides to the
kernels in respect to the considered VLIW. It is deduced that the CGRA
requires 1.50 times less cycles on average for executing the kernels of
an application. Thus, the CGRA mapper efficiently exploits the larger
number of processing elements in the CGRA leading in important cy-
cles reduction over a VLIW processor.

Table III presents the application speedups and the energy savings
for the ARM/CGRA and the ARM/VLIW systems. The speedups and



1366 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 12, DECEMBER 2007

the energy savings are relative to the all-software execution. The VLIW
processor is assumed to consume 1.00 mW/MHz at 1.2 V which is the
typical case in the commercial VLIW family TMS320C64x of Texas
Instruments. So, the VLIW dissipates 150 mW at 150 MHz. For es-
timating the energy consumption of the VLIW-based systems, (1) is
utilized. It is assumed that the low-power idle mode (standby) of the
VLIW consumes 20% of the power of its active state which is also the
case for the 4 � 4 CGRA.

From the results shown in Table III, it is noticed that the 4� 4 CGRA
always achieves better overall application speedups than the VLIW
systems. This is due to the kernel acceleration achieved by the 4 �
4 CGRA relative to the VLIW. The average value of the speedups for
the specific benchmarks is 2.71 for the 4 � 4 CGRA systems, while
the VLIW platforms achieve an average speedup of 2.53. These per-
formance advancements for the CGRA systems lead to slightly larger
energy savings relative to the VLIW platforms. The area of a repre-
sentative VLIW DSP core (the TMS320C64x) is about 12 mm2 for a
semi-custom standard cell implementation. The standard cell imple-
mentation of the 4� 4 CGRA occupies 9.4 mm2 of silicon. So, we can
deduce that it is better to couple the 4� 4 CGRA with a microprocessor
as it is more efficient in terms of performance, energy consumption, and
area relative to a processor/VLIW system.

IV. CONCLUSION

Speedups and energy reductions by executing realistic applications
on six instances of a generic system architecture were presented.
Significant speedups and energy reductions were achieved, while a
comparison with a system containing a VLIW shows that the CGRA

platforms achieve better speedups and comparable energy savings.
Speedups and energy reductions from mapping DSP applications on
an embedded reconfigurable system.
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