
Hardware/software architecture of an algorithm for
vision-based real-time vehicle detection in dark

environments
Nicolas Alt, Christopher Claus, Walter Stechele

Technische Universität München, Lehrstuhl für Integrierte Systeme
Theresienstrasse 90, 80333 München, Germany

n.alt@mytum.de, christopher.claus@tum.de, walter.stechele@tum.de

Abstract�Hardware/software partitioning of algorithms is
gaining more and more importance in order to benet from
the advantages of both worlds. Pure software implementations
are easy to change but the processing time is rather high. By
contrast pure hardware implementations usually result in faster
processing due to inherent parallelism but they do not offer
the necessary exibility for quick changes and adaptions. In
this paper the hardware/software co-design of a self-developed
algorithm to detect cars by their taillights as well as its imple-
mentation on an embedded system (FPGA) is presented. Instead
of utilizing expensive sensors such as RADAR which also can
be used to detect obstacles in dark environments, the detection
method presented here is based solely on grayscale images taken
by a low-cost on-board camera which was mounted on a moving
vehicle. Only computationally intense parts - namely pixel or
sliding window operations - are implemented in hardware to
achieve the necessary real-time requirements. The remainder of
the algorithm - the so called higher level application code - is
running on standard embedded CPU cores. With this architecture
it is possible to process the incoming video-stream (25 frames/s)
and detect cars in real-time on an embedded system.

Keywords: driver assistance, real-time video processing,
hardware acceleration, taillight detection

I. INTRODUCTION AND RELATED WORK

Current algorithms in the driver assistance domain are not
standardized, and might change rapidly. Therefore a exible
platform is necessary. The proposed vision-based concept is
based on a separation of pixel-level operations and high level
application code. Pixel-level operations are accelerated by
coprocessors, whereas high level application code is imple-
mented fully programmable on standard CPU cores to allow
exibility for new algorithms and quick changes. Different
engineers will implement their own algorithms for vehicle
detection. All these algorithms, however, will need to extract
candidate spotlights, so called feature points, from the image.
The detection of these spotlights is mainly based on pixel
operations which is a process that is very repetitive and
easy to parallelize. So this part is obviously suitable for
an implementation in hardware and therefore no tool for
complex automatic HW/SW partitioning was required. The
desired framerate is 25 frames/s, which results in a maximum
processing time of 40 ms per frame. Many authors have
published their work on detecting cars by their taillights. Betke

et. al. [1] and Chern et. al. [3] present methods to detect cars
by their taillights based on thresholding. Thresholding is an
important method for image segmentation in which pixels with
similar brightness values are grouped together. In the simplest
case this is a binary decision based on whether the brightness
values are above or below this threshold. The threshold value
itself is a critical parameter which is responsible for the
degree of segmentation obtained. One of various techniques
to detect a kind of optimum threshold is described in [6].
Cucchiara et al. describe in [5] a method to detect cars by their
headlights under night illumination. After a thresholding step
headlight detection via morphological analysis is performed
by considering criteria such as shape, size and the minimal
distance between vehicles. After that the algorithm searches
for luminance values in horizontal direction. The authors in [9]
use stereo-vision and color information to track the taillights
from a leading car. Cabani et. al. also detect taillights of cars
in [2] by exploiting the colour information in a video frame.
Kim et. al. propose in [8] a method to detect cars by their
front- and taillights by introducing an additional classication
step in which the size of the light regions is taken into account.

The paper is organized as follows: In section II the algorithm
to detect cars by their taillights is described followed by the
system implementation on an recongurable hardware (FPGA)
in section III. Experimental results namely execution times of
the algorithm are depicted in section IV. Section V concludes
this paper with an outlook on future research activities.

II. AN ALGORITHM TO DETECT CARS BY THEIR

TAILLIGHTS

The system described here was designed specically for
tunnel or nighttime driving on roads with separated lanes for
each direction, such as freeways.

Fig. 1 (left) shows a typical input image seen in those
environments. Mainly active light sources, such as taillights
of cars or static lights from the tunnel, are clearly visible.
Therefore, this system detects cars and trucks solely based on
taillight pairs and the license plate illumination visible in a
camera image, suggesting the name TaillightEngine.

First, an algorithm was designed and evaluated that searches
for pairs of lights that possibly stem from a car. Multiple





Fig. 1. A typical input image (left) and the intermediate output of the
SpotlightEngine (right)

properties of each light are matched against those of other
lights. Also, the space between two lights is searched for the
illumination of a license plate. The algorithm was separated
into a hardware and a software part, and later both parts
were implemented. It was shown that, thanks to the hardware
acceleration, real-time processing can be achieved on an
embedded processor. The demonstration system processes a
video recorded on a real drive and draws the detected objects
on a monitor, overlaid on the original image (see g. 2).

Fig. 2. Final output image of the system. Markers show all detected lights,
their motion vectors and detected vehicles.

Fig. 3 depicts a owchart of the proposed detection algo-
rithm. The input image is recorded by a standard video camera,
sensitive to visible light, and recording 25 grayscale frames
per second. The hardware accelerator consists of the Spotlight-
Engine and the LabelingEngine. Processing in SpotlightEngine
and subsequent thresholding results in a binary image that
only shows spotlights, as shown in g. 1 (right). A spotlight
is dened to be a roughly round region of bright pixels.
Typically, active light sources, such as taillights or tunnel
lighting, produce spotlights in the video. The LabelingEngine
searches the binary image for regions of connected white
pixels and creates a label for each region. It converts the binary
image to a list of labels, each entry corresponding to one
spotlight. This list is the output from the hardware accelerator
and is handed over to the CPU as can be seen in gure 3. The
list of labels is smaller than the bitmap, so the amount of data
has been reduced considerably during this step. For reasons
discussed later, the labeling process is split into two separate
parts. The following software modules, except PlateSearch,
operate only on the list of labels and do no longer need to
access the bitmap data. The number of labels is relatively low,
making it possible to perform complex operations on them
without hurting the real-time criteria. Typically, between 20
and 35 entries were seen while driving in a tunnel.

Static lights (see section II-C) are detected rst, based on

motion vectors. These are lights that do not belong to a car, but
are xed to the tunnel walls or to the road. Next, lights within
a certain proximity to each other are paired, because each car
is assumed to be represented in the video as a pair of taillights.
This means that motorbikes or cars with a damaged taillight
are not detected currently. Several properties are used to score
how well these so-called candidate pairs (corresponding to
candidate vehicles) match, and the best scores are used to
form a nal list of pairs. One of these scores is determined
by the module PlateSearch, which scans the area between the
taillights for the illumination of a license plate. Afterwards,
the temporal continuity of each pair is determined. Only pairs
that have already been detected in previous frames at a similar
position are marked valid. Finally, valid light pairs with a very
high score are selected as corresponding to an actual vehicle.
The score is a measure of the likelihood that the detection was
correct.

Fig. 3. Flowchart of the algorithm

A. Detecting spotlights

Spotlights are local, bright regions in the image that are
ideally round and surrounded by relatively dark pixels. Tail-
lights of cars typically appear as spotlights. A hardware
module called SpotlightEngine scans the image and lters
out the spotlights. It takes a grayscale image as input and
outputs a binary (i.e. black and white) bitmap. As discussed in
section I, previous authors used thresholding to nd taillights.
However, additional information, such as color or physical
distance, was used to determine the threshold value. Also,
thresholding does not consider the shape of an object, so it
cannot reliably distinguish other bright objects, such as lane



markers, reecting trafc signs, or the bright tunnel exit. The
proposed algorithm applies a simple shape lter to the image
and adapts dynamically to the ambient light. A mask dening
two sets of pixels  and  is applied to each pixel of the
image, as shown in g. 4C and 4D. Two possible masks are
shown in g. 4A and 4B. They dene the two pixel sets relative
to the current pixel (CP). If all pixels in  are darker than
all pixels in  , the CP is a spotlight pixel. That condition is
expressed as follows:

      (1)

With  being the set of luminances of the pixels in the set.
For a grayscale image, the luminance equals the pixel value.
The value for  can be set constant and is relatively
uncritical. Fig. 4C shows the mask applied to the center pixel
of a taillight, causing eqn. (1) to evaluate true. In Fig. 4D,
the mask is applied to a lane marker, which covers both sets
dened by the mask. Therefore, even though all pixels in 

are bright, eqn. (1) evaluates false here.
The shapes and sizes of  and  determine what kinds

of spotlights will be found. A spotlight has to cover at least
the area of  in order to be detectable. At the same time, it
must t into the frame given by  . Thus, if  is chosen to
be almost as big as  , a very narrow search is done for lights
of that specic size and shape (g. 4B). On the other hand, if
 is only one pixel, and  is relatively large, a very wide
variety of lights will match the mask (g. 4A). In this work,
the latter variant is chosen as it requires only one search of the
image. The resulting output image of the SpotlightEngine is
shown on the right side of g. 1. Alternatively, several searches
for more specic sizes could be done and combined.

Fig. 4. Two possible masks, defining pixel sets  and  . In C and D,
the mask is applied to different pixels of an input image.

B. Labeling regions

The operation described so far creates a binary bitmap of 0-
(black) and 1-pixels (white) in which a light consists of one
or more pixels, depending on its size. Subsequent modules
require a list of lights, which is extracted from the binary
image by the LabelingEngine module. It scans the bitmap for
white pixels and identies separated regions of connected 1-
pixels, each identied by a distinct label. A label needs to be
assigned to each 1-pixel, whereas 0-pixels are ignored, because
they are the background. All 1-pixels connected to each other
need to be assigned the same label. Different labels must be
assigned to 1-pixels without such a connection. Each pixel is
directly connected to eight neighboring pixels at its corners
and edges. One region or label corresponds to one light,

regardless of how many pixels the light covers. This labeling
process is very common in computer vision and described, for
instance, in [7].

C. Determination of static lights

At this point, a list of spotlights has been extracted from
the input image. For each light, the following properties are
available:
 Bounding rectangle
 Position in the image (coordinates of the center of the

bounding rectangle)
 Total brightness (dened as )
 Number of pixels (size of region)

These lights stem from different sources, such as vehicles, tun-
nel lighting, lit roadsigns and reections. Some light sources
are static, i.e. they do not move relative to the road. For the
detection of moving vehicles, these lights are not relevant, so
they should be ltered out. Due to the movement of the on-
board camera, static lights do move in the two-dimensional
video - depending on their position in the three-dimensional
space and on the velocity of the own car. As shown here, the
direction of the light�s motion vector can be used to determine
static lights, whereas the motion speed is irrelevant.

The two-dimensional camera image is a projection of the
three-dimensional environment. In that projection, parallel
straight lines seem to intersect in an innite distance, at the
so-called vanishing point. A straight road or tunnel can be
described by such parallel lines. While the own car is driving
straight ahead, every static object along the road seems to
appear at the vanishing point and travel to the outside of the
image, along straight lines. Therefore, the motion vector of
a static object always points away from the vanishing point.
This point is xed as long as the road is fairly straight, which
is generally the case for a freeway. Objects that are moving
relative to the road exhibit a different motion vector, depending
on their speed relative to the own car.

In order to nd motion vectors for each spotlight, light
tracking is used. For each light in the current frame, a close-
by light is searched in the previous frame. The motion over
several frames is monitored in order to obtain smooth motion
vectors. If the motion vector points away from the vanishing
point, the corresponding light is marked static and no longer
considered by the subsequent routines.

D. Finding light pairs

The previous routine has identied a list of spotlights
moving relative to the road. Next, pairs of spotlights are
identied. A pair might correspond to the two taillights of
a car or truck. The labeling module ensures that list entries
are already sorted by the y-position of one arbitrary pixel
within each light. Even though this sortation is not perfect,
the following processing modules can rely on a sorted list,
simplifying future steps.

In order to nd pairs of lights, all their possible two-
combinations are considered. If there are  lights in the
image, initially  

   

 potential pairs are formed.



However, pairs that are too far apart in y-direction can
immediately be removed, leaving less then  pairs in all
practical cases studied. For each potential pair of lights, several
properties are considered and scored separately:

 Distance of lights, y-component
Both taillights of a car are expected to be on the same
height on a at road. Consequently, they should appear
at the same y-coordinate in the image. If that is the case,
full score is given.

 Distance of lights, x-component
A vehicle that is far away from the camera appears more
in the top of the image than a closer vehicle. Thus, based
on the y-position (height) of a pair, its expected width
can be calculated. For observed distances close to the
expected value, full score is given. A tolerance is allowed
to account for small changes in road inclination as well
as for tolerances in the actual vehicle width.

 Ratio of brightness
Both lights in the pair are expected to exhibit a similar
brightness. This property is rated with full score if the
brightness ratio is close to 1.

 Existence of additional light in between the pair
Two cars driving next to each other are seen as four
similar spotlights in a row. In that case, the two outer
lights of the four spotlights could be considered as one
candidate pair, while there are really two smaller pairs. A
zero score is given for this property if there are additional
spotlights in between the current pair, suggesting that the
pair should be subdivided.

 License plate visible
Most license plates are located exactly between the tail-
lights and are dimly lit. The module PlateSearch performs
a search for a luminance pattern as shown in g. 5 (right)
on the pixels between the two taillights. That pattern
was constructed from an idealized rear view of a car,
shown in g. 5 (left). It accounts for two bright regions
caused by the taillights at both ends and another one in
the middle, caused by the license plate illumination (L).
In between, dark pixels (D) are expected. The transition
between D and L can be within a certain area and will
be determined dynamically from the actual image. For
better performance, a simplied one-dimensional pattern
was chosen and applied at several different horizontal
lines in the proximity of the pair. The grayscale pixels
are converted to a binary format before matching against
the pattern is attempted, using a threshold based on the
ambient brightness.

A maximum score of 1 is given if a property value is within
a certain range. In case the value is outside that range, its
score is reduced gradually, but not below 0. The ideal range
of each value is determined from an ideal pattern of a car
back side and by inspection from vehicles seen in test videos.
An overall score is calculated for each light pair from the
individual scores by averaging. The overall score is a measure
for the probability that a potential pair actually corresponds

Fig. 5. Idealized rear view of a car (left) and 1D brightness pattern used to
search for license plates (right)

to a vehicle. Each property discussed above delivers an equal
fraction to the overall score. Potential pairs ranked above an
adjustable threshold are selected as actual pairs that most likely
represent a vehicle. Each light might have been associated with
several potential pairs, but it may only belong to one actual
pair.

Real vehicles are expected to remain at a similar position
between two consecutive frames. This property can be used to
differentiate between pairs representing real objects and pairs
resulting only from random light reections. Therefore, pairs
are tracked over several frames, using their position and size.
If a pair was found in several previous frames, it exhibits a
high temporal continuity, as expected from a real car.

III. SYSTEM IMPLEMENTATION

The system was implemented on an ML310 evaluation
board with a Xilinx Virtex-II Pro FPGA, suitable for HW/SW
co-designs. That FPGA also features two embedded 300 MHz
PowerPC CPU cores, one of which was used to run an
embedded Linux operating system. The software modules
described above run within a user mode process. A kernel
driver was developed to provide access to the SpotlightEngine
and LabelingEngine. Table I shows the hardware resources
required by the two hardware modules, clocked at 100 MHz.
Additional hardware resources are required to create a system
capable to boot a Linux operating system. A Processor Local
Bus (PLB) connects the CPU and all hardware components.

RESOURCE USED AVAILABLE PORTION OF FPGA
Slices 2816 13696 20%
Slice Flip Flops 2344 27392 8%
4 input LUTs 5057 27392 18%
BRAMs 19 136 13%
Maximum Frequency: 103.2MHz (Minimum period: 9.689ns)

TABLE I
HARDWARE REQUIREMENTS FOR THE COPROCESSORS

(SPOTLIGHTENGINE & LABELINGENGINE)

A. HW/SW partitioning

One of the main goals of the presented work was to design
a system that is well suitable for hardware/software partition-
ing and thus can take advantage of a hardware acceleration
module. As discussed in section II, the system consists of
two distinct types of modules - those operating on a complete
bitmap, and those working on a list of features. The bitmap



modules apply the same relatively simple and xed pixel
operation to a large amount of data, namely to each individual
pixel of the image. These characteristics are ideal for hardware
implementation, because simple operations translate to a low
number of logic elements. At the same time, there is a great
benet in execution time over a software solution because of
the large input data set. Thus, the rst modules in the data
ow are implemented as hardware modules in the proposed
system. (Spotlight- & LabelingEngine, the rst row in g. 3.)

The remaining modules work on a list of data originally
assembled by the hardware, while the input image is not
accessed at all. Operations performed by these modules are
more complex and highly dependent on the input data. Con-
sequently, a software solution was chosen here. Due to the
small size of input data, the execution time remains low.
In the design of the presented algorithm a clear interface
in the data ow between hardware and software can be
dened: Partitioning happens at the point where the large input
bitmap is transformed into a small list of regions. The module
PlateSearch is a slight exception, as it also needs to access a
small portion of the original input bitmap directly. A hardware
implementation of this module might be desirable, however
this will only result in a small execution time benet (some
100s) compared to the software solution.

B. Coprocessor implementation

The graphic hardware coprocessors, SpotlightEngine and
LabelingEngine, take advantage of a exible image processing
framework which was introduced previously in [4]. It utilizes
direct memory access to read the input image from memory
and write back the output image. Each pixel is individually
fed to a processing module, beginning at the top-left pixel and
continuing horizontally. The processing module only performs
the main pixel operation and does not have to take care
of border effects, memory address calculations or bus stalls.
Part of the image is cached in a ring buffer, providing easy
access to pixels in proximity to the currently processed pixel
(neighborhood). One column of pixels can be read out in
parallel from the cache within one clock cycle.

The SpotlightEngine evaluates for each pixel:

  

 if result  0
 

 otherwise

(2)

By comparing that value with a threshold, the condition given
earlier in eqn. (1) is evaluated. The frame dening  (see g.
4) was selected to be   pixels wide, so    . Two
clock cycles are required to read the left and the right pixel
columns from the neighborhood cache, which consequently
needs to store at least 11 lines around the current pixel. A
shift register holds the values of the top and bottom row of
 . Finding   requires the comparison of 40
values, each 8 bits wide. Multiple comparators are connected
in a pipeline structure, each featuring two 8 bit wide inputs.
One stage of the pipeline reduces the number of values by a

factor of two, so there are   stages needed to nd
the maximum. The latency of the comparator is equal to the
number of stages, but during each clock, new values can be
fed in. The set of pixels  is only 2 pixels big, so there is
only one comparator needed to nd .

The LabelingEngine receives a binary image from memory
and does not create an output bitmap. Instead, it creates a list of
pixel regions saved in internal FPGA memory (BRAM). That
list contains already the properties described in II-A and can
later be read out by the CPU. In some cases, the list describes
trees of equivalent regions, which are resolved in software ef-
ciently. This means, hardware/software partitioning happens
right within the labeling algorithm.

IV. EXPERIMENTAL RESULTS

It is crucial for the presented system to work in real-
time. This means that processing for each image of the video
(frame) needs to nish before the next one becomes available.
Dropping frames is not acceptable, as this would delay the
reaction time and corrupt motion data. Given a framerate of
25 frames/s, processing time may not exceed 40 ms. Runtime
analysis and worst-case tests were performed to show that the
presented system can meet this requirement. For all tests, an
image size of 384 by 288 pixels was used.

For each of the two hardware modules, there is an easy
way to calculate the expected runtime theoretically. The design
runs at 100 MHz and requires in general 2 clock cycles per
pixel. A pixel cache has to be lled with default values before
processing a new image line. Also, at the end of each line,
about 20 clock cycles are required for initialization. This yields
the following expression for the runtime of a hardware module:

 
          



(3)

With ,  representing the image size and  being the number
of preloaded lines. For the given image size and   , as
required for an  frame, a runtime of     is
obtained. Practical measurements showed times only slightly
above that value. However, due to inefciencies in the bus
transport, the runtime increases by about 50% if an output
image is written to the memory, as done by SpotlightEngine.

MODULE MINIMUM MAXIMUM

SpotlightEngine (FPGA) 3.44 ms 3.52 ms
LabelingEngine (FPGA) 2.37 ms 2.40 ms

Spotlight (PowerPC) - 607 ms
Spotlight (Pentium 4) - 26 ms

TABLE II
MEASURED RUNTIME FOR HARDWARE MODULES AND THEIR SOFTWARE

IMPLEMENTATIONS

Table II lists the results of runtime measurements for a
typical input image. As a comparison, the runtime of a
software implementation of SpotlightEngine is also given.
It was tested with the 300 Mhz PowerPC processor on the
Xilinx ML310 board as well as on a 3 GHz Intel Pentium
4 system. The execution time of the software parts in the



system is highly dependent on the number of spotlights found
in the image. A theoretical analysis is impractical, so several
different images with up to 50 spotlights were used to measure
the actual runtime. Altogether, the software modules take
between   and   to execute on the embedded
PowerPC on the ML310. For comparison, the runtime on a
3 GHz Pentium 4 is between   and  . Real-world
images are in general less complex than the worst image tested,
so an upper boundary of   for the total execution time
(hardware + software) can be given. This means that there are
resources remaining in the system that can, for instance, be
used to process a larger input image. As an example, a bigger
input image of    pixels would scale the hardware
execution time by a factor of 2.8, whereas the runtime for the
software would not be affected. With a calculated hardware
runtime of  , the overall runtime of the system would
be   in the worst case. Even more resources can be made
available by having coprocessor and main CPU run in parallel.
Also, both hardware modules can be combined in one, if the
output of the SpotlightEngine is not needed. This effectively
halves the total coprocessor runtime.

The TaillightEngine was evaluated using 20 second, un-
preprocessed video sequences recorded during tunnel drivings.
Table III shows the detection statistics for one of those videos,
normalized to the total number of vehicles present in the
video ( ). The system also assigns a certainty value to
each detected object, based on its temporal continuity. All
those objects marked with a high certainty were in fact cars
and thus detected correctly. Altogether, 73% of all vehicles
 were detected. Some objects, such as reections, were
erroneously detected as cars, but their number is relatively
low compared to  (1:20). The number of non-detected
vehicles seems pretty high at 27%. Part of it can be attributed
to objects that were far away from the camera, only producing
an unclear image. However, about 10% of all vehicles 

were not detected because of an activated indicator at the
corresponding vehicle. This event was not considered in the
design of the TaillightEngine, but it deranges the search for
light pairs severely.

RESULT CERTAINTY PERCENTAGE

Vehicle detected high 57%
low 16%

Vehicle not detected - 27%

TABLE III
VEHICLE DETECTION STATISTICS

V. CONCLUSION AND FURTHER WORK

In this paper a exible HW/SW co-design architecture to
detect cars based on their taillights in real-time was presented.
Computationally intensive image processing operations were
performed on a custom image coprocessor. The remaining
software part could thus run on an embedded processor
with only limited computational resources. An FPGA with
two embedded PowerPC cores was used to implement the

system, enabling the possibility to dynamically recongure the
hardware coprocessor for different driving environments.

The presented work should be regarded as a rst demon-
stration system, which does not cover all situations that can be
encountered on the road. For instance, vehicles with solely one
taillight, such as motorbikes, cannot be detected. Vehicles that
are standing still or using their indicators are not detected in
some cases. Non-moving cars could be detected by rst search-
ing for light pairs instead of discarding the corresponding
lights due to their motion vectors. Certain changes in the envi-
ronment, such as curved or hilly roads, will break some of the
assumptions made and degrade the detection performance. In
an improved version a dynamic adaption to all of these changes
could be implemented. Also additional types of surroundings
such as urban trafc need to be considered in order to design
a more robust system. For different environments, such as
daylight driving, the hardware accelerator could be exchanged
by another, more suitable one. This can be accomplished by the
dynamic partial reconguration capabilities of Xilinx Virtex
devices as described in [4]. Finally the system should be
ported to a real car to demonstrate the benets of the proposed
system.

VI. ACKNOWLEDGEMENTS

This work is supported by the German Research Founda-
tion DFG (Deutsche Forschungsgemeinschaft) in the focus
program No. SPP1148. We also want to thank Xilinx for
providing development boards and BMW for providing test
video sequences.

REFERENCES

[1] M. Betke, E. Haritaoglu, and L. S. Davis, �Real-time multiple vehicle
detection and tracking from a moving vehicle,� Machine Vision and
Applications, vol. 12, no. 2, pp. 69�83, August 2000.

[2] I. Cabani, G. Toulminet, and A. Bensrhair, �Color-based detection of
vehicle lights,� in IEEE Proceedings of Intelligent Vehicles Symposium
2005, Las Vegas, USA. IEEE Computer Society, 2005, pp. 278�283.

[3] M.-Y. Chern and P.-C. Hou, �The lane recognition and vehicle detection
at night for a camera-assisted car on highway,� in Proceedings of the
2003 IEEE International Conference on Robotics and Automation, ICRA
2003, Taipei, Taiwan.

[4] C. Claus, J. Zeppenfeld, F. Müller, and W. Stechele, �Using partial-run-
time reconfigurable hardware to accelerate video processing in driver
assistance systems,� in DATE �07: Proceedings of the conference on
Design, automation and test in Europe, Nice, France, 16th-20th April
2007, pp. 498�503.

[5] R. Cucchiara and M. Piccardi, �Vehicle detection under day and
night illumination,� in Proceedings of ISCS-IIA99, Special Session on
Vehicle Trafc and Surveillance, Genoa, Italy, 1999. [Online]. Available:
http://citeseer.ist.psu.edu/cucchiara99vehicle.html

[6] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition).
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

[7] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1992, vol. 1.

[8] S. Kim, S.-Y. Oh, J. Kang, Y. Ryu, K. Kim, S.-C. Park, and K. Park,
�Front and rear vehicle detection and tracking in the day and night times
using vision and sonar sensor fusion,� August 2007, pp. 2173�2178.

[9] W. Kubinger, S. Borbely, H. Hemetsberger, and R. Isaacs, �Platform for
evaluation of embedded computer vision algorithms for automotive appli-
cations,� in Proceedings of 13th European Signal Processing Conference
(EUSIPCO 2005), September 4-8, 2005, Antalya, Turkey, pp. 130�133,
September 2005.


